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Abstract. In the recent literature, a description of the conditions under which an algorithm
can be expected to be successful or fail is not often included in the studies. Because of this, in
this work we compare the performance, in terms of precision and stability, of five heuristic
algorithms in order to obtain valid statistical results. The problem instance we have used to
do the comparison is the optimal weight design of a set of two dimensional steel frames. The
new Bacterial Foraging Optimization Algorithm (BFOA), the Bees algorithm (BA), the Par-
ticle Svarm Optimization (PSO),the Genetic algorithm (GA) and the Smulated Annealing
Algorithm (SAA) were tested. This work also provides an initial assessment in terms of the
success rate and quality of the solution.
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Bees algorithm (BA), the Particle Swvarm Optimization (PSO), Smulated Annealing Algo-
rithm (SAA).

1. INTRODUCTION

During the last forty years several heuristic algorithms for optimization have been de-
veloped. The central idea of these procedures is mimicking some natural process [1, 2, 3] in
order to solve real life optimization problems. Though these algorithms have been used to
resolve various structural optimization problems [4] a complete study about the relation be-
tween the selection of its controlling parameters and it success rate is missing. That study is of
worth because not all users of this technology are experts in selecting the parameters (for in-
stance, the rate of mutation and crossover in GA’s or the annealing schedule in SA). In this
paper we tested five heuristic algorithms in the real life design of steel frames. In the first part
we define the basics of the algorithms. Next, we present the structural design problem fol-
lowed by a performance assessment of the algorithms in the optimization problem. In order to
accomplish this goal, we use the concepts of stability, precision and rate of success.



2.BASIC OPTIMIZATION ALGORITHMS AND ITS PARAMETERS.

The principal objective of this section is to idgntand select (fine tuning) the para-
meters that control the performance of the fivedeld algorithms namely (BFOA), (BA),
(PSO), (GA) and (SAA). It is worth noting that tleesptimization procedures are highly de-
pendent on the choice of several constants thedtatfie final result quality

2.1. Bacterial Foraging Optimization Algorithm

This optimization procedure was introduced by Resén 2002 [1] and it mimics the
behavior of Escherichia coli colonies. The BFO tegg is based in four processes as pre-
sented in [2]. The first is Chemo taxis, that balfcsummarizes the possible movements that
an E. coli can make. This process resembles a snguimehavior (tumbling and swimming).
The second is swarming, a type of social behaviichkvis a mechanism to share information
between the bacteria closer to the food and ther attembers of the colony. As in GA’s, the
next steps are reproduction and elimination angdedgal. In the reproduction phase the best
set of bacteria is selected from the best chemiictatages (similar to the GA’s crossover)
and finally, the dispersal and elimination stept t@uld place a new set of bacteria to a new

ambient (near the food location for instance) oniglate it.
Now suppose that the minimum of B) s needed, wherg¢e R" (6 is an n-dimensional
vector of real numbers). The chemotactic step eaddbined as [2]:

0'(i+1,jk) =0'(i,j, k) + C(I)Jﬁ »

Where@! represents i-th bacterium at j-th chemotactidy ket (productive and I-th eli-
mination (dispersal) step and C(i) is the sizehaf step in a random directioaA(f)). The
swarming process is defined by [2]

Jee(8, PG kD) = X-1Jcc(8,0'G k 1) (2)

Where]..(6,P(j, k1) is the objective function to be added to the datibgective func-
tion in order to represent a time varying functeomd S is the total number of bacteria (for
more details see reference [2], then, the lastlmngalacteria is dived in two that are placed at
the same location keeping the size of the swarnstaohand finally bacteria could be killed
and replaced, at random, in order to simulateaeadlitions [2]

2.2. Bees Algorithm (BA)

Since its introduction in 2005 [3] the BA have reeel great attention by the heuristic
community but, similarly to other heuristic optiration procedures, the converge speed of
BA is lower than those representative of the mogtutation based algorithms (e.g. PSO and
GA’s)

The artificial bee algorithm consists of (as define reference [4]): three groups of
bees: employed bees, onlookers and scout bees. All bees which are currently exploiting a food



source are known as employed. Each food source is a possible solution for the problem under
consideration and the nectar amount of a food source represents the quality of the solution
represented by the fitness value. The number of food sources is the same as the number of
employed bees and there is exactly one employed bee for every food source™.

The set of equations that control the bees beh&viery similar to the equations used
by the classical Particle Swarm Optimization anché&ie algorithms. First, an onlooker bee
selects the source using the following probabildjue (similar to the probability of selection
used in genetic algorithms):

Prob! = —Zéf]’jj); P 3)
Wherefobj; is the objective function value i; FS is the numbkfood sources (equal to
the number of onlooker bees or employed bees [4]).
Then, the step length or new position for itk candidate U= U; = {u; 1, w5, Ui 3, -, Ui p) }
is determined from the last position reachedY; = {yl-,l,yl-,z,yi,g,, -"'Yi,pl} and can be cal-
culated from:

w,; =y + Rand; j(vi; — vi)) (4)

Wherep is the number of variables aRdnd is a random number in the interval [-1,1].
It is worth noting that equation (3) has the satngcture that the expression (6), used in PSO,
for update the position of each particle.

In the BA each solution or candidate position ilealated and evaluated and compared
to the last position reached. If the new positi®mf better quality the old is replaced by the
recent position else, the old position is maintdinehe algorithm finish when a predefined
number of iterations is reached. This is an esakfaictor in defining the BA algorithm.

2.3. The Particle Swarm Optimization (PSO)

The Particle Swarm Optimization Algorithm is a memnkof the wide category of
swarm intelligence methods for solving nonlineaogsgamming problems; the algorithm
mimics the social behavior of flocks (for exampledb and fishes). It was proposed in 1995
by Kennedy and Eberhart [5]

The particles are manipulated according to theWalg vectorial equations as stated in
reference [5,6]:

Die1 =Pkt Vi ()
Vky1 = VL + Cirandy [b) — pk] + Coyrand,|[bY — pk] (6)

where k indicates a unit pseudo-time incremepjt.represents the position of each par-
ticle i (candidate solutionsp,, is the position of particle i at time k+b represents the
best ever position of particle i at time k (bestiwdual position),b? the best position in the

swarm at time k (global besty, is the velocity of particle i at time k and., , is the update

velocity of particle i at time k+1. All vectors Bquations (5) and (6) are of dimensions mx1,
where m is the number of optimized parameters.rand rang are independent random



numbers (with uniform probability) between 0 andThe parameters;Gnd G control the
flow of information between the current swarm. i G, then the particles puts more trust
in the swarm, otherwise, the particle puts morefidence in itself. @ and G are known as
the cognitive and social parameters respectivelg. the inertia factor (or inertia weight) that
controls the impact of the previous particle velp@n the current particle velocity as ex-
plained in [5, 6, 11]. As mentioned above, it itiseresting to compare equation (6) and equa-
tion (4) because they have the same function andtste in the algorithms. Finally, the PSO
stops if a predefined number of iteration is redcbieif a predefined tolerance is attained.

2.4. Genetic Algorithms (GA’s)

The simple GA uses three basic operators [7]: dyprtoion, selection and crossover and
mutation. Reproduction guarantees that individaaéscopied according to its function objec-
tive value. Crossover and selection assures thenuwsfiat least two individuals randomly se-
lected. The information from these individuals hisued in order to obtain new offspring with
better fitness than their parents. Finally, theatiat introduces random changes on individu-
als and helps the algorithm to escape from locaha.

From the above discussion can be concluded thgbeéHermance of any GA strongly
depends on the selection of the following threepeters: Mutation probability (MP), Cros-
sover Probability (CP) and Selection strategy ($H)ally the GA stops when the tolerance
or the number of iterations is achieved. The usthe®ftthree operators mentioned increase the
computational time and have forced the researahssdrch more efficient optimization tech-
niques. However, in this work, the aim is to egsdbthe rate of success and quality of the
solution of each algorithm and for this reason lasic GA (as the others procedures) was
selected.

2.5 The Simulated Annealing Algorithm (SAA)

The simulated annealing algorithm is based on ti@ogy between the simulation of
the annealing of solids and the problem of sollarge combinatorial optimization problems
with discrete and continuous variables [7,8, 11je Blgorithm is essentially an iterative ran-
dom search procedure that permits uphill moves wutigee control of a stochastic criterion,
avoiding the first local minimum encountered. Ag theart of the method is the well-known
Metropolis algorithm. The complete procedure casumamarized into four steps:

-Define the objective function F over an n-dimensilocontinuous variable space

F(Y) =F(y1, Y2, Y3, Y1) (")
where y are the problem variables and i=1...n
-Propose a generator mechanism of random changée icurrent configuration (Me-
tropolis criterion).

-At this stage, the control parameter T is loweaedording with a decrement rule,
known as annealing schedule, of the form:

1
Tiy1 = ;T] (8)



where h is a real valued constant (h>1). With tb@uced value of T, a new sequence of
points is generated starting fromypX(the current optimum value), until “equilibriums$ i
reached again (for further details see ref [7]} fnally,

-The procedure is stopped for some small valu& &r which no further improve-
ment in F can be expected.

2.6. Basic parameters for the operation of the stued heuristics

From the above discussion, it is evident that edgbrithm needs the definition of several
parameters in order to achieve an optimum perfoceaAs the performance of the proce-
dures also depends on the problem analyzed, weal&zitest the five algorithms in a struc-
tural design problem, as described in section 3figuide 1.

3. OPTIMAL COST / WEIGHT DESIGN OF TWO DIMENSIONAL STE EL
FRAME: NUMERICAL EXAMPLE.

The structure to be optimized is the steel framesgmted in reference [10]. In this study
only linear analysis are carried out, therefore ribmults obtained here are compared to the
results labeled in ref [10] as L (Linear). The devb is to determine the combination of steel
sections and connections that render the minimust @nd the weigh associated) for the
structure. For this example we used 100 differéslgrofiles and we used the same 25 va-
riables as in reference [10]. Here we used the saiti@ conditions and bounds (as defined
in [10]) for the variables in order to control tdaft, the global and local effects in the steel
members and other problem restrictions. As mentiat®ove, a first-order analysis, with ri-
gid connection was carried out for live and deathdk. In this case, the design variables are
not continuous, because the steel members havefpred discrete dimension. Details of the
structures can be seen in figure 1. Seismic antineam analyses are out of the scope of this
work.
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Figure 1. Steel frame studied. Taken from refer¢h0g

Finally, as the heuristic methods are random byreatone hundred runs of each algo-
rithm were carried out in order to assess the padace of the algorithms. The results are
reported in the next section.

3.1 Heuristic Parameters Selection.
For the numerical example, in table 1 the bestrpatars found are presented. They

were selected after a trial and error study. $tworth noting that if another set of parameters
is selected the algorithm will fail completely imchting the optimal solution.



Table 1. Heuristic parameter selected for the aptition problem.

Algorithm Heuristic parameter
Number of
search Swimming reproduction elimination Elimination
Population  chemotactic C(i)
BFO space length steps steps probability
steps
9 10 5 5 5 5 0.2 random
Maximum number
search space (p) food sources (FS) tolerance
BA of iteration
3 10 10 1E-1
Maximum
Initial popu-  Inertia factor Cognitive Social con-
search space number of tolerance
PSO lation w constant stant
iteration
9 10 0.7 1.50 2.50 1000 1E-1
Mutation probabil- Selection Crossover
search space Initial population tolerance
GA ity Strategy probability
9 10 0.1 roulette 0.7 1E-1
Number of
cycles be-
Annealing sche- Stop Tem- Acceptance
search space Initial temperature fore temper-
SAA dule, h perature criterion
ature reduc-
tion
9 100 0.8 5 1E-3 Metropolis

3.2 Numerical Results.

In this section the final weight of the structurasacalculated using the five optimiza-
tion algorithms. In order to evaluate them, thegipal statistic parameters were determined.
The results can be observed in table 2.

Table 2. Results from 100 runs on the structursigieproblem of reference [10].

. Best Worst Mean Success
Alggtl;h dm Weight Weight Weight dséiir::;r: rate
(Kg) (Kg) (Kg)

BFO 29050 29059 29054 4.15 70
BA 28870 28879 28874 4.41 80

PSO 29051 29060 29058 2.54 75
GA 29450 29480 29465 2.85 70
SAA 28860 28865 28862 0.74 92
REF [10] 28860 NR NR NR NR

The algorithm’s stability was measured by its staddieviation. When standard devia-
tion is closer to zero the algorithm can be clasdias stable following the procedure defined



| reference [11]. The algorithm’s precision is defi by its mean value. When the mean value
is closer to the reference value the algorithm tanclassified as accurate [11]. From table 2
we can conclude that the SAA has the higher p@tiand stability. Taking as reference the
algorithm with the minimum value of standard dewiatand the best function value (in this
case, the SAA) the success rate was defined asuthber of times out of 100 the algorithm
reaches an objective function value equals to tredard deviation +/- the mean value (of the
reference algorithm). As can be seen from tablaegajn the SAA has the better solution. In
terms of the above defined parameters we conchatetie quality of the solution depends on
the stability, precision and success rate, andims ¢ase, the GA has the solution with less
guality when compared to SAA.

4. CONCLUDING REMARKS

A performance test of five optimization algorithimased on computational intelligence

was presented. The results indicate that the SAs\High precision and stability than the
BFO, BA, PSO and GA. These results strongly defenthe heuristic parameter selection. In
this context, it is worth mentioning that the commaser of this technology could select the
wrong set of constant and therefore the qualityso$olution will be poor.
On the other hand, the study presented was bas#tedimear analysis of a steel frame. The
nonlinear behavior under seismic excitation is entlly under study by the author. As the
complexity of the problem increases (dynamic prof)léhe optimization solvers must be im-
proved in order to obtain the quality of the saus.
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