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Abstract. In this paper, the problem of stochastic modeling of dynamic soil-structure interac-

tion systems and the corresponding model updating problem are considered. Ambient vibra-

tion or seismic vibration data can be used to update the model properties of dynamic soil-

structure interaction systems. Most existing works for model updating of these types of sys-

tems consider only one choice of resolution without paying much attention to the effect of 

model resolution. In this paper, a Bayesian model updating methodology based on stochastic 

model classes with multiple resolutions is proposed. The effect of model resolution on the 

result of the Bayesian model updating will be shown. The proposed methods are illustrated 

with an example involving a dynamic soil-building-structure system. 
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1. INTRODUCTION 

The problem of model updating using dynamic response data has received much atten-

tion over the years because of its wide range of application in structural health monitoring, 

structural response prediction, reliability and risk assessment, and structural control. The need 

for model updating arises because there are always modeling errors and uncertainties asso-

ciated with the process of constructing a mathematical model of a system. Once a mathemati-

cal model is specified, the problem reduces to estimation of model parameters that improves 

the agreement between the predicted and actual response. However, no single deterministic 

input-output model can make perfect predictions about the dynamic characteristics of a sys-

tem and its prediction will always be uncertain. Therefore, there has been increasing interest 

in using Bayesian statistical framework for updating structural model based on dynamic re-

sponse data [1-5]. Bayesian model updating methodology not only identifies the optimal sys-

tem model but a set of plausible models, quantified by a probability distribution over model 

parameters that describe the complete picture of the uncertainty [1]. It also allows for the ex-

plicit treatment of the ill-conditioning and non-uniqueness arising in the model updating in-

verse problem. 

Blucher Mechanical Engineering Proceedings
May 2014, vol. 1 , num. 1
www.proceedings.blucher.com.br/evento/10wccm



 

 

Most works in Bayesian finite-element model updating only focus on how to match 

the model predicted response with the measured response without paying too much attention 

to the effect of model resolution (in space and time) to the uncertainty quantification. It is 

well known that the accuracy of the transient dynamic solution depends on the discretization 

of the model: the smaller the time step, the higher is the accuracy. Similarly, the choice of 

discretization scheme employed in spatial domain is important in the numerical modeling of 

wave propagation (especially for the soil domain, in soil-structure interaction system). Reduc-

ing the spatial resolution may decrease the computational effort requirement but can bring 

undesirable impacts to the analysis results. In general, spatial discretization scheme is based 

upon the concept of resolving the propagation of the shear waves at or below a particular fre-

quency by ensuring that an adequate number of elements fit within the wavelength of the cho-

sen shear wave. This ensures that the mesh is refined enough such that the desired aspects of 

the propagating waves are well captured in the analysis. 

The focus of this paper is to investigate the effects of choice of spatial discretization 

scheme employed on the posterior distribution of uncertain parameters during the process of 

Bayesian model updating. In the following section, the formulation of the Bayesian metho-

dology for model updating is presented. The proposed method is illustrated with an example 

involving a dynamic soil-building-structure system. 

2. STOCHASTIC SYSTEM MODEL CLASS UPDATING 

2.1 Stochastic System Model Class 

Consider a set of possible models specified by a model class M, describing the input-

output behavior of a system [1]. M is parameterized by parameter vector D∈θ �  and the ini-

tial relative plausibility of each predictive model M(θ) is specified by an initial probability 

distribution function (PDF) ( ),p θ |M called the prior. By Bayes’ theorem the posterior PDF 

( , ),p θ |D M  i.e. the updated relative plausibility of each predictive model based on inclusion 

of measured data is then given by: 

 
1( ) ( , ) ( ).p c p p−=θ θ θD,M D M M  (1) 

where ( )c p= D M  is the normalizing constant and ( , )p θD M
 
is the likelihood function 

which expresses the probability of getting D based on the predictive PDF for the response of 

the model specified by θ. 

2.2 General Formulation for Model Classes 

A stochastic system model class can be constructed from a deterministic state-space 

model by stochastic embedding [1]. In this process, along with uncertain system parameters, 

prediction-error terms are included in the equations of motion. The following formulation is 

obtained or modified from those presented in [6]. The continuous-time state-space model of 



 

 

stochastic linear dynamic system is given by a first order stochastic differential equation as 

follows: 

 ( ) ( ) ( ) ( ) ( ) ( ).c ct t t tx = A θ x + B θ u  + w�
 

(2) 

 ( ) ( ) ( ) ( ) ( ) ( ).t t t ty = C θ x + D θ u  + v  (3) 

 
0(0) .x = x

 
(4) 

 
E[ ( ) ( )] ( ) ( ).T

c
t tτ δ τ= −w w Q θ

 
(5) 

 
E[ ( ) ( )] ( ) ( ).T

c
t tτ δ τ= −v v R θ  (6) 

The system matrix Ac, Bc, Cc, and Dc are a specified functions of uncertain system parameters 

θ. ( ) , ( ) , ( ) yx u
NN N

t t t∈ ∈ ∈x u y� � � denote the state, excitation and output measurement vec-

tors at time t  and x0 is the initial condition vector. The random variables w and v represent 

the uncertain component of the input (e.g., ambient vibration or white noise input to stochas-

tic ground motion model) and the measurement noise, modeled as independent Gaussian va-

riables, respectively.  The corresponding discrete-time state-space model with time step ∆t 

(where tn = n∆t), is: 

 
1 1 1( ) ( ) .n n n n− − −+ +x = A θ x B θ u w

 
(7) 

 
( ) ( ) .n n n n+ +y = C θ x D θ u v

 
(8) 

 

where ( ) exp( ( ))ct= ∆A θ A θ and 1( ) ( )(I ( )) ( ).
c c

−= −B θ A θ A θ B θ  Uncertain input wn at time tn is 

modeled by a multivariate Gaussian distribution with covariance matrix Q(θ), given by [7]: 

  
0

( ) exp( ( ) ) ( ) exp( ( ) ) .

t

T

c c c
dτ τ τ

∆

= ∫Q θ θ Q θ θA A
 

(9)
 

The uncertain prediction-error term vn, has covariance matrix R(θ) given by: 

 
( ) ( ) / .c t= ∆R θ R θ

 
(10) 

Uncertain input wn and prediction-error vn, are assumed to be independent of each other at all 

times. Q and R are also specified function of uncertain system parameters θ. Let 

0 1[ , ,.., ]T T T T

n n=X x x x  and 
0 1[ , ,.., ] .T T T T

n n=Y y y y  Given θ, the predictive PDF of output YN can 

be written as the product of conditional probabilities as follows: 
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The conditional distribution

 
1( | , )n np −y Y θ

 

follows a multivariate Gaussian distribution with 

mean 
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and covariance matrix 1 | 1Cov( | , )
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yn|n-1 and Sn|n-1 can be calculated by the following formulae using the Kalman filter which 

comes from Bayesian sequential state updating with x0|-1=x0, P0|-1=I and S0|-1=R: 

 

 

| 1 1| 1 1( ) ( ) .n n n n n− − − −= +x A θ x B θ u
 

(13) 

 | 1 1| 1
( ) ( ) ( ).T

n n n n− − −= +P A θ P A θ Q θ
 

(14) 
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Thus, ( | )Np Y θ
 
in (10) is given by: 
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The posterior PDF of θ is then given by (1) where ˆ ,
N

= YD  the measurement for the system 

output YN. 

2.3. Model Class Comparison 

Model class comparison is a rigorous Bayesian updating procedure that judges the plausi-

bility of different candidate model classes based on their posterior probability (their probability 

conditional on the data from the system). Its application to system identification of dynamic sys-

tems that are globally identifiable or unidentifiable was studied in [2, 4, 8]. In these publications, a 

model class is referred to as a Bayesian model class. Given a set of candidate model classes

{ :  1,.., }i Mi N= =MM , the posterior probability ( | , )iP M D M of each model class based on 

system data D is given by Bayes’ theorem as: 

 
( | ) ( | )

( | , ) .
( | )

i i
i

p P
P

p
=

M
M

M

D M M
M D

D
 (20) 

where ( | )iP M M is the prior probability of each Mi and can be taken to be 1/NM  if one con-

siders all NM  model classes are equally plausible; ( | )ip D M expresses the probability of get-



 

 

ting the data D based on Mi  and is called evidence. It is given by the theorem of total proba-

bility: 

 ( | ) ( , ) ( ) .
i i i

p p p d= ∫ θ θ θD M D M M  (21) 

It is worth noting that the log of evidence ( | )ip D M can be expresses as the difference 

of two terms [4, 9]: 

 
( | , )

ln ( | ) ln ( | , ) ln .
( | )

i

i i

i

p
p p

p
= −

θ
θ

θ

D M
D M D M

M
 (22) 

The first term is the log of the likelihood function, which gives a measure of the goodness of 

the fit of the model class Mi to the data, and the second term is the Kullback-Leibler informa-

tion, or relative entropy [10], which is a measure of the information gain about Mi from the 

data D and is always nonnegative. The importance of (22) is that it shows that the log evi-

dence for Mi, which controls the  posterior probability of this model class according to (20), 

explicitly builds in a trade-off between the data-fit of the model class and its “complexity” 

(how much information it takes from the data). 

In globally identifiable case [1], the posterior PDF for θ given a large amount of data 

D may be approximated accurately by a Gaussian distribution, so ( | )ip D M can be approx-

imated by using Laplace’s method for asymptotic approximation [8, 11]: 

 
1/2

/2ˆ ˆ ˆ( | ) ( | , ) ( | )(2 ) ( ) .iN

i i i i
p p p π

−

≈ θ θ H θD M D M M  (23) 

where Ni is the number of uncertain parameters for the model class Mi, the optimal parameter 

vector θ̂  is the most probable value, and ˆ( )
i

H θ  is the Hessian matrix of  

ln[ ( | , ) ( | )]i ip p− θ θD M M  with respect to θ evaluated at ˆ.θ  Stochastic simulation methods 

[9, 12], can be used to evaluate the evidence when the Laplace asymptotic approximation for 

the evidence is not applicable, either because of an unidentifiable model class or because of 

computational difficulties in treating the inherent optimization problem in high dimensional 

parameter space. 

In this study, model classes with different spatial resolution are considered to model 

the continuous medium for the update problem. The posterior probability of the candidate 

model classes is evaluated from (20) for comparison of the model classes. 

3. ILLUSTRATIVE EXAMPLE 

In this example, the identification of a soil-building system from simulated noisy total 

acceleration response data is considered (Figure 1). 500 four-node quad elements are used to 

model a 20m tall soil column using the plane strain formulation of the quad element and the 

building is represented by a single degree of freedom (SDOF). The structure is assumed to be 

excited by a white noise base motion, which is not measured. The simulated dynamic data 

consists of total acceleration at the top of soil column and at the SDOF. The time interval used 



 

 

to generate the data is 0.01 sec with total duration of 50 sec. The parameters used to generate 

the simulated data are: 3(soil) 2000 kg/m ,ρ =  (soil) 50MPa,E = Rayleigh damping 

ζ(soil)=0.05 and SDOF with =1.6 Hzf
 
and

 
ζ=0.02.  The variance of measured noise corres-

ponds to 10% prediction error level, i.e. rms of the noise is 10% of the rms of the noise free 

response. The covariance matrix for the prediction-error v for the output vector equation is 

modeled as a diagonal matrix. 

 2 .σ=R I  (24)

  

 

In total, 6 parameters are considered to be uncertain that need to be identified: 2 soil 

parameters, 2 structural parameters and, the variances Q and σ
2

, 
2

s s[ ,ζ , ,ζ, , ]E f Q σ=θ . The 

likelihood of θ can be obtained using equations (2)-(19). Non informative uniform prior dis-

tribution is assumed for all the uncertain parameters, [25,100],E =  sζ ,ζ [0,0.2],=

[0.8,3.2],f = 2, [0,100]Q σ = . The posterior (updated) PDF of the uncertain system parame-

ters is approximated by Gaussian distribution and Laplace asymptotic approximation is 

adopted to obtain the evidence.  

A set of 10 model classes  { :  5,10..,50}i i= =M M
 
are considered where

 
Mi is the 

model using i elements to model the soil medium. Note that none of the model classes corres-

ponds to the one used to generate the data. The goal here is to find the posterior probability of 

each model class given the dynamic data D. All model classes are taken to be equally plausi-

ble, before getting any data from the system, i.e. ( | ) 1/10.iP =MM   

Table 1 gives the optimal parameter values for some of the model classes and figure 2-

3 shows the optimal soil stiffness and soil damping values for different model classes. As ob-

served the optimal soil parameters are very close to the actual soil parameters and the struc-

tural (SDOF) parameters are very accurately identified for all the model classes. Figure 4 

shows the value of ( | , ),   5,10..,50,iP i =MM D calculated using equation (20). It is observed 

1 

2 

3 

: 

: 

i 

SDOF 

Figure 1. Soil-Building System. 



 

 

that the model with 5 soil elements is the most probable model and the contribution of higher 

modes to the response data is not significant enough to warrant their inclusion in making pre-

dictions of the system response. This conclusion needs to be further verified, however the 

result in this figure confirms the choice of spatial discretization scheme has significant effect 

on the parameter uncertainty especially those related to the soil properties. 

 

 
Figure 2. Optimal soil stiffness for different model classes. 

 

 
Figure 3. Optimal soil damping for different model classes. 



 

 

 
Figure 4. Probability of models with different number of soil elements based on data. 

4. CONCLUDING REMARKS 

Past application of the Bayesian model updating methodology focus on updating fi-

nite-element model parameters using any single spatial discretization scheme based on the 

measured data. In this paper, multiple model classes with different spatial discretization 

schemes are considered during the model updating. The results from the illustrative example 

show that the identified parameters using different discretization schemes can be quite differ-

ent from each other, and model class consisting of a larger number of elements is not neces-

sarily the more plausible one. The results are currently being obtained by another recently 

developed stochastic simulation algorithm that is more general and accurate than Laplace 

asymptotic approximation and will be presented in future publication. 

Future focus will be on treating mesh discretization uncertain with continuous distri-

bution, thus creating a single model class. Also, there is a need to study the effect of discreti-

zation scheme employed in the 2D and 3D spatial domain. [1-5, 7-14] 
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