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Abstract. Nowadays composite materials are becoming increasingly popular, due to their
ability to improve the structural performance and also to be tailored to meet specific de-
sign requirements for a given application. In the case of a wing composite structure, this is
composed of a large number of panels, which have to be designed simultaneously to obtain an
optimum structural design. In general, the wing-box design process is a multidisciplinary one,
involving couplings and interactions between several disciplines such as aerodynamics, struc-
tural analysis, dynamics, and aeroelasticity. Therefore, the development of multidisciplinary
design optimization (MDO) techniques, in which different disciplines and design parameters
are coupled into a closed loop numerical procedure, seems appropriate to face such a complex
optimization problem, such as a multilevel approach. The aeroelastic optimization here pre-
sented is relevant to the determination of the orientation of different layers which constitute
the composite panels of a wing structure, that realizes the maximum flutter speed. By us-
ing a multilevel approach, the aeroelastic optimization problem can be decomposed into one
subproblem, affecting the global response of the wing, and several independent subproblems,
affecting portions of the wing. In the first level, the anisotropy parameters will be defined by
a real coded Genetic Algorithm (GA), while at the second level of the optimization process,
the ply orientation for the laminate composite plates will be defined by another Genetic Algo-
rithm, with an integer encoding. For each one of the GAs, a local search procedure heuristic
is applied to improve the best solution found by the GA. The hybrid strategy is shown to be
efficient in maximizing the value of flutter velocity.
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1. INTRODUCTION

A wing composite structure is composed of a large number of panels, which have to
be designed simultaneously to obtain an optimum structuraldesign. Usually the design of
each panel requires a large number of design variables to describe its geometry, ply compo-
sition and laminate stacking sequences. By virtues of theseconsiderations, the design of all
the panels of the wing-box simultaneously constitutes an extremely large optimization prob-
lem. It also requires a very detailed structural model of theentire wing, that appears to be
beyond the present computational capabilities. In generalthe wing-box design process is a
multidisciplinary one, involving couplings and interactions between several disciplines such
as aerodynamics, structural analysis, dynamics, and aeroelasticity. The optimization problem,
related to a wing-box design, involves multiple objectivesand constraints pertaining to the
design criteria associated with each of these disciplines.

These couplings and interactions can be exploited by an optimization procedure if all
the disciplines are accounted for simultaneously rather than sequentially [17]. Therefore, the
development of multidisciplinary design optimization (MDO) techniques, in which different
disciplines and design parameters are coupled into a closedloop numerical procedure, seems
appropriate to face such a complex optimization problem. With a multilevel decomposition
approach [15, 18], a large complex optimization problem is broken into a hierarchy of smaller
optimizations subproblems, as shown in Figure 1 (from reference [17]).

The aeroelastic optimization here presented is relevant tothe determination of the ori-
entation of different layers which constitute the composite panels of a wing-box structure, that
realizes the maximum flutter speed. By using a multilevel approach the aeroelastic optimiza-
tion problem can be decomposed into one subproblem, affecting the global response of the
wing, and several independent subproblems, affecting portions of the wing. For the case under
concern the flutter velocity is used to describe the global response of the wing. Therefore a
two level decomposed wing optimization problem can be defined as shown in Figure 2.

The upper level optimizes the wing by changing global quantities, here defined through
some parameters related to the degree of anisotropy of the material. These parameters are
treated as independent quantities even if they are not. The reconciliation between these quan-

Upper level analysis

subproblem1
opt. opt. opt.

subproblem2 subproblem3

design var.
sub 1

design var. design var.
sub 2 sub 3

coordination
procedure between

lower levels
upper level and

upper level
optimization

cycle=cycle+1

Figure 1. General multilevel optimization procedure with two levels.



Figure 2. Wing-box optimization criterion.

tities and the real design variables is done on the lower level. The lower level consists of
independent subproblems at different stations along the wing, which optimize the lay-up an-
gles to reconcile the upper level independent variables. The coupling between the upper level
problems and the lower ones is preserved through a coordination procedure such as that de-
scribed in [14].

Therefore, the application of a two-level method to characterize composite panels of
a wing-box structure is discussed. In the first level, the anisotropy parameters will be defined
by a real coded Genetic Algorithm [10], while at the second level of the optimization pro-
cess, the ply orientation for the laminate composite plateswill be defined by another Genetic
Algorithm, with the integer encoding [6]. In both optimization levels a local search heuristic
is used coupled with the GA. Although GA can rapidly locate the region in which the global
optimum exists, they usually take a relatively long time to locate the exact local optimum in
the region of convergence [16]. A combination of a GA and a local search method can speed
up the search to locate the exact global optimum. In this workthe Hooke-Jeeves method [8]
is employed as an intensification heuristic in order both to reduce the time needed to reach the
global (or local) optimum and to provide a better solution ifcompared with that provided by
the GA metaheuristic when employed as a single optimizationmethod.

The same problem was recently solved successfully thanks toa hybrid multilevel ap-
proach [5] where a deterministic method is used in the first level optimization and a stochastic
method is used in the second level optimization. In this previous approach, the local search
method was not employed and the present work presents a new strategy, based only on Ge-
netic Algorithms coupled to a local search heuristic, whichis shown to be more efficient in
maximizing the value of flutter velocity.



2. WING STRUCTURE

In this work the wing structure consists of a wing-box stiffened composite structure
[13, 4]. A plate model is used to represent the wing-box. The planform geometry of this
plate is assumed to be trapezoidal, with an arbitrary sweep angleΛ, with respect to the wind
direction, and a non dimensional non-orthogonal coordinate system(u, η) are also adopted as
reported in equation (1).







η(X, Y ) = Y/L, 0 ≤ η ≤ 1 ;

u(X, Y ) = −
1

2
+

X − tanΛY

c
, −1/2 ≤ u ≤ 1/2 .

(1)

The wing here considered has a uniform cross section. The presence of ribs, ensuring
the transfer of shear stress between the upper and lower skins of the wing-box is assumed
in order to neglect the shear deformations of the cross-sections. The upper and lower skins
are made of several layers that are assumed to have the same mechanical properties with dif-
ferent orientations. Furthermore, the upper and lower skins and the corresponding layers are
assumed to be symmetric about the middle plane of the wing. The anisotropic plate bending
stiffness matrixD is evaluated by means of the classical laminated theory.

A modified finite element discretization (FEM), based on the following kinematics
representation to describe the flexural displacement of thewing-box, was assumed [13]:

w(u, η) = w0(η) + uw1(η) + u2w2(η) + . . .+ uN wN(η) . (2)

For the sake of brevity all the analytical details, relevantto this methodology and
its use to evaluate (via the classical FEM theory) the mass matrix, the stiffness matrix and
consequently the dynamic behavior of a composite swept wing, are omitted and can be found
in [13]. Suffice here to say that the final form is as follows:

MẌ+KX = Fext , (3)

whereM andK are the mass matrix and the stiffness matrix of the structureandFext is the
vector of the external forces.

2.1. Aerodynamic model

For the present study it is necessary to have an aerodynamic tool that can adequately
describe the aerodynamic unsteady loads acting on the wing.One of the most popular methods
that can be used to determine aerodynamic forces in subsoniccompressible flow is the Kernel
Function Method (KFM), which is able to characterize the aerodynamic pressure in some
wing collocated points. The equation of KFM here consideredis the one of quasi steady
aerodynamics:

w(x, y)

U∞

=
1

8πq∞

∮

Σ

G(x, y, x̄, ȳ;M∞) ∆p(x̄, ȳ) dΣ , (4)

where(x, y) and(x̄, ȳ) are the coordinates of a generic control point and of the doublet sin-

gularity point, respectively, and
∮

here denotes Hadamard’s principal value of the integral.



The idea of the KFM is to approximate the unknown pressure distribution∆p(x̄, ȳ) in chord-
wise and span-wise directions by prescribed functions withunknown coefficients. The final
expression for the pressure distribution reads:

∆p̄(u, η) = 8π q∞ ΓT (u, η) A−1 J , (5)

whereΓT (u, η) is the aerodynamic shape function vector,A−1 is the inverse matrix of the
algebraic solving system (depending on Mach numberM∞), andJ is the vector of down-
washes evaluated at the aerodynamic control pointsPmn [12].

2.2. Aeroelastic equations

The vector form of the aerodynamic forces acting on the wing-box to be used with
FEM formulation reads as follows:

Fext = q∞ R J , (6)

beingR the so-called aerodynamic matrix. The vector of down-washesJ can be divided into
two parts, the one relevant to geometric incidenceαg and the one relevant to elastic incidence
αe [2]:

J = αg + αe . (7)

The elastic incidence can be expressed through the deflection of the structural points of finite
element discretization:αe = QX, beingQ the matrix which transforms the structural degrees
of freedom into the aerodynamic ones. Combining equations (6) and (7) and substituting them
into equation (3) the final aeroelastic system is obtained:

MẌ+KX = q∞ R{αg +QX} = Faer . (8)

The above equation is the basic formula for studying the aeroelastic phenomena (both static
and dynamic) on elastic wings.

The flutter analysis problem will be solved, at first level, byexpressing stiffness, mass
and aerodynamic forces in the smaller subspace. The equations of motion (8) are transformed
into frequency domain resulting in a non linear eigenvalue problem to be solved for a given
flight condition [13].

3. WING-BOX OPTIMIZATION

3.1. Composite laminate

The composite laminate design process typically involves the optimization of the fol-
lowing three parameters:i) Ply (or lamina) material;ii) Ply thickness andiii) Ply orientation.

In this paper only the optimal orientation problem of a two-dimensional linearly elastic
structure, characterized by the following constitutive law, has been considered1:
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1Note that this constitutive law will be used for calculatingthe stiffness matrixK of the wing-box structure.



whereσ1, σ2, τ12 are stress components,ǫ1, ǫ2 andγ12 are strain components. TheHj is the
rotated orthotropic stiffness matrix for thej-th lamina of the composite laminate, which is
computed by using the standard rotation matrix, with the final form as follows:

Hj = H00 +H01 cos 2θj +H02 cos 4θj +H10 sin 2θj +H12 sin 4θj , (10)

where the matrixH00 and the matricesHlm (l = 0, 1 andm = 0, 1, 2) contain the invariants
w.r.t the rotation operation, e.g terms that are not dependent on ply orientation.

From the expression of the matrixHj (see equation (10)) it is possible to observe that
its coefficients are harmonic functions of the orientation angleθ. This is a complicating factor
for the optimization process of the composite laminate structure, since design functions have
revealed the presence of multiple optima [7].

3.2. Laminate plate theory: local variables vs. global variables

In this work the case of symmetric orthotropic laminate is considered, with the or-
thotropic plate bending stiffness matrix[D] defined as follows:

D =

NLa
∑

j=1

z̄3j − z̄3j−1

3
Hj , (11)

wherez̄j = (zj + zj−1)/2 is the position of thej-th layer andNLa is the number of layers.
By substituting expression (10) into equation (11) the matrix of bending stiffnessD is

obtained as follows:

D = D00 +H01ζ3 +H02ζ1 +H10ζ4 +H12ζ2 , (12)

where the termsζi (i = 1, . . . , 4) are functions of the orientation of the layers of laminate, of
their thickness and of their stacking sequence, such that the expressionD00 and the functions
ζi are defined as:

D00 =

NLa
∑

j=1

z3j − z3j−1

3
H00 ; (13)

ζ1 =

NLa
∑

j=1

z3j − z3j−1

3
cos 4θj ; ζ2 =

NLa
∑

j=1

z3j − z3j−1

3
sin 4θj ;

ζ3 =

NLa
∑

j=1

z3j − z3j−1

3
cos 2θj ; ζ4 =

NLa
∑

j=1

z3j − z3j−1

3
sin 2θj . (14)

As mentioned before, the goal of this optimization investigation is to improve the
aeroelastic performance of an airplane wing by using composite tailoring and determining the
optimal orientation of the composite laminates. For the case under concern the local design
variables of the optimization are theθj (j = 1, . . . , NLa), whose values must be determined
in order to maximize the aerodynamic pressureq∞ undergoing certain composite failure con-
straint conditions. In the present optimization procedure(first level) the orientation of the
layers are substituted by their resulting trigonometric combinationsζi (i = 1, . . . , 4) which
describe now the degree of the anisotropy of the composite structure and represent global
design variables.



3.3. First Level Optimization

The first level optimization consists of finding the maximum value of flutter velocity
for assigned values of global design variablesζi along the wingspan. The formulation of the
problem may be stated as follows:

Find (X ) to maximizeFI(X )

subject to

gk(X ) ≤ 0; andhk(X ) = 0;

k = 1, . . . , NL; Xl ≤ X ≤ Xu ;

whereFI(X ) is the flutter velocity obtained from the solution of the frequency domain eigen-
value problem derived from equation (8),X is the design variable vector, containing the global
design variables in an assigned numberNL of wingspan locations; the subscriptsl andu rep-
resent lower and upper limit on design variables respectively, andgk andhk are inequality and
equality constraints respectively.

3.4. Second Level Optimization: from global variables to local variables

The second level optimization is composed byNL subproblems which are to be solved
for different portions of wingspan. The purpose of each lower level optimization is to identify
the ply orientation angles which are used in the composite panels building, for each assumed
wingspan location. The computed orientation angles have toprovide a configuration which
yield the stiffness imposed by the solution of the first leveloptimization problem, i.e., provide
a composite panel configuration which is able to maintain thestrength to withstand loads
calculated by the upper level analysis. The lower level design variables are integer values for
the orientation anglesθj ∈ [−90◦,+90◦] (j = 1, . . . , NLa) of each ply of the laminate. The
objective function is defined as the difference betweenζ̄i (i = 1, . . . , 4), which are imposed
by the first level optimization, and theζi’s which are computed based on the second level
optimization design variablesθj , as defined in equation (14):

FII =
(ζ1 − ζ̄1)

2 + (ζ2 − ζ̄2)
2 + (ζ3 − ζ̄3)

2 + (ζ4 − ζ̄4)
2

ζ̄21 + ζ̄22 + ζ̄23 + ζ̄24
, (15)

where barred quantities denote upper level design variables.
After the minimization of the objective function (15) the process returns to the upper

level for the next optimization cycle. Note that the number of second level optimizations is
equal to the numberNL of wingspan sections.

3.5. Coordination between upper and lower levels

The coordination between first and second levels is implemented by first level con-
straints. Specifically, these constraints, one per each second level optimization, have been
implemented in two different ways; the first one consists of imposing the following equality
constraints condition:

hk = FL
II,k = 0; k = 1, . . . , NL , (16)



whereFL
II,k is the most recent value of thek-th second level objective function, andNL is the

number of second level problems. The second type of constraint is inherent to the strength of
the composite panel, and it can be imposed by using the classical composite failure criteria
such as the Tsai-Hill criteria [1]. This constraint is evaluated at the upper layer of the laminate
and has the following form:

gk =
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+
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τ12
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− 1 ≤ 0 , (17)

with k = 1, . . . , NL, where starred quantitiesσ∗

1, σ∗

2 andτ ∗12 denote the strength values along
the Principal Material Directions, whereas no starred quantities are the stresses associated to
an external load.

4. OPTIMIZATION AND NUMERICAL RESULTS

Two different Genetic Algorithm (GA) methods, within a two-level strategy, were
applied to design a wing-box structure in order to maximize the value of flutter velocity.
One of the GA methods was employed for the solution of the optimization problem at the
upper level, i.e. find the maximum flutter velocity, assumingthe anisotropy parametersζk
(k = 1, . . . , 4) as design variables. On the other hand, another GA method was used to solve
the different optimization problems at a the lower level related in the finding of the orientation
anglesθj (j = 1, . . . , N) for the laminate composite sequence in some prescribed wingspan
locations.

As a class of general-purpose search methods, the GA metaheuristic give a remarkable
balance between the exploitation of the promising regions of the search space and the explo-
ration of the search space. They differ from more conventional optimization techniques since
they work on the whole populations of encoded solutions, called chromosomes or individuals,
and each possible solution is encoded as a set of genes.

In general, the most important phases in standard GAs are selection (competition),
reproduction, mutation, and fitness evaluation. Selectionis an operation used to decide which
individuals to use for the reproduction in order to produce new search points. Reproduction or
crossover is the process by which the genetic material from two parent individuals is combined
to obtain one or more offsprings. Mutation is normally applied to one individual in order to
produce a new version of it where some of the original geneticmaterials have been randomly
changed. Fitness evaluation is the step where the quality ofan individual is assessed [6].
Beyond the standard genetic operators described before, another operator called Epidemical
[3] was used. This operator is activated when a specific number of generations is reached
without any improvement of the best individual. When it is activated, all the individuals in
the population are replaced, except the fittest individuals(e.g., first 2% with the best fit in the
population). This strategy is used to introduce new geneticcharacteristics in the population.

Furthermore, by conducting the search in a global domain, the GA metaheuristic re-
duces the chance of converging to local optima and makes it possible to solve problems in-
volving many parameters. Other advantages in the usage of GAare that it is a self-start
method with no special requirement on the initial value of unknown parameters, other than



the definition of a search range, and also it does not need any information such as gradients or
derivatives of the function to be optimized.

4.1. The upper level GA

At the upper level of the two-level optimization procedure,the anisotropy parameters
ζk (k = 1, . . . , 4) are sought in order to maximize the value of flutter velocity, and also to
satisfy both the equality and inequality constraints. Thisconstrained optimization problem
can be converted into an equivalent unconstrained problem by using the constraints as penalty
functions in a modified objective function, as described in [7]. Thus, the maximization prob-
lem shown in section 3.3 is transformed into a minimization problem, and it is solved by a
GA assuming the fitness function defined as follows:

φI = wv

1

Vf

+

NL
∑

k=1

wg max(0, gk) +

NL
∑

k=1

whmax(0, hk) , (18)

whereVf is the value of the flutter velocity;gk andhk represent the inequality and equality
constraints, as defined in equations (16) and (17), respectively. The constantswg andwh are
the penalty parameters associated with the inequality and equality constraints, which penalize
infeasible solutions. On the other hand, the parameterwv is used in order to balance the im-
portance of the flutter velocity in the fitness function. The values assumed for each parameter
were chosen empirically, by performing some numerical analysis in advance.

Since the upper level design variables are represented by real numbers, which are used
for encoding the individuals for the GA, the appropriate genetic operators employed here are:
Tournament Selection [11, 10], Arithmetic Crossover [10] and Non-uniform Mutation [10].
For the minimization procedure, based on the fitness functionφI , equation (18), it has been set
a population size of 30 individuals, 40% mutation rate, 100%crossover rate and as stopping
criteria the maximum number of 500 generations.

4.2. The lower level GA

At the lower level, a second Genetic Algorithm is proposed inorder to solve the min-
imization problem stated in section 3.4. The orientation anglesθ for the composite laminate
are to be determined basing on the valuesζk imposed by the upper level optimization. The
stacking sequence consists of six sub-groups of layers (Θ = [θ1/ θ2/ θ3/ θ4/ θ5/ θ6]) where
each sub-groupθj(j = 1, . . . , 6) consists in turn of four layers oriented in the same way.
This sequence of angles was mapped as integer values which were used for encoding the in-
dividuals for the GA. Thus each integer value represents a gene in the total individual. The
objective function defined in equation (15) is the fitness function used by the GA in the mini-
mization process, which employs the following genetic operators: Tournament Selection [11,
10], Two-point Crossover [6], Uniform Mutation [10] and Epidemical [3]. For the numerical
simulations, a population size of 50 individuals, 10% mutation rate, 100% crossover rate and
Epidemical activated after 300 consecutive generations without improvement of the best in-
dividual have been set. Moreover, for numerical reasons, the equality constraint defined by
equation (16) can be relaxed so that the optimization procedure stops after a number of 500
consecutive generations without any improvements of the fittest solution.



4.3. The hybrid approach

The two-level optimization procedure, here proposed to optimize the aeroelastic be-
havior of a wing-box structure, could be defined as a hybrid approach since the optimization
problems of each level are solved by two different GA metaheuristics. Furthermore, for each
optimization level, the GA metaheuristic was applied coupled with a local search heuristic,
the Hooke-Jeeves method [8]. The GA works with a population of solutions that enables
a wide search on the space of solution (diversification), mainly by using mutation operators
adequately. However, GA often uses local search techniquesfor intensification, in order to im-
prove some solutions of the population until a local optimumis reached. By using local search
schemes, the search should be speeded up since domain specific knowledge is used, providing
better quality solutions if compared with that solutions provided without the application of a
intensification strategy [19].

The GA is defined as population-based metaheuristic while the Hooke-Jeeves (HJ)
heuristic, here used as local search method, is defined as a direct search algorithm which is
a class of search algorithms that avails itself to the solution of optimization problems. This
method evaluate the objective function at sample points anduse the provided information
to continue sampling along promising directions. A prerequisite is an initial point inside
the feasible region as well as a set of search directions. TheHJ method works similarly
to coordinate descent, however it is a more aggressive search. In addition to the feasible
initial solution, also a set of search directionsv is provided as well as an arrays of M scales,
that determine the step length size which the search algorithm is allowed to explore from
the current point when investigating for promising search directions. In the following, the
pseudocode of HJ method is presented, assuming the design variable vector asx ∈ ℜN , the
objective function asf(·), and, without loss of generality, the optimization problemas one of
minimizing the objective function [9]:

• Define: initial positionx0, search directionsv, and scaless.

• Search:

1. Computef(x0).

2. Choose scalesi from s.

3. Exploratory step:

3.1 Definexs = x0.

3.2 Investigate search directionvj ∈ v:

– Computef(xs + sivj). If f(xs + sivj) < f(x0) definexs = xs + sivj ,
move to step 3.3.

– If f(xs + sivj) ≥ f(x0) computef(xs − sivj).

– If f(xs − sivj) < f(x0) definexs = xs − sivj , continue to step 3.3.

3.3 Repeat step 3.2 forj = j + 1. If j > N (all N search directions inv
investigated) continue to step 3.4.

3.4 Obtain promis ing directiondi = xs − x0.

4. If di = 0, theni = i + 1 (reduce scale size tosi+1. If i > M (all M scales ins
investigate) terminate search iterations.

5. Pattern move step:

– Definexc = x0 + 2di. Computef(xc).



– If f(xc) < f(xs), setxs = xc.

6. Setx0 = xs, and repeat step 1.

• Optimal point,x0, obtained.

The hybrid approach is defined by using the HJ heuristic inserted in the AG evolu-
tionary process along the generations. The evolutionary process is interrupted in previous
determined moments for the local search execution based on the HJ method. For the local
search activation, some parameters should be set: the frequency of activation, which solution
from the GA population will be assumed as the initial solution for HJ heuristic; and which
solution in the GA population will be replaced by the solution returned by the HJ heuristic.
These parameters define the local search application and depending on its definition, different
configurations for the local search could be tested. In this work, the parameters were defined
for each optimization level, with the following assumed values:

• Frequency of activation: after 200 generations in the first level GA, and after 300 gen-
erations in the second level GA;

• Initial solution: the HJ initial solution will be assumed asthe best solution in the GA
population, based on its fitness value;

• Replaced solution: the HJ returned solution will replace the worst solution in the GA
population, based on its fitness value.

When finished the search performed by the HJ heuristic, the GAevolutionary process is re-
sumed, from the generation it was interrupted for the local search performing, and, as ex-
pected, with a new improved solution in the population.

4.4. Numerical Results

The efficiency and robustness of the hybrid two-level optimization procedure, based
on Genetic Algorithm metaheuristics and on Hooke-Jeeves heuristic, was evaluated by solving
different design problems of a composite laminate of a wing-box according to the values of
structural parameters such as angle variation△θ and transverse stiffnessE22.

Concerning the wing-box structure, it was set a 24 ply of Carbon Reinforced/Epoxy
composite material with the following structural properties: E11 = 65 GPa,E22= to be
assumed,ν12 = 0.31, ν21 = 0.31, G12 = 6.9 Gpa, ρ = 1650 Kg/m3, Tensile strength
σ1 = 527 MPa, Tensile strengthσ2 = 490 MPa, Tensile strengthτ12 = 55 MPa, NPLY=24,
stringers Young’s modulusE = 72 GPa, stringers mass densityρ = 2800 Kg/m3 and width
of stringersl = 3.5 cm.

As far as the static analysis is concerned, it has been performed at the second level
to calculate the strength of the composite wing-box, and it is based on:i) applying static
aerodynamic loads at a free stream velocity equal to the80% of the flutter velocity evaluated
at the first level;ii) considering the geometric incidenceαg = 5◦ constant along the wingspan
andiii) considering the Tsai-Hill criterion applied at the upper ply of the wing-panels as a
strength constraint for the composite panel. As far as the first level optimization procedure is
concerned, the following parameters were assumed:wv = 200, wg = 0.01 andwh = 0.1.

The hybrid two-level optimization scheme was applied for a swept wing ofΛ = 30◦

and aspect ratioλ = L/c = 7, whereL is theY−wise semi-span, andc is the chord, here
considered as a constant along the wingspan. The wing-box height is hereh = 14 cm whereas



Figure 3. Flutter velocity [m/s] vs. generations,△θ = 1◦, E22 = 65 GPa.

the thickness of the composite laminate ishl = 4mm and the width of the stringers isa = 3.5
cm. The wing-box is divided into five equal parts along the wingspan. Each part is here
considered as a subproblem of the second level optimizationprocedure as shown in Figure 1.

As far as the second level optimization procedure is concerned and the determination
of the anglesθj of the stacking sequencesΘ, as mentioned before, different situations were
analyzed according to different choices of the angle variation ∆θj and transverse stiffness
E22. In particular, the results obtained by the combination of∆θj equals to1◦, 5◦, 10◦, 20◦,
30◦ and45◦ andE22 equals to 65 GPa, 75 GPa and 85 GPa will be discussed.

Figure 3 shows the flutter velocity evolution according to the generation number of
the upper level optimization, for both feasible and unfeasible solutions. At this optimization
level, where a constrained optimization problem is to be solved, the GA is allowed to search
for solutions also in the infeasible search space. As noted in [7, 10], the infeasible search
opens new routes to optima and permits the algorithm to exploit short-cuts in the search space
if any. It is also worth to note that, in general, a new feasible solution is obtained by the
GA some generations after a better infeasible solution is provided. However, this behavior is
weakly noted for angle variations△θ = 45◦ because greater angle variations could imply the
non existence of a lay-up sequence so that the Tsai-Hill failure criterion is not violated. Also
in Figure 3, it is possible to observe that the flutter velocity strongly increases up to the half of
its evolution period. After that, the improvements are scarce, which indicates a local optimum
trap.

It is now of interest to analyze the effects of the transversestiffnessE22 and angle vari-
ations∆θj used at the second level on the optimized flutter velocity. Figures 4 and 5 show the
parametric study where the optimized flutter velocity is evaluated for different values of∆θj
andE22. The higher values for the flutter velocity were identified, for each configuration, from
a set of 30 runs of the hybrid two-level optimization procedure. It should be pointed out that,
for the same value of angle variation, asE22 increases, the maximum value on the optimized
flutter velocityVf also increases, as depicted in Figure 4. This behavior is easily explained
since by increasing the mechanical properties of all the laminates also the flexural/torsional
rigidity of the wing-box increases and hence the flutter velocity of the wing. Analogously,
for the same transverse stiffness, as∆θj increases, the maximum value on the optimized flut-
ter velocityVf decreases, as depicted in Figure 5. The reason for this behavior is due to the
fact that for a smaller value of∆θj there is a larger number of possible choices in the range
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Figure 4. Flutter Velocities vs. Angle Variation for different transverse stiffnessE22.

[−90◦, 90◦] made by the GA that makes it escape from local optima.
Concerning the maximum value of the optimized flutter velocity Vf , obtained with

different angle variations∆θ, a remarkable difference is observed between the results for
∆θj ≤ 30◦ and∆θj = 45◦. This characteristic can be explained if we consider that, with a
step variation of45◦, the search of the best lamination sequence performed in thesecond level
GA, has a small number of possible choices for each lamina, since the range[−90◦, 90◦] was
assumed. This small number of possible choices leads to a lay-up sequence so that the Tsai-
Hill failure criterion is violated. Future works will be dedicated to the evaluation of different
search strategies by changing the crossover operator, or even by changing the optimization
method, for example, by using a trajectory-based metaheuristic.
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Figure 5. Flutter Velocities vs. Young’s Modulus for different∆θ ply orientation.

As mentioned before, the same problem was already solved by ahybrid approach
where deterministic (SQP) and stochastic (GA) methods wereused coupled in a similar two-
level scheme (SQP + GA). In the present work, the same problemwas solved by using only



the proposed GA metaheuristics for both optimization levels (GA + GA). Table 1 presents
the maximum values of flutter velocity achieved by each of theapproaches, considering
E22 = 65 GPa and different angle variations. The approach based onlyon GA metaheuristics
provided a better final configuration than the one provided bythe hybrid method based on the
deterministic method, for all angle variations. Since the GA executes a more comprehensive
search on the solution domain than a deterministic method, the complete stochastic strategy
achieved better results.

Table 1. Maximum Flutter Velocity (m/s) achieved by different optimization strategies.

Methods ∆θ

1st lev. + 2nd lev. 1◦ 5◦ 10◦ 20◦ 30◦ 45◦

SQP + AG [5] 316.0 314.0 304.0 299.5 282.0 –×–
AG + AG 325.0 323.5 320.0 310.5 299.0 275.5

Moreover, the same problem was solved by using the proposed GA metaheuristics
coupled with the local search heuristic for both optimization levels (GA+HJ + GA+HJ).
Therefore, a comparison between the GA-based approach and the GA+HJ-based approach
is presented in Table 2, now assuming only three different values for the angle variation. Ta-
ble 2 shows the maximum (max), average (avg) and standard deviation (std) values computed
from a set of 30 runs of each optimization approach and assuming different angle variations.
In order to make a comparison easier, the values obtained with the GA-based approach were
inserted into parenthesis next to the values obtained with the GA+HJ-based approach. The
hybrid approach based on the local search provided better average values, together a standard
deviation reduction, except when∆θj = 45◦. Concerning the maximum values obtained,
the hybrid approach based on the local search provided better results as well, except when
∆θj = 1◦.

Table 2. Maximum Flutter Velocity (m/s) achieved by the AG+HJ approach.

Methods ∆θ

1st lev. + 2nd lev. 1◦ 10◦ 45◦

AG+HJ + AG+HJ (max) 323.0 (325.0) 323.0 (320.0) 276.5 (275.5)
AG+HJ + AG+HJ (avg) 319.70 (319.65) 312.93 (307.92) 252.15 (248.45)
AG+HJ + AG+HJ (std) 1.97 (2.48) 4.96 (5.24) 11.11 (9.29)

With the objective to highlight the superiority of the hybrid approach with local search
when compared with the approach without local search, the percentage of solutions above
a predetermined threshold provided by each one of the approaches was counted. It should
be remarked that the percentage results were obtained basedon a set of 30 independent runs
performed for each one of the approaches. Table 3 shows the percentage values obtained when
using the AG-based approach and the AG+HJ-based approach. The velocity values assumed
as threshold for each angle variation follow:v1◦ = 320 m/s,v10◦ = 310 m/s andv45◦ = 255
m/s.

Based on the percentage values presented in Table 3, the superiority of the AG+HJ-
based approach is evident, with percentage values above 50%for two instances,∆θ = 1◦ and
∆θ = 10◦. For the third instance, the approach with local search complied with the threshold
almost the double, if compared with the approach without local search.



Table 3. Optimization approaches performance, with and without local search.

Methods ∆θ

1st lev. + 2nd lev. 1◦ 10◦ 45◦

AG+HJ + AG+HJ 55% 70% 30%
AG + AG 40% 37% 17%

5. CONCLUSIONS

A hybrid two level composite wing-box aeroelastic design optimization was presented
and evaluated. The procedure is based on a real valued genetic algorithm metaheuristic used
at the first level for the determining of the optimal anisotropy parameters, here defined to
describe the aeroelastic composite properties of the wing-box. At the second level an inte-
ger based on a genetic algorithm technique was used to determine the composite laminate
angles associated to the first level anisotropy parameters.A communication criterion, based
on Tsai-Hill strength condition and on the second level objective functions, was also intro-
duced between the two optimization levels. The results herepresented have shown that this
procedure can be used to find an optimal wing design, at least from the flutter analysis here
considered, where the approach with a local search coupled with the genetic algorithm is an
appropriate choice if compared with other strategies.
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