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Abstract. The concept of sustai nable development implies worldwide responsibility and shift
to a more sustainable lifestyles and patterns of consumption and production to obtain the
harmony among society, economy, and nature. Nowadays, sustainable development is exten-
sively described and studied, but very few works are dedicated to mathematical modelling
techniques and numerical simulations. This work deals with some systems of ordinary diffe-
rential equations in order to explain each one of the sustainable development dimensions
(resources, economy, and social growth) and their dependence with population growth. As
a result non-linear phenomena such as bifurcations and chaotic behavior may appear and
help to explain some sustainability conditions revealing new features of sustainable develop-
ment dynamics. Non-smooth phenomena such as sliding may appear when discontinuitiesare
introduced into the system turning them into Filippov systems.
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1. INTRODUCTION

To achieve an increase in the food production there are three ways we can do it: in-
creasing cropland, improving yield, and reducing losses since contributions from aquaculture
and synthetic food are negligible with respect to farming. The increased yield in agriculture
has been the main objective in Food Crisis trying to cover more efficiently the regions most
in need. For this purpose, new varieties of seeds have been created allowing more than one
harvest per year and resistance and tolerance to plants diseases, pests, irregular irrigation, and
poor soils. These "benefits” have resulted in an increase of the population engaged in agricul-
ture that seeks to improve their income to support themselves and their family. However, not
all impacts are positive since the intensification of agriculture reduces the use of seed diver-
sity by increasing the implementation of single crop farming, the use of agrochemicals, and
deforestation in order to expand arable areas; which results in the medium to long term in soil
depletion and the reduction of renewable and nonrenewable resources reducing the chances
of future productions doing this kind of agriculture, unsustainable.

The current Indian tribes occupying regions with abundant natural resources are at risk
of failing as Easter Island did or migrate to other lands as did the Mayan civilization because



of overharvesting their resources. This risk usually oscuat because of the mismanagement
that they give to their own natural resources but becaudeeaghismanagement that foreigners
have been giving to these resources in a process of colmmzatd unsustainable exploita-
tion. Is the case of the Amazon rainforest where its natib@loitants have been living there
for thousands of years and have found the perfect harmotynaiiure taking just enough to
survive by avoiding over-exploitation and promoting gextien after generation the conserva-
tive culture. Was the process of colonization who brougétgtoblems to the environmental
conservation. These foreigners brought with them not dmyitnplementation of extensive
agriculture and mining but also the subjugation of the ra&tito use these activities falling
into a constant contribution to environmental damage.

This interaction between population and the exploitatibmedural resources has been
studied through sets of ordinary differential equation®K3) related to the Lotka-Volterra
model, where population is the predator and renewable ressuepresent the prey. The
main results of these studies were focused on studying hstitutional reforms reflected in
changes in parameter values could prevent the fall of hdstiocivilizations such as Easter
Island whose mismanagement of natural resources was tke ohtailure [1-4]. The simple
model developed by Brander and Taylor [1] give us an intaiteasoning about the fall of
the civilizaction on Easter Island which could be repeatedurrent societies such as those
inhabiting the Amazon rainforest and many others arounavtbréd who survive mainly from
natural resource. An extension of this model was develogdd’'Alessandro [5]. He intro-
duced agriculture as a second source of income in order toroétmore general structure of
the linkages between ecological and economic systems.

The purpose of this paper is to study the dynamic properhdsnanlinear phenom-
ena such as bifurcations that can occur in different setsDE©In an ideal society which is
assumed to comply with the parameter values. Both systethbavstudied where the po-
pulation uses renewable resources as the only source bhdwee as well as systems where
agriculture has been introduced as a second source of income

For this purpose we used two different types of dynamic systehe so-called con-
tinuous or smooth dynamical systems whose states evolvinoonsly over time and the
so-called discontinuous whose states change abruptlgoBlisiuous dynamical systems dis-
cussed in this document are Filippov system or commonledgliecewise-smooth systems
[6]. Both continuous systems and Filippov systems are de=troy standard differential
equations of the form

:t:f(x(t)vu>7 z € R,

wheref may be continuous or discontinuous.

The paper is organized as follows: Section 1 presents arfgzasahe dynamics of
a simple model where the only source of livelihood is the Useewable resources. Then,
Section 2 introduces the agriculture as a second sourceafia by using the model proposed
in [5] which has interesting nonlinear phenomena. Sectipre3ents a model where techno-
logical progress has been introduced as a third differegiaation showing chaotic behavior.
Section 4 introduces two ways of mitigating environmen&mrdation:i) through cultural
changes and) through strict policies that seek to preserve an amountsguees, in this



case smooth systems become Filippov system. Finally $ebtjaresents some concluding
remarks.

2. Simple model of renewable resources and population growth

Economic activities in the primary sectas uncontrolled extraction of wood in forests
and rainforests are against the environment since humanthese resources to produce in-
come to survive and ignore the importance of conservingrabtesources for future genera-
tions. This complex relationship can be represented bydh#mation of the population and
renewable resources dynamics.

2.1. Mathematical model

According to Malthus [7], an increase in per-capita incoeeds to an increment in
population size; but at the same time this augmentationcesiohances of improve income.
To represent this behavior we can use a hybrid model of therigee of Ricardo [7] and
Malthus [8] as D’Alessandro [5] did. In his model, populatidynamics is written in term
of calories consumed and the natural level of calories ree¢alesurvive. This means that
population increases if the level of calories consumed éaigr than the natural level. On
the other hand the dynamic of renewable resources depenitieiomatural growth and the
harvesting rate. The first model representing this inteyacs

{S:[p(%—l)(l—%)—aﬁl/}s, (1)
L = (papS —o) L.

Where S and L represent the change over time of resources and populaipec-
tively. An increase in resources stock, produces an inonérnetheir reproductive ability
resulting an accumulation of resources which are limitedhgyr carrying capacity<. Pa-
rameterk is the resource stock where the growth rate becomes negatd/¢he renewable
resource tends to the extinctiop.is an intrinsic parameter of the resources that represents
their regeneration ratey is a measure of the technology used in harvestihopdicates the
percentage of population dedicated to harvesting. Finalindo are the caloric value of the
resource and the natural caloric level respectively.

For convenience we define= % as the available percentage of resources at any time
t. This implies thats € [0, 1] and the growth rate becomes negative when % = 0.0583,

i.e. below%?5.83 of resources the extinction is unavoidable.

2.2. Equilibrium points

System (1) is an autonomous system whose equilibria canlbala@d by equalling
simultaneously to zero both equatiorfis;z (¢) , u) = 0. This system has four equilibria, three

1The primary sector of the economy extracts or harvests ptedd the soil, and most of times these products
are considered raw materials for industries in the secgraksutor. Some activities associated with the primary
sector include agriculture, mining, forestry, huntinggdishing.

2For instance, according to plant succession theory moes itan host more insects and birds which are
largely responsible of pollination.



of which are trivial equilibria and one internal equilibmuwhose stability depends strongly
on parameter values. Equilibria are the following solusioh, S).

Trivial equilibria

P1=1(0,0),
P2 =(0,k), (2)
P3 - ’ ) ’
internal equilibrium
B p(—ocKoaB + o + kK¢*a?3* — kapafB) o
Pi— (_ i P /3) | @)

2.3. Steady-state analysis

Temporal evolution of a dynamic system brings together tefodviors, the transient
and the steady state. For purpose of this work we focus thatsesn studying the steady
state. This state is reached when the state varidbsesd S does not change over time.

Assuming parameter values reported in Table 1 and an imitiatlition (L, sg) =
(40, 1) we can implement a Runge-Kutta method to find the numeridatisa of system (1)
since analytical solution is not available

Table 1. Parameter Values

Parameter | Value
0.3
0.0001
0.025
12.95
0.7
700
12000
0.1
1.4
3

AR I FTX>D LW

Under these conditions the internal equilibrium pahdtis a stable focus whose eigen-
values are complex conjugates with negative real past & —a =+ bi) as shown in Figure
1(a). This result shows how the temporal evolution of théesyswhich finally falls into a
steady state where both population and resources are yedsdfigure 1(b) shows the exis-
tence of two basins of attraction, i.e. the system has twadgtstates that depend on initial
conditions. Given an initial condition oB1 the system is sustainable because it approaches to
equilibrium P4 and an initial condition orB2 the system is unsustainable becalis§ = 0.

3For purpose of this paper the tesustainable development is interpreted as any steady-state whiers' # 0
and can be an equilibrium point, a limit cycle or a chaoticaatior.
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Figure 1. Phase portrait of system (1): (a) system evolwtitim nullclines and (b) basins of
atraction.

2.4. Bifurcation analysis

Previous result shows how by considering constant parawvedtees, we can understand
the system dinamics which is determined by the stabilitygpfildorium points. Now, the next
step is to perform a sensitivity analysis by varying the eysparameter values to determine
conditions where changes on dynamical behavior occur asigrsybecomes unsustainable.
For this, an analysis of bifurcations by using continuatiethods reported in [9-10] was
developed. Figure 2 shows this result foas the control parameter. As soon as population
begins to use resources as a source of income (incredgthg equilibriumpP4 loses stability
changing from a stable node to a stable focus to finally besaameunstable focus through
a Hopf bifurcation where the system becomes oscillatoryis Bifurcation occurs when an
equilibrium has a pair of eigenvalues that cross the imagiaais creating or destroying a
periodic orbit.

3. A model with two sources of income

The Ricardo-Malthus model proposed by D’Alessandro [5]ststis of two economic
activities that exploit two natural resources: forest ardllin order to produce wood and corn
respectively. The introduction of agricultural as a secsodrce of income is the discussion
topic for this section.

3.1. Mathematical model

The production in the agricultural sector is assumed t@¥olhe Cobb-Douglas pro-
duction functiom\ (1 — ﬁ)5 L°~1, where)\ andd are technological parameters in agricultural
sector andy is the caloric value of corn. Values of these parametersiaoer@ported in Table
1. The final set of ODEs is system (4).
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Figure 2. Equilibria continuation and the family of limit@gs asociated to the Hopf bifurca-
tion.
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3.2. Equilibrium points

This new system may have four, five, or six equilibria depegdin parameter values.
A new trivial equilibrium and a new internal equilibrium agxp.
Trivial equilibria

P1=(0,0),
P2 =(0,k),
P3=(0,K), (5)

2

In{ % )—61n(1-p)
P4 = (e—( il ,0) .

and internal equilibriumP5 and P6 have no analytical solution and must be found
numerically through a Newton’s method.

3.3. Steady-state analysis

The following simulations consider thai% of population prefer harvesting resources
while 70% is devoted to agriculture activities, thef,= 0.3. Under these conditions phase
portrait is that in Figure 3. In this case the system appresc¢h a stable limit cycle in the
long-run (Figure 3(a)), but depending on initial condisahcan also approach t84 which



in this case is a trivial equilibrium where in absence of vealgle resources a little population
could survive with agriculture as shown in Figure 3(b).

Since analytical solutions for internal equilibria are agéilable, analytical solutions
for eigenvalues are not available too. Then, it is necegsanake it numerically by replacing
the numerical values of each equilibrium in the Jacobianimnafiumerical simulations indi-
cate that if both internal equilibria exist, the lower aRg is always a saddle while the higher
one P6 has variable stability depending on parameter values.
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Figure 3. Phase portrait of system (4): (a) system evolwtiim nullclines and (b) basins of
atraction.

3.4. Bifurcation analysis

This part of the work try to explain how non-linear phenomenah as bifurcation
help to find regions of sustainability for different sets @rgmeter values. We found not
only several local bifurcations but also global ones, buy timose that we consider the most
important ones for our purpose are discussed in detail.

To summarize the results we present Figure 4 where Bathd \ are varied in order
to find regions of sustainability. For mathematical detaldeut numerical methods for com-
puting bifurcations we recommend to see [9,10]. Steadi$ta any combination off and
A on regionR1 is an stable equilibrium, once Hopf bifurcation occur theteyns becomes
oscillatory and limit cycles appear, this stationaryst@tcurs on regiok2. Homoclinic bi-
furcation is an important boundary between what is sustéénand what is not because in
region 3 there are neither stable equilibria nor stable limit cyclEsally, R4 is a region
where there are no internal equilibria because of the sauutle bifurcation and any initial
condition on this region falls to equilibriurf?4. We found two two-parameter bifurcations:
the Generalized Hopgl H and the Bodganov-Tak&s$!” which are not interesting in this work.
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4. Technological progress dynamics

In previous sections long-term dynamic of the interactietwleen the exploitation
of natural resource and population growth was studied. &b nmodels technology used in
harvestingn was a system parameter. The aim of this section is to int@ducew diffe-
rential equation which represents the dynamic behaviaer. dfhe proposed ODE introduces
the parameter.,,;, which is the population dedicated to develop this kind ohtexogy, a
functional dependence on the existing technology leyelnd a sort of saturation depending
on population level. Our purpose in this section is to preskaotic and quasi-periodic be-
havior as two new steady-states when modeling sustainalbdapment through differential
equations.

4.1. Technology dynamics

Equation (6) is the proposed dynamics and parameter vatagb@se in Table 2.

L — Lmin
+ (L — L))

= k?LOéL62

. 6)

min

Table 2. Parameters for technology dynamics.

Parameter | Value
0o 0.01
kl 15

4.2. Steady-state

In this section we don’t use numerical continuation of efu to study the steady-
state, instead we use Poincare maps which is another usefibt studying dynamical sys-



tems. For convenience we seldgt;,, as the Poincare section and detect the crossing of the
trajectory in one direction as shown in Figure 5. This repudisent the existence of a 12-
periodic orbit in the steady-state. Now it is possible tostouct a bifurcation diagram by
varying the control parametér,,;,, (or any other parameter).
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Figure 5. Equilibria continuation and the family of limitags asociated to the Hopf bifurca-
tion.

Results in Figure 6 show the possible steady-state scand¥ion-linear phenomena
such as period-doubling bifurcations and chaos in the lomgwithout resources extinction
can appear. RegioA is characterized by a chaotic attractor or quasi-periodig® In region
B the system approaches to stable limit cycles and finallyulfinca Hopf bifurcation located
in the boundary between regighandC' system can approach to stable equilibria depending
on parameter values.

0.65
0.6

0.55

12 /
| »
045k , 5 : c
0.4 :
o |
035114 |
ENI |
\A'\L// |
0317 |
L . . L . . . . 028k . . . . .
2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 2800 2810 2820 2830 2840 2850 2860
me me
() (b)

Figure 6. Bifurcation diagrams



5. Mitigation of environmental damage

This section deals with two ways of mitigating environméulegradation. The first
one is related to cultural changes intended to reduce hargeates, and the second is related
to strict political and institutional changes that seekresprve an amount or resource.

5.1. Cultural changes

So far, paramete$ has been considered constant an just sensitivity analgssvade
in previous sections. Now, we consider tiigt) varies depending on the percentage of re-
sources according to the quadratic expression

B(5) = Bus (3 — 25). (7)

Equation (7) introduces the fact that economic sector @gelicto harvesting reduce
labor when available resources decrease. If the resourekisebelows/4 of their carrying
capacity awareness of population changes patterns of ogtgn. However, in virgin state
extraction rate of wood undergoes a temporal increase bea#uhe abundance as shown in
Figure 7.
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Figure 7.3 as a function of resources

Figure 8(a) shows stationary state in a constant envirohmg#imconstant parameters.
The introduction of? as a function ot change basins of attraction expanding the sustainable
basinB1. Namely, it is possible to obtain long-run behaviour witrspwe population and
no resources exhaustion for high initial population lev€ln the other hand, Figure 8(b)
presents continuation of equilibrium points for controtgraeters,, which is thes average.
In contrast to the results in Section 2 there are no bifuraatiandP6 is always stable for
any initial condition onB1. This is an interesting result since summarizes the impoeaf
cultural change in the conservation of resources.
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Figure 8. (a) basins of attraction and (b) continuation afidayium points.

5.2. A piecewise smooth model

Now, consider a percentage of renewable soutcgich that below that threshold it
is not possible to continue with the excessive harvestingce@ is crossed, the ecological
complex begins to recovery by means ®freduction. According to restriction (8) while
s > R, g will stay at the maximum allowed valug,...; and if s < R, § will reduce in a
linear form.

_ 6max Zf s > R
B_{Bmaxs if s<AR. (8)
The second-order Filippov system defined by the single baxynd and the regions
FyandF; is

Y={(L,s):s= R},
Fy ={(L,s) : s>R}, 9)
F,={(L,s) : s<R},

described by the standard ordinary differential equations

. fH=x) if z e,
‘”_{ F2(z) if xGF;, (10)

and the flow that slide according to the Utkin’s method is

1 2 2 _rl

= L@@ L)),
2 2

wheref; (x) = —% andH, is the gradient vector.

Finally the sliding regiort, = {z € X : |6, (z)| < 1} is boundaried by

s (), (11)

Th={xe¥:b;(x)=—-1},
Ty={xe¥:0;(x)=1}.

The obtained sliding limits are:

(12)



p(RK—R?~kK+kR)
Ty = aBkK )
_ p(RE—R?—kK+kR)

T, = aBRK

(13)

Figure 9(a) shows the phase portrait, sliding region, ttayges for different initial
conditions, and the pseudo-equilibriufmwhen restriction (8) is applied to the planar system
(4). Results show that not all initial conditions approache positive renewable resources
in the long run, nevertheless the established threshabavallin intuitive understanding of
institutional change effect on the sustainable developmen

0.9

0.8

0.7

0.6

» 0.5

0.4

0.3

0.2r

0.1

i i i i i i i i
0 1000 2000 3000 4000 5000 6000 7000 8000
L

(@) (b)

Figure 9. Filippov systems

Finally, Figure 9(b) presents the evolution of the systenemu dynamics is intro-
duced presenting analogous results to the planar systemevido¢h the crossing and the
sliding region are easy to distinguish.

6. Final remarks

The paper studies the dynamic of an endogenous process ofatiop growth in a
economy based on resources consumption. The variatiorpmatmon is assumed to be equal
to the difference between calories consumed per-capitéhanuer-capita natural level of calo-
ries needed to survive. This assumption is a represenw@it@Ricardo-Malthus model where
the increasing population is a consequence of the food @gpagansion and only hunger
and misery can control it. The introduction of the non-linaepresenting agriculture allows
the possibility of multiple equilibria and the appearantioal and global bifurcations which
help to identify regions of sustainability for differentraaneter values.

Chaotic and quasi-periodic behavior is an indication of ithereasing complexity
when new non-linear terms and new differential equatioasrdaroduces into a system. These
Steady-states are commonly found in many systems and hatiendify zones where it is
advisable to work, for example in resources managementarisenient to avoid any oscilla-
tory behavior such as limit cycles, chaos, and quasi-periodits characterized by periods
of scarcity and abundance. The perfect steady-state wauht stable equilibrium where



people live in harmony with nature by taking just enough twisie as many indigenous civi-
lizations have done throughout history.

Cultural and Institutional changes were introduced endogsly into the model in

order to evaluate at least qualitatively how the dynamiedccohange and what kind of func-
tions may be introduced so that environmental damage cantlyatad.
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