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Abstract. The Karhunen-Léve expansion of a Gaussian process, a common tool on finite
element methods for differential equations with stochastic coefficients, is based on the spec-
tral decomposition of its covariance function. The eigenpairs of the covariance are expressed
as a Fredholm integral equation of second kind, which can be readily approximated with
piecewise-constant finite elements. In this work, the spectral element method with Gauss-
Lobatto-Legendre (GLL) collocation points is employed to approximate this eigenvalue prob-
lem. Similarly to piecewise-constant finite elements, this approach is simple to implement and
does not lead to generalized discrete eigenvalue problems (considering that the numerical
integration is also performed with GLL points), with the additional advantage of providing
high-order approximations of the eigenfunctions. Numerical experiments involving covari-
ance functions in one- and two-dimensional domains illustrate the effectiveness of this ap-
proach.
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1. INTRODUCTION

Spectral element methods are high-order finite element methods that employ piece-
wise continuous Lagrange shape functions whose collocation points are roots of orthogonal
polynomials. This class of methods has been successful on wave propagation problems mainly
because they are flexible to deal with complex geometries and produce low dispersion error
[6]. This work considers the use of these methods in the solution of the Fredholm integral
equation

If the covariance kernel’ is symmetric and positive definite, there is a monotonically
decreasing set of eigenvalues and an orthonormal set of eigenfunctions satisfying (1). The
solution of the eigenvalue problem (1) is relevant to the study of differential equations with
random input data. Indeed, f = Z(x,w) is a Gaussian random variable with meaand



positive definite covariana€, thenZ admits a Karhunen-L&ve decomposition:
Z(x,w) = p(x) + Z V Ak (%) &k (W), (2)
k=1

where¢, are independent Gaussian random variables with zero mebmétary variance.

Several approaches to numerically solve (1) are availalitesi literature. For instance,
one can employ the piecewise-constant finite element mg#joor use wavelet bases [3].
Spectral elements methods have been used in the contextegfahequations (see [7] and
the references therein), but to the author’s knowledge Il not yet been explored on the
Fredholm integral eigenvalue problem.

The next section reviews the piecewise-constant finite etmethod for (1) accord-
ing to [1], and points out some computational issues. Sectintroduces the spectral el-
ement method with Gauss-Lobatto-Legendre collocationtpoiNumerical experiments are
presented on Section 5.

2. PIECEWISE CONSTANT APPROXIMATION
The weak form of (1) is given as
/ / C(x,y)ok(y)v(x) dy dx = )\k/ dp(x)v(x)dx Vv e L*D). (3)
pJp D

LetV}, = spad{vy,...v,} C L*(D). The Galerkin approximation to (3) i}, consists
of finding \} € IR and¢?(x) € Vj, (1 < k < n) such that

Zqﬁw/ / C(x,y)v(y)vi(x) dx dy = )\ZZ@LJ/ vj(x)v;(x) dx, 4)
= DJD i1 D
which can be written as a generalized eigenvalue problem:

Cby = N Mgy, )

Ci = [ [ coxymmmmdxdy, M= [ vexutxdx ©)

AssumeD a polygonal domain discretized by a méBlof elements© (1 < e < N,)
with maximum element length > 0 such thatD® N D/ = () for e # f and

Ne
D=|]JD" (7)
j=1
Let P be the space of piecewise-constant functions defingd ifihe shape functions
|De|—1/2’ x € D¢
ve(x) = . (8)
0, xgZ D¢ e=1,...,N,

constitute an orthonormal basis fBf, hence the discrete eigenvalue problem (5) reduces to

1
Cop =Ny Cos= | [ [ Clxyyayx ©




The integral in (9) can be approximated@s; ~ +/|D'||D7|C(X’, ), wherex’ is
the barycenter of the elemebr.

The matrixC' is typically dense, in order that a large computational réffboth in
memory and CPU time) is required to solve the discrete eigeayaoblem (9). Frauenfelder
et al [4] propose algorithmic strategies to meet this demavdreover, finite elements of
degree higher than zero lead to generalized eigenvaluégpnsl{5) in which the matrid/ is
not necessarily diagonal. In analogy with finite elementirods for transient problems, mass-
diagonal formulations are attractive, and will motivate thoice of the spectral element basis
functions in the next section.

3. SPECTRAL ELEMENT APPROXIMATION

Let the interval0, L] be partitioned intaV, equally spaced elements of size= 1/N,
subdivided into/V interior subintervals, so that the total number of nodes iss N N.. By
using the element index iy < e < N, — 1 and the local index¥ < j < N — 1, the global
nodal index is given by = I(j,e) := j + eN + 1. The grid coordinates are defined by
xy = (e+()h, §; = (& + 1)/2, whereg; is thej-th collocation point in the interval-1, 1].

The Gauss-Lobatto-Legendre (GLL) collocation points aeduin this work. The
GLL points are found by numerically solving the equatidn— &%) Py (¢) = 0, where Py,
denotes the derivative of the Legendre polynomial of degfed@he same collocation points
are used for the numerical integration of the elementaryrioest, which renders the mass
matrix diagonal [5].

For D =|0, L[, the shape functions;(z) (1 < I < n) are Lagrangian piecewise
polynomial functions of degre&’ satisfying the relation,(z;) = 6,5, which implies that
the matrix coefficients\/; ; in (6) satisfyM; ; = 0if I # J. Indeed, letz = z(¢{) be the
mapping from the:-th element tg—1, 1|. The contribution ta\/; ; from thee-th element is

-1

Wiy =g [ @ ©)de s 55 mn@un@), (o

whereuw is thel-th GLL integration weight. Becaus€(;) = xx with K = [+ eN + 1,

N
. [ (h/2uwy(I), T=J=j+eN+1,
Mis=~35 ;wlv](xK)Ul(xK) B { 0, otherwise (11)
Therefore,
N, .
z (h/2)w;, 0<j <N,
M ;= My ; = wrdy g, Wy = Wr(je) = . (12)
; ’ hw;, j7=0,N.

Similar calculations apply to matri, and the resulting discrete eigenvalue system is
O¢k = )‘ZMd)k’? M[’J = U~J[5[7J, C[’J :QIJ[’J)JC(ZE[,JZJ). (13)
This system can be further reduced to

Coy, = Moy, Crg=w,0(xr,xy), (14)



which is a straightforward extension of system (9) to higtleo polynomials in the 1D case.
However, one should keep in mind that the numerical integmah (10) is not exact, since
the integrandy;v; is a polynomial of degre@N, whereas the GLL quadrature is exact for
polynomial integrands of degree upad®/ — 1.

The tensor product of the 1D spectral elements above nitleald to 2D and 3D
basis functions on square/cubic meshes (see [6] for morerglegeometries).

4. NUMERICAL EXPERIMENTS

Following [2], let D =]0, L] andC'(z, y) be defined as

C(a,y) = o”exp(—|z —y|/n), o,1>0. (15)
The exact eigenvalues and eigenfunctions associated hate

2no

B o) = nyi cos(yix) + sin(y;x)
IS GR

VP2 +1)/2+ 1

where the parametets, », . . . are roots of the equatigm?y? — 1) sin(v) = 21y cos(y). For
D =]0,1[x]0, 1], let C(x,y) be the separable exponential covariance function

(16)

i

C(x,y) = o®exp(—|z1 — y1|/n — |22 — 2| /7). (17)

The exact eigenvalues and eigenfunctions associated(\ith)y) are respectively
NP = N\ and@?P (zy, 22) = ¢i(z1)¢;(x2), where{);, ¢;} are defined in (16) and the index
n = n(i, j) is set to arrange the eigenvalues in decreasing order.

In the numerical experiments below, the input parametegsrae= 1 andn = 0.1.
Figure 1 contrasts the first 10 eigenvalues of (15) obtainaah Systems (9) and (14) (with
degreeN = 4), as well as the 10th eigenfunction computed with theseagmbres. A mesh
of 20 elements were used in both methods. The smoothness afitherical eigenfunctions
approximated by GLL may be useful if these are employed issgbent finite element com-
putations.
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Figure 1. Comparison of eigenvalues and eigenfunctions atedpwith piecewise constant
(P,) and fourth degree GLL spectral element methods.



Figure 2 shows the relative error of the first eigenvalue efdbvariance kernels (15)
and (17) using increasingly refined meshes and GLL eleméuisgoeel , 2, 4 and8. The nu-
merical convergence rates did not increase with the polyalahegree, though the regularity
of the covariance kernels are low because they depend eny| .
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Figure 2. Relative GLL error the first eigenvalue versus nunolbelements for the 1D (left)
and 2D (right) exponential covariance kernel.

In the following we assess the convergence rates of the Gettsgd method for the
smooth Gaussian kernel

C(z,y) = o exp(—(z —y)*/n*), o,n>0. (18)

For such a kernel a reference solution was calculated welGhL spectral element
method withN = 16 and N, = 2'2. Figure 3 shows the relative error (with respect to the
reference solution) of the first eigenvalue of the covamakernel (18) for GLL elements of
degreel, 2, 3 and4. The convergence rate does increase Withas expected.

0

10

107 T—ehe\"\e\e

10_10‘\

10 10°
Figure 3. Relative GLL error the first eigenvalue versus nunolbelements for the Gaussian

covariance kernel.
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5. CONCLUSIONS

The spectral element method was employed to numericallypoterthe eigenvalues
and eigenfunctions of the Fredholm integral equation (hg Uise of Gauss-Lobatto-Legendre



(GLL) collocation points and reduced integration with GLuaglirature rendered the imple-
mentation similar to piecewise constant finite elementbénsense that the resulting discrete
equations are a standard eigenvalue problem rather thanesiagiged one. Preliminary nu-
merical experiments show that the GLL spectral element ateglerforms well in Fredholm
eigenvalue problems.
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