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Abstract. The Karhunen-Lòeve expansion of a Gaussian process, a common tool on finite
element methods for differential equations with stochastic coefficients, is based on the spec-
tral decomposition of its covariance function. The eigenpairs of the covariance are expressed
as a Fredholm integral equation of second kind, which can be readily approximated with
piecewise-constant finite elements. In this work, the spectral element method with Gauss-
Lobatto-Legendre (GLL) collocation points is employed to approximate this eigenvalue prob-
lem. Similarly to piecewise-constant finite elements, this approach is simple to implement and
does not lead to generalized discrete eigenvalue problems (considering that the numerical
integration is also performed with GLL points), with the additional advantage of providing
high-order approximations of the eigenfunctions. Numerical experiments involving covari-
ance functions in one- and two-dimensional domains illustrate the effectiveness of this ap-
proach.

Keywords: Spectral element method, Fredholm integral of second kind, Karhunen-Loève
expansion.

1. INTRODUCTION

Spectral element methods are high-order finite element methods that employ piece-
wise continuous Lagrange shape functions whose collocation points are roots of orthogonal
polynomials. This class of methods has been successful on wave propagation problems mainly
because they are flexible to deal with complex geometries and produce low dispersion error
[6]. This work considers the use of these methods in the solution of the Fredholm integral
equation

∫

D

C(x,y)φk(y) dy = λkφk(x), k = 1, 2, . . . . (1)

If the covariance kernelC is symmetric and positive definite, there is a monotonically
decreasing set of eigenvalues and an orthonormal set of eigenfunctions satisfying (1). The
solution of the eigenvalue problem (1) is relevant to the study of differential equations with
random input data. Indeed, ifZ = Z(x, ω) is a Gaussian random variable with meanµ and
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positive definite covarianceC, thenZ admits a Karhunen-Lòeve decomposition:

Z(x, ω) = µ(x) +
∞
∑

k=1

√

λkφk(x)ξk(ω), (2)

whereξk are independent Gaussian random variables with zero mean and unitary variance.
Several approaches to numerically solve (1) are available in the literature. For instance,

one can employ the piecewise-constant finite element method[4] or use wavelet bases [3].
Spectral elements methods have been used in the context of integral equations (see [7] and
the references therein), but to the author’s knowledge theyhave not yet been explored on the
Fredholm integral eigenvalue problem.

The next section reviews the piecewise-constant finite element method for (1) accord-
ing to [1], and points out some computational issues. Section 4 introduces the spectral el-
ement method with Gauss-Lobatto-Legendre collocation points. Numerical experiments are
presented on Section 5.

2. PIECEWISE CONSTANT APPROXIMATION

The weak form of (1) is given as
∫

D

∫

D

C(x,y)φk(y)v(x) dy dx = λk

∫

D

φk(x)v(x) dx ∀ v ∈ L2(D). (3)

LetVh = span{v1, . . . vn} ⊂ L2(D). The Galerkin approximation to (3) inVh consists
of findingλh

k ∈ IR andφh
k(x) ∈ Vh (1 ≤ k ≤ n) such that

n
∑

j=1

φn,j

∫

D

∫

D

C(x,y)vj(y)vi(x) dx dy = λh
k

n
∑

j=1

φn,j

∫

D

vj(x)vi(x) dx, (4)

which can be written as a generalized eigenvalue problem:

Cφk = λh
kMφk, (5)

Ci,j =

∫

D

∫

D

C(x,y)vj(y)vi(x) dx dy, Mi,j =

∫

D

vj(x)vi(x) dx. (6)

AssumeD a polygonal domain discretized by a meshT of elementsDe (1 ≤ e ≤ Ne)

with maximum element lengthh > 0 such thatḊe ∩ Ḋf = ∅ for e 6= f and

D̄ =
Ne
⋃

j=1

D̄e. (7)

LetPh
0 be the space of piecewise-constant functions defined inT . The shape functions

ve(x) =

{

|De|−1/2, x ∈ De

0, x 6∈ De, e = 1, . . . , Ne

(8)

constitute an orthonormal basis forPh
0 , hence the discrete eigenvalue problem (5) reduces to

Cφk = λh
kφk, Ci,j =

√

1

|Di||Dj|

∫

Di

∫

Dj

C(x,y) dy dx. (9)



The integral in (9) can be approximated asCi,j ≈
√

|Di||Dj|C(x̄i, ȳj), wherex̄i is
the barycenter of the elementDe.

The matrixC is typically dense, in order that a large computational effort (both in
memory and CPU time) is required to solve the discrete eigenvalue problem (9). Frauenfelder
et al [4] propose algorithmic strategies to meet this demand. Moreover, finite elements of
degree higher than zero lead to generalized eigenvalue problems (5) in which the matrixM is
not necessarily diagonal. In analogy with finite element methods for transient problems, mass-
diagonal formulations are attractive, and will motivate the choice of the spectral element basis
functions in the next section.

3. SPECTRAL ELEMENT APPROXIMATION

Let the interval[0, L] be partitioned intoNe equally spaced elements of sizeh := 1/Ne

subdivided intoN interior subintervals, so that the total number of nodes isn := N Ne. By
using the element index by0 ≤ e ≤ Ne − 1 and the local index0 ≤ j ≤ N − 1, the global
nodal index is given byI = I(j, e) := j + eN + 1. The grid coordinates are defined by
xI := (e+ ζj)h, ζj = (ξj + 1)/2, whereξj is thej-th collocation point in the interval[−1, 1].

The Gauss-Lobatto-Legendre (GLL) collocation points are used in this work. The
GLL points are found by numerically solving the equation(1 − ξ2)P ′

N(ξ) = 0, whereP ′

N

denotes the derivative of the Legendre polynomial of degreeN . The same collocation points
are used for the numerical integration of the elementary matrices, which renders the mass
matrix diagonal [5].

For D =]0, L[, the shape functionsvI(x) (1 ≤ I ≤ n) are Lagrangian piecewise
polynomial functions of degreeN satisfying the relationvI(xJ) = δI,J , which implies that
the matrix coefficientsMi,j in (6) satisfyMI,J = 0 if I 6= J . Indeed, letx = x(ξ) be the
mapping from thee-th element to[−1, 1]. The contribution toMI,J from thee-th element is

M e
I,J =

h

2

∫ 1

−1

vJ(x(ξ))vI(x(ξ)) dξ ≈
h

2

N
∑

l=1

wlvJ(x(ξl))vI(x(ξl)), (10)

wherewl is thel-th GLL integration weight. Becausex(ξl) = xK with K = l + eN + 1,

M e
I,J ≈

h

2

N
∑

l=1

wlvJ(xK)vI(xK) =

{

(h/2)wj(I), I = J = j + eN + 1,
0, otherwise.

(11)

Therefore,

MI,J =
Ne
∑

e=1

M e
I,J = w̃IδI,J , w̃I = w̃I(j,e) =

{

(h/2)wj, 0 < j < N,

hwj, j = 0, N.
(12)

Similar calculations apply to matrixC, and the resulting discrete eigenvalue system is

Cφk = λh
kMφk, MI,J = w̃IδI,J , CI,J = w̃Iw̃JC(xI , xJ). (13)

This system can be further reduced to

C̃φk = λh
kφk, C̃I,J = w̃JC(xI , xJ), (14)



which is a straightforward extension of system (9) to high-order polynomials in the 1D case.
However, one should keep in mind that the numerical integration in (10) is not exact, since
the integrandvIvJ is a polynomial of degree2N , whereas the GLL quadrature is exact for
polynomial integrands of degree up to2N − 1.

The tensor product of the 1D spectral elements above naturally lead to 2D and 3D
basis functions on square/cubic meshes (see [6] for more general geometries).

4. NUMERICAL EXPERIMENTS

Following [2], letD =]0, L[ andC(x, y) be defined as

C(x, y) = σ2 exp(−|x− y|/η), σ, η > 0. (15)

The exact eigenvalues and eigenfunctions associated withC are

λi =
2ησ

η2γ2
i + 1

, φi(x) =
ηγi cos(γix) + sin(γix)
√

(η2γ2
i + 1)/2 + η

, (16)

where the parametersγ1, γ2, . . . are roots of the equation(η2γ2− 1) sin(γ) = 2ηγ cos(γ). For
D =]0, 1[×]0, 1[, letC(x,y) be the separable exponential covariance function

C(x,y) = σ2 exp(−|x1 − y1|/η − |x2 − y2|/η). (17)

The exact eigenvalues and eigenfunctions associated withC(x,y) are respectively
λ2D
k = λiλj andφ2D

k (x1, x2) = φi(x1)φj(x2), where{λi, φi} are defined in (16) and the index
n = n(i, j) is set to arrange the eigenvalues in decreasing order.

In the numerical experiments below, the input parameters are σ = 1 andη = 0.1.
Figure 1 contrasts the first 10 eigenvalues of (15) obtained from systems (9) and (14) (with
degreeN = 4), as well as the 10th eigenfunction computed with these approaches. A mesh
of 20 elements were used in both methods. The smoothness of the numerical eigenfunctions
approximated by GLL may be useful if these are employed in subsequent finite element com-
putations.
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Figure 1. Comparison of eigenvalues and eigenfunctions computed with piecewise constant
(P0) and fourth degree GLL spectral element methods.



Figure 2 shows the relative error of the first eigenvalue of the covariance kernels (15)
and (17) using increasingly refined meshes and GLL elements of degree1, 2, 4 and8. The nu-
merical convergence rates did not increase with the polynomial degree, though the regularity
of the covariance kernels are low because they depend on|x− y| .
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Figure 2. Relative GLL error the first eigenvalue versus number of elements for the 1D (left)
and 2D (right) exponential covariance kernel.

In the following we assess the convergence rates of the GLL spectral method for the
smooth Gaussian kernel

C(x, y) = σ2 exp(−(x− y)2/η2), σ, η > 0. (18)

For such a kernel a reference solution was calculated with the GLL spectral element
method withN = 16 andNe = 212. Figure 3 shows the relative error (with respect to the
reference solution) of the first eigenvalue of the covariance kernel (18) for GLL elements of
degree1, 2, 3 and4. The convergence rate does increase withN , as expected.
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Figure 3. Relative GLL error the first eigenvalue versus number of elements for the Gaussian
covariance kernel.

5. CONCLUSIONS

The spectral element method was employed to numerically compute the eigenvalues
and eigenfunctions of the Fredholm integral equation (1). The use of Gauss-Lobatto-Legendre



(GLL) collocation points and reduced integration with GLL quadrature rendered the imple-
mentation similar to piecewise constant finite elements in the sense that the resulting discrete
equations are a standard eigenvalue problem rather than a generalized one. Preliminary nu-
merical experiments show that the GLL spectral element method performs well in Fredholm
eigenvalue problems.
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