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Abstract. The recent rise of 2D materials, such as graphene, has expanded the interest in
nano-electromechanical systems (NEMS). The increasing ability of synthesizing more exotic
NEMS architectures, creates a growing need for a cost-effective, yet accurate nano-scale
simulation method. Established methodologies like Molecular Dynamics (MD) trail behind
synthesis capabilities because the computational effort scales quadratically. The equilibrium
equations of MD are equivalent with those of the computationally more favourable Finite
Element Method (FEM). However, current implementations exploiting this equivalence re-
main limited due to the FEM iterative solvers requiring a large number of lengthy force field
derivatives and specifically tailored element topologies. This paper proposes a formal deriva-
tion of the merged Molecular Dynamic Finite Element Method (MDFEM) which establishes
an uncoupling of the force field potentials from the element topologies. An implementation
approach, which does not require manual derivations, is presented. Different non-linear MD
force field potentials are implemented exactly within the FEM, at reduced computational costs.
The proposed multi-scale and multi-physics compatible MDFEM is equivalent to to the MD
as demonstrated by an example of brittle fracture in Carbon Nanotubes (CNT).
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1. INTRODUCTION

Simulating the mechanical response of nano-structures is important for a wide and
rapidly increasing range of areas. Continuous progress in nano-synthesis capabilities, together
with graphene’s first applications in nano-electromechanical systems (NEMS) [1–3], have
further spurred interest in efficient, robust and flexible numerical nano-simulation methods.

One of the main challenges for nano-simulation models consists of achieving a suitable
balance between the accuracy of the physical representation and the scale of applicability. At
one extreme, Ab Initio simulations, based on Density Functional Theory (DFT), can offer high
accuracy but cannot readily be used for domains beyond O(102) atoms. At the other extreme,
classical Molecular Mechanics (MM) and Dynamics (MD) methods [4–6] only resolve nuclei
motion (Born-Oppenheimer approximation), but may be typically applied to domains with
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O(109) atoms [7]. Parallel supercomputing simulations have succeeded in increasing this
number to O(1012) atoms [8]. A variety of intermediate theory levels have emerged such as
the hybrid DFT-MD Car-Parrinello method [9], or the reactive MD force fields [10, 11].

The MD method has increasingly been incorporated in the Finite Element Method
(FEM) framework [12–23] as the equilibrium equations of MD and FEM may be expressed in
equivalent forms. The resulting Atomistic Finite Element Method (AFEM) [13], also referred
to as Molecular Dynamic Finite Element Method (MDFEM) [24], is both computationally
more favourable than MD [25], and offers a significant increase in compatibility and inte-
grability with larger scale continuum FEM simulations. Structural mechanics elements (e.g.
trusses, beams) have been used to analyse the overall mechanical behaviour of nano-scale
entities, such as carbon nanotubes (CNT) [26–28], as well as the deformation of individual
bonds [12, 14].

MDFEM is mostly applied to carbon nano-structures due to the maturity of carbon-
specific force fields and the large interest in graphene, CNTs, and other fullerene derived
compounds. However, non-carbon applications have been reported for other nano-structures,
such as particulate metal matrix nano-composites [22] or boron-nitride nanotubes [23].

Several comprehensive presentations and reviews of AFEM/MDFEM and its imple-
mentations are available [24, 25, 29, 30]. Nonetheless, MDFEM remains a non-consolidated
method because formal derivations are scarce, with significant differences arising on the
topologies of the required MDEFM-specific elements. The available MDFEM element de-
signs vary considerably in complexity and their implementation is often not straight-forward
[16,21,25]. Additionally, only few proposed MDFEM element topologies are fully non-linear
and non-local capable. This has lead to MDFEM often being implement using readily avail-
able, standard structural FEM elements such as beams, trusses and springs [12,14,20,31,32].
However, the use of structural elements results in the following detrimental restrictions of
MDFEM’s full non-linear capabilities:

1. Inadequate Element Topologies with Limited Non-Local Capabilities
Severe inconsistencies arise where non-local force fields are approximated with struc-
tural elements which are topologically not adequate to represent multi-body potentials
involving three or more atoms. Alternatively, structural FEM elements, often featuring
rotational degrees of freedom (DoF), are used although the definition of point angles for
atoms is highly ambiguous.

2. Limited Large Deformation Analysis Capabilities
The mechanical behaviour of structural elements is inherently different from that of
atomic bonds, especially for large-deformation analyses. An attractive alternative is
the use of non-linear springs to represent the potentials accurately for large strains.
However, torsional springs for instance, require rotational DoF to be included in the
model upon which they can act and they are unable to represent, for example, cross-
deformation sub-potentials such as stretch-bend interactions.



3. Inability to Perform Conformational Analyses
Structural FEM elements typically prevent MDFEM from being able to perform the
often required relaxation or conformational analysis step prior to the load application.
This is due to the FEM elements’ default inability to incorporate knowledge of the
natural bond characteristics (e.g. bond length, angles), which are, in all but the simplest
geometries (e.g. planar graphene), different from the overall structure’s equilibrium
positions.

This paper presents a fully non-linear MDFEM model, based on appropriate MDFEM-specific
element topologies. A formal derivation of the MDFEM equilibrium equations, from first
principles, is presented in section 2. The formulation can accommodate any type of MD force
field, from classical, non-reactive many-body and pair-wise potentials, to advanced adaptive
reactive bond order force fields (section 3). The presented derivation intrinsically considers
all geometric non-linear effects and is explicitly independent of ambiguous rotational DoF.

The equilibrium equation for the smallest, fully non-linear MDFEM element topology,
which can represent the molecular force field potential or each of its constituent sub-potentials,
is derived exactly in section 4.2, together with exact expressions for the required correspond-
ing Hessians (tangent stiffnesses). The element topology designs, presented in section 4.3, are
intentionally kept as small and comprehensive as possible.

Analogously to the separation, in FEM, between the element topologies and the mate-
rial properties, section 4.5 demonstrates how this MDFEM formulation uncouples the molec-
ular force field from the element topologies. Significant advantages for the implementation
and the stability analysis of the presented MDFEM arise from this uncoupling approach (4.6)
— most notably, the ability to differentiate between instabilities in the system due to the force
field or chemical bond failure (constitutive instability) and those due to the geometry of the
structure (geometrical instability).

A method for the straight-forward implementation of the relevant equations (sections
2, 4.2 and 4.5) with the given element topologies is described in sections 5.1 and 5.2. A brief
overview of optimization techniques for the equations’ numerical implementation is given in
section 5.3.

The model is shown to identically reproduce MD predictions [33] of brittle fracture
in CNT with defects (section 6.1). Additionally, conformational analyses of complex three-
dimensional Pillared Graphene Structures (PGS) are presented in section 6.2. Conclusions
about this MDFEM implementation are given in section 7.



2. EQUATIONS OF EQUILIRBRIUM

2.1. Hamilton’s Principle and Lagrange’s Equation

A variational statement of equilibrium for a discrete domain can formally be derived
from Hamilton’s principle, which subjected to a Legendre transform, leads to Lagrange’s
equation. For a non-relativistic analysis, the domain’s kinetic energy, T , equals its kinetic co-
energy, T ∗, so that the dynamic equilibrium within a conservative potential field, V , without
damping effects, may hence be stated as:

d

dt

(
∂ (T (q̇))

∂q̇

)T

+

(
∂ (V (q))

∂q

)T

=
d

dt
(∇q̇ (T (q̇))) +∇q (V (q)) = g, (1)

where the vector derivatives adhere to the numerator layout convention. The domain’s n

displacements, given in generalized coordinates, are denoted by q ∈ Rn×1 and are defined
relative to an unloaded equilibrium position q0 = 0, while g ∈ Rn×1 represents the corre-
sponding generalized forces. The operator ∇v represents the gradient of a scalar function with
respect to the vector v, in the same dimensions as v, i.e. ∇v = ∂/∂vT = (∂/∂v)T. Moreover, q
is chosen such that the kinetic energy, T , may be explicitly dependent only on the generalized
velocities, q̇ ∈ Rn×1, i.e. T = T (q̇).

2.2. From Lagrange’s Equation to a discrete Finite Element Method

The translational displacements of all atoms in a global Cartesian coordinate system,
u ∈ Rn×1, constitutes a natural choice of q for a discrete particle domain. Hence, the gen-
eralized corresponding forces, denoted f ∈ Rn×1, are a set of linear forces only. Rotational
DoF with corresponding moments are inappropriate quantities as atoms represent point parti-
cles. Using the choice q = u, equation (1) becomes:

d

dt
(∇u̇ (T (u̇))) +∇u (V (u)) = f . (2)

The rest state of the atomic domain, when u = u0 = 0, is fully defined by the equilibrium
positions of all n/3 atoms, denoted by x ∈ Rn×1. Any deformed state of the domain may
hence be described by r = x+ u, see figure 1.

Figure 1. Coordinate System and Displacements Definitions for Atoms i and j



In the framework of Newtonian mechanics, the kinetic energy, T , for a domain consti-
tuted of point masses as defined in figure 1, can be expressed as:

T (u̇) =
1

2
u̇TMu̇, (3)

where the mass matrix, M, is diagonal. Equation (2) may hence be expressed as:

Mü+∇u (V (u)) = f , (4)

where ∇u (V (u)) is the transpose of the potential’s Jacobian relative the the domain’s dis-
placements, i.e.∇u (V (u)) =

(
JV
u

)T, such that global equilibrium, equation (4), may be
equivalently expressed as:

Mü+
(
JV
u

)T
= f . (5)

Equation (5) is typical for a Finite Element Method framework and can be solved using a
Newton-Raphson scheme provided the Hessian of the potential, expressed as:

HV
u =

∂ (∇u (V (x,u)))

∂u
, (6)

can be determined.

3. MOLECULAR FORCE FIELDS

3.1. Constituent Sub-Potentials

In general, a molecular force field, V , consists of the superposition of sub-potentials,
VS , as:

V (c) =
∑
S

VS (cS) , (7)

where S represents the set of included sub-potentials, c ∈ Rm×1 represents the m charac-
teristic variables (e.g. bond lengths and angles) and cS ∈ RmS×1 denotes the mS specific
characteristic variables required for evaluating the sub-potential VS .

In general, classical force fields include sub-potentials for specific deformation modes
such as bond stretching, bending and torsion, while more elaborate force fields may feature
additional sub-potentials for mixed-mode deformations such as stretch-stretch, stretch-bend or
bend-bend interactions [6]. Both non-reactive force fields and reactive bond-order force fields
may be expressed in the form of equation (7). The many-body coupling bond-order variable,
which is required in reactive fields (usually denoted b or B [10, 11]), may be also interpreted
as a characteristic variable. Classical MD sub-potentials (e.g. stretch, bend, torsion) tend



to depend on a single characteristic variable only, mS = 1, while cross-deformation sub-
potentials (e.g. stretch-bend) may depend on two or more variables, mS > 1. The non-reactive
Lobo-Keating (fullerene-specific) force field for instance, may be stated as [34]:

VLobo-Keating = VS + VB + VI

=
1

2

n/3∑
i=1

3∑
j=1

α

4r20

(
rij · rij − r20

)2
+

n/3∑
i=1

2∑
j=1

3∑
k=j+1

β

r20

(
rij · rik +

1

2
r20

)2

+ (8)

+

n/3∑
i=1

γ (di · di) , (9)

where VS, VB and VI refer to the stretch, bend and inversion sub-potentials respectively. The
vector from atom i to atom j in the deformed state is denoted rij = rj − ri. The natural
bond length is given as r0, and di represents the dangling vector, which is defined as di =

ri1 + ri2 + ri3. The force field’s fitting parameters are α, β and γ. As another example, the
MM3 (general-purpose) force field may be expressed as [6]:

VMM3 = VS + VB + VT + VSB + VTS + VTB + VBB + VVDW, (10)

where VT, VSB, VTS, VTB, VBB and VVDW refer to the sub-potential energies of the torsion,
stretch-bend, torsion-stretch, torsion-bend, bend-bend and Van der Waals interactions respec-
tively. The reader is referred to [6] for the detailed sub-potential expressions.

A particularly interesting reactive force field is the Brenner potential [10, 11], which
is of the form:

V =

n/3∑
i=1

n/3∑
j>i

[
VR (rij)− B̄ijVA (rij)

]
, (11)

where VR and VA represent the repulsive and attractive atomic interactions. The bond order,
B̄ij , is a highly non-linear function of the bond angles centred at atoms i and j, the coordi-
nation number of atoms i and j as well as the coordination numbers of the first and second
neighbour atoms to i and j.

3.2. Characteristic Variables

The force field’s characteristic variables, c, may always be expressed in the form c =

c (x,u), so that it is possible to reformulate the potential explicitly as:

V (c (x,u)) =
∑
S

VS (cS (x,u)) =
∑
S

VS (x,u) . (12)



(a) Bond Stretching (b) Bond Bending (c) Bond Torsion

Figure 2. Characteristic Variables of Force Field Potentials

Figure 2 outlines a selection of common characteristic variables used by a variety of force
fields. For instance, rij and θijk in figure 2 are respectively given by:

rij = ∥rj − ri∥ = ∥xj + uj − xi − ui∥, (13)

θijk = arccos

(
rji · rjk
rijrjk

)
= arccos

(
(xi + ui − xj − uj) · (xk + uk − xj − uj)

∥xi + ui − xj − uj∥∥xk + uk − xj − uj∥

)
. (14)

A vast literature giving variable-defining sketches, such as in figure 2, is available and the
reader is referred to [35] for a comprehensive collection.

4. MOLECULAR DYNAMIC FINITE ELEMENT METHOD

4.1. Introduction

In some cases, force field potentials may be represented exactly or approximately
by FEM structural elements. However, the use of structural elements leads to significant
restrictions, as outlined in section 1. In any case, it is possible to deduce a non-linear accurate
representation of equation (5) within FEM through defining individual elements for each sub-
potential as outlined in this section.

4.2. Constituent Sub-Hessian Matrices

Taking advantage of the sub-potential nature of force fields, equation (7), the total
domain’s Jacobian, JV

u in equation (5), and Hessian, HV
u in equation (6), can be obtained as:

JV
u (x,u) =

∂V (x,u)

∂u
=
∑
S

∂VS (x,u)

∂u
=
∑
S

JVS
u (x,u) . (15)

HV
u (x,u) =

∂ (∇u (V (x,u)))

∂u
=
∑
S

∂ (∇u (VS (x,u)))

∂u
=
∑
S

HVS
u (x,u) . (16)

Equations (15) and (16) show how the total potential, V , Jacobian, JV
u , and Hessian, HV

u ,
of the overall domain, Ω, may be divided into superimposed sub-domains, ΩS , as shown in
figure 3. It follows naturally that an element topology may be created for each individual



sub-potential, VS (cS (x,u)), which is able to supply the necessary characteristic variables
cS (x,u). These element types are then superposed when meshing the atomic domain. The
spacial superposition of multiple element types outlines a first fundamental difference be-
tween the proposed MDFEM and the classical FEM, as in the latter, element superpositioning
in the same location is atypical.

Figure 3. Illustration of Domain Decomposition and Sub-Domain Partitioning

For each sub-potential, VS , the corresponding sub-domain, ΩS , may in turn be divided
into pS partitions (figure 3), where V i

S ≡ VS in partition i and is zero elsewhere. In general the
partitioning pattern varies for different sub-potential domains, ΩS (i.e. some sub-potentials re-
quire information from more atoms than others, see figure 4). It follows that the sub-potential
may be then expressed as the summation over the partitions:

VS (x,u) =

pS∑
i

V i
S

(
xi
S,u

i
S

)
, (17)

where xi
S ∈ RnS×1 and ui

S ∈ RnS×1 are the nS components of x and u respectively which are
necessary for evaluating V i

S . Equation (17) indicates that pS number of elements are needed
for each sub-potential and that these elements must include the necessary atoms to supply xi

S

and ui
S . It follows that HVS

u and JVS
u may be obtained by first evaluating:

J
V i
S

ui
S

(
xi
S,u

i
S

)
=

∂V (xi
S,u

i
S)

∂ui
S

and H
V i
S

ui
S

(
xi
S,u

i
S

)
=

∂
(
∇ui

S
(V i

S (x
i
S,u

i
S))
)

∂ui
S

, (18)

followed by an assembling of equations (18) of the type:

JVS
u (x,u) = ⊔VS

pS

(
J
V i
S

ui
S

(
xi
S,u

i
S

))
and HVS

u (x,u) = ⊔VS
pS

(
H

V i
S

ui
S

(
xi
S,u

i
S

))
, (19)

where ⊔VS
pS

denotes the assembly operator which assembles the contributions of all pS Jaco-

bians, JV i
S

ui
S
(xi

S,u
i
S) ∈ R1×nS , into the corresponding positions within JVS

u (x,u) ∈ R1×n and

similarly the contributions of of all pS Hessians, HV i
S

ui
S
(xi

S,u
i
S) ∈ RnS×nS , into HVS

u (x,u) ∈
Rn×n.



The numerical solution to the global equilibrium problem, equation (5), using an iter-
ative solution scheme requiring the Hessian (equation (6)), can therefore be obtained trivially
using equations (18) and (19) together with suitable element topologies.

4.3. Element Topologies

The topology of the elements required for each sub-potential is determined by the
respective components of cS . The most compact and comprehensive element designs are
hence identical to the characteristic variable-defining sketches for each force field (fig. 2).
Figure 4 features a set of basic element shapes used for non-reactive and reactive force fields.
Elements for reactive force fields include more atoms as the bond-order characteristic has a
higher non-locality.

(a) NR-2 (b) NR-3 (c) NR-4-C (d) NR-4-S (e) R-6

Figure 4. Selection of Non-Reactive (NR) and Reactive (R) Element Topologies

Table 1 outlines a small selection of characteristic variables which the elements in
figure 4 can supply and which sub-potentials they may be required for.

Table 1. Element Topologies, Characteristic Variables, cS , and Applicable Sub-Potentials, VS .
NR-2 NR-3 NR-4-C NR-4-S

r12 =
√
r12 · r12 r21 =

√
r21 · r21 cos (ϕ1234) = −r̂123 · r̂234 d21 = d1 · d1

r212 = r12 · r12 (r21r23 cos (θ123)) = r21 · r23 r̂123 =

(
r12 × r23
r12r23

)
d1 =

√
d1 · d1

VS, VVDW VB, VSB, VSS VT, VTS, VTB VI, VIT, VBB
S = Stretch, B = Bend, T = Torsion, I = Inflexion, IT = Improper Torsion, SS = Stretch-Stretch

SB = Stretch-Bend, BB = Bend-Bend, TS = Torsion-Stretch, TB = Torsion-Bend, VDW = Van der Waals

Reactive element topologies require at least six atoms (e.g. R-6), three on each side
of the bond [10, 11], while as many as fourteen may be required in case that coordination
numbers above three are considered. In general, larger elements share characteristic variables
with smaller element, so that they could represent the smaller element’s sub-potential as well.
However, this approach is to be discouraged because larger element topologies cannot be
meshed as close to the domain boundary as smaller topologies, leading to increased edge
effects. Finally, it can be noted that since the characteristic variables are defined in a global
frame of reference (FoR), these elements do not require a local to global reference frame
transformation prior to assembly.



4.4. Derivation of the Element Jacobian and Hessian

Implementing the elements of section 4.3 within the Finite Element Method requires
deriving each element’s contribution to the global equilibrium equations, equation (5), i.e JV i

S

ui
S
,

as well as deriving H
V i
S

ui
S
, which is required for the iterative solution scheme. Modern inter-

preted processing languages are increasingly capable of rapid symbolic derivation of analyti-
cal expressions so that the Jacobian and Hessian may be generated symbolically. This process
for an element type, omitting the i and S indices for clarity of notation, may be represented
by:

{VS (c) ,x,u, c (x,u)} → Symbolic Processor →
{
HVS

u ,JVS
u

}
. (20)

The computational effort for this process is small; however, the resulting expression for a
single entry of the Hessian,

(
HVS

uS

)
i,j

, can become prohibitively long for the implementation in
a compilable language (e.g. the FORTRAN 90/95 standard has a maximum of 5148 characters
per statement, although specific compilers may offer higher limits). These excessively long
derivatives easily occur for higher-order sub-potentials requiring elements with nS > 6, or
where cS requires more complex functions such as inverse trigonometric relations.

More aggravatingly, the direct evaluation of J
V i
S

ui
S

and H
V i
S

ui
S

compounds the element
topology information with that of the implemented force field. Force field characteristics and
element topology properties may be kept uncoupled, section 4.5, resulting in a significantly
increased flexibility of this MDFEM formulation in combining different element types for
different potentials.

4.5. Decoupling Element Topology and Force Field

Noting equation (12), each entry in the sub-potential’s Jacobian and Hessian tensors,(
JVS
u

)
i,j

and
(
HVS

u

)
i,j

in equation (18), may equivalently be expressed as:

(
JVS
u

)
1,i

=
∂VS

∂ui

=

mS∑
k=1

∂VS

∂ck

∂ck
∂ui

=

mS∑
k=1

(
JVS
c

)
1,k

(Jc
u)k,i , (21)

(
HVS

u

)
i,j

=
∂2VS

∂ui∂uj

=

mS∑
k=1

∂ck
∂ui

(
mS∑
l=1

∂2VS

∂ck∂cl

∂cl
∂uj

)
+

mS∑
k=1

∂VS

∂ck

∂2ck
∂ui∂uj

=

mS∑
k=1

(Jc
u)k,i

(
mS∑
l=1

(
HVS

c

)
k,l

(Jc
u)l,j

)
+

mS∑
k=1

(
JVS
c

)
1,k

(Hc
u)k,i,j , (22)

where JVS
c ∈ R1×mS and HVS

c ∈ RmS×mS are the sub-potential’s respective Jacobian and
Hessian tensors relative to the characteristic variables. Similarly, Jc

u ∈ RmS×nS and Hc
u ∈



RmS×nS×nS are the Jacobian and Hessian tensors of the characteristic variables relative to the
element nodal DoF. The process in equation (20) may thus be restated as:

{VS (c) ,x,u, c (x,u)} → Symbolic Processor →
{
JVS
c ,HVS

c ,Jc
u,H

c
u

}
, (23)

which may then be used to directly generate the compilable language script as:

{
JVS
c ,HVS

c ,Jc
u,H

c
u,Eq. (21)-(22)

}
→ Interpreted Language →

→
{
HVS

u , JVS
u , in a compilable language

}
. (24)

4.6. Stability and Implementation Advantages of Uncoupling Force Fields and Element
Topologies

Equations (21) and (22), hereafter termed reconstruction equations, result in the fol-
lowing advantages:

1. Reduced Complexity of Derivatives
The reconstruction equations require the symbolic evaluation of more, yet shorter deriva-
tives so that the latter may be more comfortably implemented in a compilable language
script. Additionally, the computational effort for the iterative solver reduces because
less operations are required to evaluate HVS

u and JVS
u by using the reconstruction equa-

tions than by a direct approach.

2. Separation of Force Field Potentials from Element Topologies
The force field sub-potentials become completely uncoupled from the element types so
that a library of pre-compiled derivatives for both the force fields on one hand, and the
elements on the other hand, can be developed and stored separately.

3. Independent Scaling of Derivatives’ Length
The above uncoupling also results in entries of JVS

c ,HVS
c , Jc

u and Hc
u to scale in length

only with either the complexity of VS (c) or c (x,u) respectively, but any compound
effect is avoided. The only condition for selecting an element type for a sub-potential is
that the element must be able to supply all characteristic variables required by VS .

4. Independent Analysis of Constitutive and Geometrical Instabilities
Finally, and perhaps most importantly, the reconstruction equations allow for an analy-
sis of the two structural instabilities which may occur during MDFEM simulations. The
first is a geometrical instability, which occurs for instance during buckling. The second
is a chemical-constitutive instability, which can arise if the force field’s potential fea-
tures an inflexion point. In this case, the Hessian tensor (tangent stiffness) will cease to
be positive-definite and negative eigenvalues may appear in the solution procedure.

A guaranteed identification of a constitutive instability cannot be achieved by consid-
ering HVS

u directly. In general, an MDFEM element is geometrically under-determined



in some directions of global space, so that the latter’s geometrical under-determination
masks the chemical bond yielding in the overall Hessian, HVS

u .

However, constitutive instabilities can readily be detected by testing for positive-definiteness
of HVS

c . An expensive eigenvalue analysis to test for the positive-definite nature of HVS
c

can be avoided by recognizing that it is a Hermitian matrix and thus Sylvester’s criterion
may be applied.

5. IMPLEMENTATION

5.1. Numerical Implementation of Global Equilibrium

The presented formulation was implemented symbolically in MATLAB [36], and the
resultant formulations were exported in a FORTRAN format, which is suitable for the FE
package ABAQUS [37]. The latter allows for the definition of customized element types,
termed User Elements, with freely definable element topologies and constitutive properties.
A FORTRAN subroutine (UEL), which takes the nodal variables (x,u) as input, must sup-
ply the elements’ Jacobian, JVS

u , and Hessian, HVS
u , to the FEM solver. A flowchart of the

overall implementation including pre-processing (e.g. symbolic derivations, atom seeding,
element meshing) is presented in section 5.2, while section 5.3 covers additional optimization
performed on the generated subroutine using Common Subexpression Elimination (CSE).

5.2. Preprocessing

Figure 5. Implementation Pre-Processor and Solver

A symbolic pre-processor (fig. 5) generates all required files for implementing the
current MDFEM within the FEM. The user input file must define the choice of force field
and element topologies, the atomic geometry and the boundary conditions (BC); additional
advanced options, such as periodic boundary conditions or optimization techniques are avail-
able.

The requested geometry is seeded and meshed with all required element types before
the element types’ Jacobians, JVS

c (x,u), Jc
u (x,u), and Hessians, HVS

c (x,u), Hc
u (x,u), are

derived symbolically. The latter are translated into FORTRAN language, CSE optimized and
then combined with the reconstruction equations (21) and (22) in the UEL subroutine script.

The Element Library contains the characteristic variable definitions, c = c (x,u),
and node connectivities of each element type. The force field library contains the force field
definitions in the form V (c) =

∑
S VS (c). Hence, the implementation of a new force field

constitutes no additional time cost once an Element Library has been established.



5.3. Script-Level Local, Common Subexpression Elimination (CSE)

The characteristic variables’ vectorized definitions, equations (13) and (14), result in
expressions for the entries of the characteristic variables’ Jacobian, Jc

u, and Hessian, Hc
u,

which are ideally suited for local CSE optimization. While many compilers include CSE
capability, it was chosen to implement CSE at the FORTRAN script level, especially because
elaborate characteristic variables may still cause prohibitively long statement expressions (e.g.
NR-4’s cos (ϕijkl) = −r̂ijk · r̂jkl). In general, using a pre-computed temporary variable t0 =

t0 (x,u), an entry of the Hessian, Hc
u, may be reformulated as:

(Hc
u)i,j,k = h (x,u) = h0 (x,u, t0) , (25)

where t0 is chosen so as to maximize the length reduction of h (x,u). Subsequent temporary
variables may use preceding temporary variables: tl = tl (x,u, t1, . . . , tl−1) for l > 1, such
that after l substitutions, the Hessian is evaluated as (Hc

u)i,j,k = hl (x,u, t0, . . . , tl). The
temporary variables may be reused immediately after this evaluation, in order to keep the
register allocation low. For the MM3 force field, this CSE results in an overall 80% reduction
of mathematical operations, while the overall script length generally reduces by 73%.

6. APPLICATIONS

Two applications of the implemented MDFEM are presented. Firstly, the equivalence
of MDFEM and MD is demonstrated using a static, non-linear fracture simulation of CNT.
Secondly, non-equilibrium meshes of complex three-dimensional Pillared Graphene Struc-
tures (PGS) are allowed to relax, hence demonstrating the current implementation’s capability
to perform conformational analyses.

6.1. Brittle Failure of Carbon Nanotubes (CNT) with Defects

The MD study by Belytschko et al. [33], investigating the effects of defects on the frac-
ture behaviour of CNT, was chosen as a reference to demonstrate the equivalence of MDFEM
and MD in a highly non-linear environment up to, and including bond failure. Three CNT
configurations [33] (table 2) were tested in a static analysis, ü = 0, and were strained axially
to fracture. The effect of defects was included by softening a bond in the middle of the CNT
by 10% (i.e. effectively a 0.9 multiplication factor was applied to both JVS

u and HVS
u of the

affected elements). Failure of a bond is detected in the current MDFEM implementation by
testing each bond’s HVS

c for positive-definiteness, as discussed in section 4.6. Following Be-
lytschko et al. [33], the Brenner potential [10], equation (11), is approximated in this example
by a Morse type potential of the form:

V = VS + VB = α
{[

1− e−β(rij−r0)
]2 − 1

}
+

1

2
γ (θijk − θ0)

2 [1 + λ (θijk − θ0)
4] . (26)

The above potential was developed to be equivalent to the Brenner force field for strains up



to 10% [33], but without suffering from the subsequent camel-back problem in the force-
displacement relation. The fitting constants for equation (26) are: r0 = 1.39 Å, θ0 =

2.094 rad, α = 6.03105 nN Å, β = 2.625 Å−1, γ = 9.0 nN Å/rad2 and λ = 0.754 rad−4 [33].
The present formulation identifies CNT uniquely by a triplet of integers, such as (20, 0, 10).
The first two indices, (20, 0), refers to the commonly-used integer notations for the chiral
vector, Ch = 20 · a1 + 0 · a2, where a1 and a1 denote the graphene lattice vectors. The
third index, 10, identifies the CNT height as 10 · ∥T∥, where T is the orthogonal translational
vector [17, 38].

Table 2. Model Specifications - Brittle CNT Failure Simulations
CNT

Configuration Atoms VS Element pS VB Element pB
Equilibrium

Length l0
(
Å
)

(12,12,20) 984 NR-2 1452 NR-3 2855 48.151
(16,8,10) 1128 NR-2 1664 NR-3 3279 53.588
(20,0,10) 820 NR-2 1200 NR-3 2359 41.700

The geometries were constrained and displaced using two single rows of atoms, one
at each end of the CNT, Ω1 and Ω2. Figure 6 highlights these edge atoms, the fixed ones on
the left, u (Ω1) = 0, and the displaced ones, Ω2, on the right. The MDFEM used a direct
sparse matrix solver. For comparison with literature, the stress-strain results are reported in
conventional pressure units. The two-dimensional stress is normalized by assuming a CNT

wall thickness, twall = 3.4 Å, as: σ3D =

∑
Ω2

fi

A
, where A = twall∥Ch∥ and the strain is

evaluated as ϵ =
l − l0
l0

.

Figure 6. Displacement Boundary Domains of CNT (20,0,10)

Figure 7 demonstrates an excellent agreement between the current MDFEM imple-
mentation and the MD results reported in [33]. The predictions for failure strain and failure
stress show no identifiable differences for the Zig-Zag CNTs, while for the Chiral and Arm-
chair CNTs these are minor and negligible. Additionally, the brittle nature of the fracture
can be deduced from MDFEM because no bonds had fully failed prior to global divergence.
Figure 8 highlights the domain of the CNT which contains the softened bond at a global axial
strain of 15.8%. All simulations took O(101 − 102) seconds to complete using a standard
workstation running a 3.3 GHz Intel i5-2500 CPU.



(a) CNT (20,0,10) With a Severe Vacancy Defect (b) CNT (16,8,4) With a Soft Bond Defect

(c) CNT (20,0,10) With a Soft Bond Defect (d) CNT (12,12,20) With a Soft Bond Defect

Figure 7. Stress-Strain Behaviours of CNT of Varying Chirality with Defects

Figure 8. Cut-View of CNT (20,0,10) with Highlighted Softened Bond Region in an Axial
Deformation Field at 15.8% Strain

6.2. Conformational Analysis: 3D Pillared Graphene Structure

The seeding of 3D Pillared Graphene Structure (PGS) meshes, such as the those in fig-
ures 9(a) and 9(c), is considerably more complex and computationally intensive than seeding
SLGS or CNT [39–45]. A conformational analysis is typically required before any loading
may be applied. Two examples are presented, the first being PGS-1, figure 9(a). This PGS is
constituted of a single CNT of configuration (8,0,4), which is perpendicularly joined to SLGS
at both its ends. The second example, PGS-2 in figure 9(c), is a more complex sample struc-
ture due to the close proximity of its two CNT which are of configurations (8,0,4) and (6,0,4).



Both the PGS-1 and PGS-2 configurations are potentially representative Unit Cell (UC) do-
mains. These structures were equilibrated using the Lobo-Keating potential, equation (9),
with the following fitting parameters [34]: r0 = 1.421 Å, α = 15.59 nN/Å , β = 2.55 nN/Å
and γ = 0.74 nN/Å.

(a) PGS-1 Initial Mesh (b) PGS-1 Equilibrated Mesh

(c) PGS-2 Initial Mesh (d) PGS-2 Equilibrated Mesh

Figure 9. Conformational Analyses of Non-Equilibrium PGS Meshes

The equilibrated state of the PGS-1 in figure 9(b) and that of PGS-2 in figure 9(d),
are easily obtained by prescribing f = 0 and appropriate basic boundary conditions on the
structures. The geometries relax to their energy minimizing configuration, as shown in figures
9(b) and 9(d).

Homogenized mechanical properties of PGS, obtained through an approximated MDFEM,
are available [32], but the latter study required a full MD pre-processing step to obtain the
conformational analysis prior to loading. Only force fields with strictly monotonic force-
displacement relations (i.e. inflexion-free potentials) should be used in conformational anal-
yses. This criterion almost always guarantees fast, problem-free convergence to an approx-
imate energy minimum, which may be refined with a more precise force field around that
energy minimum. Figure 9(d) demonstrates that the current MDFEM is able to perform con-
formational analyses on quite challenging geometries.



7. CONCLUSION

A mathematically rigorous, fully non-linear derivation and a comprehensive imple-
mentation of the Molecular Dynamic Finite Element Method (MDFEM) has been presented.
The model has shown to yield numerical predictions identical to MD fracture simulations and
has produced, to the best of the authors’ knowledge, novel results by achieving the first fully
MD-equivalent conformational analyses performed within MDFEM.

The formulation bases itself on the simplest possible MDFEM element topologies
which are available throughout literature, and hence the force field characteristic variables are
defined unambiguously. This intuitive and clear approach significantly facilitates the numeri-
cal implementation of MDFEM and should spark an increased use of the latter.

Moreover, the present MDFEM derivation uncouples the force field potentials from
the element topologies in a way which is analogous to the separation of constitutive rela-
tions and element topologies in classical FEM. This approach further enhances the flexibility,
clarity and accessibility of the present formulation. Solely the force field in its basic form,
V = V (c), and the definitions of the characteristic variables, c = c (r,u), are required as
inputs to model the chosen MD force field exactly within MDFEM. Additionally, the force
field vs. element topology uncoupling results in the current model’s ability to differentiate
explicitly between geometrical instabilities (e.g. buckling) and constitutive instabilities (e.g.
bond failures) during the simulations.

Finally, the current model is ideally suited for multi-scale integration (hierarchical
and concurrent) with larger-scale FEM simulations. The given derivation of MDFEM may
equally well accommodate multi-physics effects if the element topologies are enriched with
appropriate degrees of freedom beyond the current displacement DoF.
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