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Abstract. In the recent literature, a description of the conditions under which an algorithm 
can be expected to be successful or fail is not often included in the studies. Because of this, in 
this work we compare the performance, in terms of precision and stability, of five heuristic 
algorithms in order to obtain valid statistical results. The problem instance we have used to 
do the comparison is the optimal weight design of a set of two dimensional steel frames. The 
new Bacterial Foraging Optimization Algorithm (BFOA), the Bees algorithm (BA), the Par-
ticle Swarm Optimization (PSO),the Genetic algorithm (GA) and the Simulated Annealing 
Algorithm (SAA) were tested. This work also provides an initial assessment in terms of the 
success rate and quality of the solution. 
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1. INTRODUCTION 

During the last forty years several heuristic algorithms for optimization have been de-
veloped. The central idea of these procedures is mimicking some natural process [1, 2, 3] in 
order to solve real life optimization problems. Though these algorithms have been used to 
resolve various structural optimization problems [4] a complete study about the relation be-
tween the selection of its controlling parameters and it success rate is missing. That study is of 
worth because not all users of this technology are experts in selecting the parameters (for in-
stance, the rate of mutation and crossover in GA´s or the annealing schedule in SA). In this 
paper we tested five heuristic algorithms in the real life design of steel frames. In the first part 
we define the basics of the algorithms. Next, we present the structural design problem fol-
lowed by a performance assessment of the algorithms in the optimization problem. In order to 
accomplish this goal, we use the concepts of stability, precision and rate of success.  
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2. BASIC OPTIMIZATION ALGORITHMS AND ITS PARAMETERS. 

 
The principal objective of this section is to identify and select (fine tuning) the para-

meters that control the performance of the five selected algorithms namely (BFOA), (BA), 
(PSO), (GA) and (SAA). It is worth noting that these optimization procedures are highly de-
pendent on the choice of several constants that affect the final result quality 
 
2.1. Bacterial Foraging Optimization Algorithm 
 

This optimization procedure was introduced by Passino in 2002 [1] and it mimics the 
behavior of Escherichia coli colonies. The BFO strategy is based in four processes as pre-
sented in [2]. The first is Chemo taxis, that basically summarizes the possible movements that 
an E. coli can make. This process resembles a swarming behavior (tumbling and swimming). 
The second is swarming, a type of social behavior which is a mechanism to share information 
between the bacteria closer to the food and the other members of the colony. As in GA´s, the 
next steps are reproduction and elimination and dispersal. In the reproduction phase the best 
set of bacteria is selected from the best chemo tactic stages (similar to the GA´s crossover) 
and finally, the dispersal and elimination step that could place a new set of bacteria to a new 
ambient (near the food location for instance) or eliminate it. 

Now suppose that the minimum of H (θ) is needed, where θ ∈ R� (θ is an n-dimensional 
vector of real numbers). The chemotactic step can be defined as [2]: 
 

θ��i + 1, j, k� = θ��i, j, k� + C�i� ∆���
�∆����∆���

     (1) 

 
Where θ� represents i-th bacterium at j-th chemotactic, k-th re (productive and l-th eli-

mination (dispersal) step and C(i) is the size of the step in a random direction (∆�i�). The 
swarming process is defined by [2] 
 

J���θ, P�j, k, l� = ∑ J���θ, θ��j, k, l��
���      (2) 

 
Where J���θ, P�j, k, l� is the objective function to be added to the actual objective func-

tion in order to represent a time varying function and S is the total number of bacteria (for 
more details see reference [2], then, the last healthy bacteria is dived in two that are placed at 
the same location keeping the size of the swarm constant and finally bacteria could be killed 
and replaced, at random, in order to simulate real conditions [2] 
 
2.2. Bees Algorithm (BA) 
 

Since its introduction in 2005 [3] the BA have received great attention by the heuristic 
community but, similarly to other heuristic optimization procedures, the converge speed of 
BA is lower than those representative of the most population based algorithms (e.g. PSO and 
GA´s)  

The artificial bee algorithm consists of (as defined in reference [4]): ´´three groups of 
bees: employed bees, onlookers and scout bees. All bees which are currently exploiting a food 



 
 

source are known as employed. Each food source is a possible solution for the problem under 
consideration and the nectar amount of a food source represents the quality of the solution 
represented by the fitness value. The number of food sources is the same as the number of 
employed bees and there is exactly one employed bee for every food source´´. 

The set of equations that control the bees behavior is very similar to the  equations used 
by the classical Particle Swarm Optimization and Genetic algorithms. First, an onlooker bee 
selects the source using the following probability value (similar to the probability of selection 
used in genetic algorithms): 
 

���� = !"#$%
∑ !"#$%

&'
%()

        (3) 

 
Where fobji is the objective function value i; FS is the number of food sources (equal to 

the number of onlooker bees or employed bees [4]). 
Then, the step length or new position for the i-th candidate Ui = * = +, ,�, , ,-, , ,., … , , ,0, 1 
is determined from the last position reached Yi = 2 = +3 ,�, 3 ,-, 3 ,., … , 3 ,0, 1 and can be cal-
culated from: 
 

, ,$ = 3 ,$ + 4567 ,$83 ,$ − 3:,$;      (4) 
 

Where p is the number of variables and Rand is a random number in the interval [-1,1]. 
It is worth noting that equation (3) has the same structure that the expression (6), used in PSO, 
for update the position of each particle. 

In the BA each solution or candidate position is calculated and evaluated and compared 
to the last position reached. If the new position is of better quality the old is replaced by the 
recent position else, the old position is maintained. The algorithm finish when a predefined 
number of iterations is reached. This is an essential factor in defining the BA algorithm. 
 
2.3. The Particle Swarm Optimization (PSO) 
 

The Particle Swarm Optimization Algorithm is a member of the wide category of 
swarm intelligence methods for solving nonlinear programming problems; the algorithm 
mimics the social behavior of flocks (for example birds and fishes). It was proposed in 1995  
by Kennedy and Eberhart [5]  

The particles are manipulated according to the following vectorial equations as stated in 
reference [5,6]: 

 
<:=�

 =<:
 + >:=�

         (5) 
 
>:=�

 =  >:
 + ?��567�@�:

 − <:
 A + ?-��567-@�:

B − <:
 A       (6) 

 
where k indicates a unit pseudo-time increment. i

kp  represents the position of each par-

ticle i (candidate solutions), <:=�
  is the position of particle i at time k+1, ikb  represents the 

best ever position of particle i at time k (best individual position), g
kb  the best position in the 

swarm at time k (global best). ikv  is the velocity of particle i at time k and  >:=�
  is the update 

velocity of particle i at time k+1. All vectors in Equations (5) and (6) are of dimensions mx1, 
where m is the number of optimized parameters. rand1 and rand2 are independent random 



 
 

numbers (with uniform probability) between 0 and 1. The parameters C1 and C2 control the 
flow of information between the current swarm. If C2 > C1, then the particles puts more trust 
in the swarm, otherwise, the particle puts more confidence in itself. C1 and C2 are known as 
the cognitive and social parameters respectively. ω is the inertia factor (or inertia weight) that 
controls the impact of the previous particle velocity on the current particle velocity as ex-
plained in [5, 6, 11]. As mentioned above, it it’s interesting to compare equation (6) and equa-
tion (4) because they have the same function and structure in the algorithms. Finally, the PSO 
stops if a predefined number of iteration is reached or if a predefined tolerance is attained.  

 
2.4. Genetic Algorithms (GA´s) 
 

The simple GA uses three basic operators [7]: reproduction, selection and crossover and 
mutation. Reproduction guarantees that individuals are copied according to its function objec-
tive value. Crossover and selection assures the union of at least two individuals randomly se-
lected. The information from these individuals is shared in order to obtain new offspring with 
better fitness than their parents. Finally, the mutation introduces random changes on individu-
als and helps the algorithm to escape from local optimal. 

From the above discussion can be concluded that the performance of any GA strongly 
depends on the selection of the following three parameters: Mutation probability (MP), Cros-
sover Probability (CP) and Selection strategy (SE). Finally the GA stops when the tolerance 
or the number of iterations is achieved. The use of the three operators mentioned increase the 
computational time and have forced the researches to search more efficient optimization tech-
niques. However, in this work, the aim is to establish the rate of success and quality of the 
solution of each algorithm and for this reason the basic GA (as the others procedures) was 
selected. 
 
2.5 The Simulated Annealing Algorithm (SAA) 
 

The simulated annealing algorithm is based on the analogy between the simulation of 
the annealing of solids and the problem of solving large combinatorial optimization problems 
with discrete and continuous variables [7,8, 11]. The algorithm is essentially an iterative ran-
dom search procedure that permits uphill moves under the control of a stochastic criterion, 
avoiding the first local minimum encountered. At the heart of the method is the well-known 
Metropolis algorithm. The complete procedure can be summarized into four steps: 

-Define the objective function F over an n-dimensional continuous variable space 
 

C�2� = C�3�, 3-, 3., … , 3 �            (7) 
 

where yi are the problem variables and i=1…n 
 

-Propose a generator mechanism of random changes in the current configuration (Me-
tropolis criterion).  
 -At this stage, the control parameter T is lowered according with a decrement rule, 
known as annealing schedule, of the form: 
 

D$=� = �
E

D$         (8) 

  



 
 

where h is a real valued constant (h>1). With the reduced value of T, a new sequence of 
points is generated starting from Xopt (the current optimum value), until “equilibrium” is 
reached again (for further details see ref [7]), and finally, 
 -The procedure is stopped for some small value of T for which no further improve-
ment in F can be expected.  
 
2.6. Basic parameters for the operation of the studied heuristics 

From the above discussion, it is evident that each algorithm needs the definition of several 
parameters in order to achieve an optimum performance. As the performance of the proce-
dures also depends on the problem analyzed, we decide to test the five algorithms in a struc-
tural design problem, as described in section 3 and figure 1. 

 
 

3. OPTIMAL COST / WEIGHT DESIGN OF TWO DIMENSIONAL STE EL 
FRAME: NUMERICAL EXAMPLE. 

The structure to be optimized is the steel frame presented in reference [10]. In this study 
only linear analysis are carried out, therefore the results obtained here are compared to the 
results labeled in ref [10] as L (Linear). The problem is to determine the combination of steel 
sections and connections that render the minimum cost (and the weigh associated) for the 
structure. For this example we used 100 different steel profiles and we used the same 25 va-
riables as in reference [10]. Here we used the same initial conditions and bounds (as defined 
in [10]) for the variables in order to control the drift, the global and local effects in the steel 
members and other problem restrictions. As mentioned above, a first-order analysis, with ri-
gid connection was carried out for live and death loads. In this case, the design variables are 
not continuous, because the steel members have predefined discrete dimension. Details of the 
structures can be seen in figure 1. Seismic and nonlinear analyses are out of the scope of this 
work. 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Steel frame studied. Taken from reference [10]. 
 
Finally, as the heuristic methods are random by nature, one hundred runs of each algo-

rithm were carried out in order to assess the performance of the algorithms. The results are 
reported in the next section.  
 
3.1 Heuristic Parameters Selection. 
 

For the numerical example, in table 1 the best parameters found are presented. They 
were selected after a trial and error study. It it’s worth noting that if another set of parameters 
is selected the algorithm will fail completely in locating the optimal solution. 
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11,12 KN 

43,78 KN 

4,57 m 

@3,66 m 
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87,56 KN 



 
 

Table 1. Heuristic parameter selected for the optimization problem. 
Algorithm Heuristic parameter 

BFO 

search 

space 
Population 

Number of 

chemotactic 

steps 

Swimming 

length 

reproduction 

steps 

elimination 

steps 

Elimination 

probability 
C(i) 

9 10 5 5 5 5 0.2 random 

BA 
search space (p) food sources (FS) 

Maximum number 

of iteration 
tolerance 

3 10 10 1E-1 

PSO 
search space 

Initial popu-

lation 

Inertia factor 

w 

Cognitive 

constant 

Social con-

stant 

Maximum 

number of 

iteration 

tolerance 

9 10 0.7 1.50 2.50 1000 1E-1 

GA 
search space Initial population 

Mutation probabil-

ity 

Selection 

Strategy 

Crossover 

probability 
tolerance 

9 10 0.1 roulette 0.7 1E-1 

SAA 
search space Initial temperature 

Annealing sche-

dule, h 

Number of 

cycles be-

fore temper-

ature reduc-

tion 

Stop Tem-

perature 

Acceptance 

criterion 

9 100 0.8 5 1E-3 Metropolis 
 

 
3.2 Numerical Results. 

 
In this section the final weight of the structure was calculated using the five optimiza-

tion algorithms. In order to evaluate them, the principal statistic parameters were determined. 
The results can be observed in table 2.  
 

Table 2. Results from 100 runs on the structural design problem of reference [10]. 

Algorithm 
tested 

Best 
Weight 
(Kg) 

Worst 
Weight 
(Kg) 

Mean 
Weight 
(Kg) 

Standard 
deviation 

Success 
rate 

BFO 29050 29059 29054 4.15 70 
BA 28870 28879 28874 4.41 80 
PSO 29051 29060 29058 2.54 75 
GA 29450 29480 29465 2.85 70 

SAA 28860 28865 28862 0.74 92 
REF [10] 28860 NR NR NR NR 

 
The algorithm´s stability was measured by its standard deviation. When standard devia-

tion is closer to zero the algorithm can be classified as stable following the procedure defined 



 
 

I reference [11]. The algorithm´s precision is defined by its mean value. When the mean value 
is closer to the reference value the algorithm cam be classified as accurate [11]. From table 2 
we can conclude that the SAA has the higher precision and stability. Taking as reference the 
algorithm with the minimum value of standard deviation and the best function value (in this 
case, the SAA) the success rate was defined as the number of times out of 100 the algorithm 
reaches an objective function value equals to the standard deviation +/- the mean value (of the 
reference algorithm). As can be seen from table 2, again the SAA has the better solution. In 
terms of the above defined parameters we conclude that the quality of the solution depends on 
the stability, precision and success rate, and in this case, the GA has the solution with less 
quality when compared to SAA.  
 
4. CONCLUDING REMARKS 

 
A performance test of five optimization algorithms based on computational intelligence 

was presented. The results indicate that the SAA has high precision and stability than the 
BFO, BA, PSO and GA. These results strongly depend on the heuristic parameter selection. In 
this context, it is worth mentioning that the common user of this technology could select the 
wrong set of constant and therefore the quality of its solution will be poor.  
On the other hand, the study presented was based on the linear analysis of a steel frame. The 
nonlinear behavior under seismic excitation is currently under study by the author. As the 
complexity of the problem increases (dynamic problem) the optimization solvers must be im-
proved in order to obtain the quality of the solutions. 
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