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Abstract. A key part to the iron-making blast furnace is the hearth. How well it functions
significantly affects the performance of the whole furnace and, ultimately, the hot metal quality.
The hostile conditions of the hearth lead to the erosion of the refractory lining; the extent of the
erosion is known as the wear line. The wear line is usually the main factor limiting the length of
a furnace’s campaign. To measure the wear line while the furnace is in regular operation is of
course impossible, yet such information would be useful in operation planning. Estimating the
wear line in a blast furnace hearth is as close as we can get to obtaining this information, and
this paper presents a model for doing just that. The procedure is based on the solution of a non-
linear inverse heat transfer problem. The observations are temperature measurements at points
inside the blast furnace hearth and the unknown is the location of the°C1i80therm. This

work considers: (i) the finite elements to solve the direct problem, (ii) the fixed-point iteration
method to solve the non-linearity of the direct problem due the thermal conductivity depending
on the temperature, (iii) three methods to solve the inverse problem. We estimate, using all three
methods, the wear line of a hearth with characteristics similar to those of Blast Furnace 3 at
steelmaker Arcelor Mittal Tub@o!. The methods, the performance and accuracy of which this
paper compares, are the Levenberg-Marquardt, the iteratively regularized Gauss-Newton, and
the conjugate gradient. We validate the solution using simulated measurements with different
noise levels.
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1. Introduction

When we determine unknown causes by observing their effects, we are solving an in-
verse problem. In inverse heat transfer problems (IHTP), some of the unknown causes are ini-
tial conditions, thermo-physical properties, and heat flux. Their effects are usually temperature
measurements at points along a domain [18].

IHTP belongs to a class of mathematical problems known as ill-posed problems. This
means that small perturbations in the observed data can lead to large errors in the solution. Such
problems are in direct contrast to Hadamard’s well-posed problems [10]. Well-posed problems
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require three conditions: (i) a solution must exist; (ii¢ tholution must be unique; (iii) given
small changes to input data, the solution must be stablegtability condition).

Such an inverse heat transfer problem is solved in this papere the wear on a blast
furnace hearth, a key part to iron-making blast furnacessisnated. The hostile conditions
inside a hearth erode the refractory lining, which is knowrttee wear line. Such erosion is
usually the main factor limiting the length of the furnacengaign. While impossible to obtain
during regular operation, direct measures of the liningds®n would be useful in the planning
of strategic operations. If the hearth relining is schedw® late, there is a risk of an outbreak
with potentially catastrophic consequences. On the otaied ha too early relining of the hearth
causes unnecessary loss of production and capital [4].pEpisr thus presents a model to better
estimate the wear line of a blast furnace hearth.

The lowest temperature at which iron can exist in liquid fpirh5C0C, is known as the
eutectic temperature of carbon-saturated iron [22]. Rigdihe 1150C isotherm is the same as
finding the wear line. In the present non-linear IHTP, thenown is the location of the 118G
isotherm. The observations are temperature measuremepténgs inside the blast furnace
hearth. These measures are taken by thermocouples looatdd the refractory walls of the
hearth.

A number of papers deal with estimating the 1%G@sotherm. For example, Gonzalez
and Goldschmit in [9], solved the inverse geometry probleseld on a radial basis functions
(RBF) geometry representation. Zhao et al. [24] compareeérifit characteristics of the all-
carbon brick, such as the wear line, and the ceramic cup syyathearth bottoms. Brannbacka
and Saen [4] focused on the mathematical formulation of the pnohlgielding a general
model optimized for fast computation. Zagaria et al. [23g@nt a model they call MUSA that
combines online readings of temperatures and historidal tdgpredict hearth erosion and the
skull profile.

This work solves the associated direct problem considehnegsalerkin formulation for
the finite element method. The thermal conductivity of thecké making up the hearth’s re-
fractory walls are temperature-dependent, causing tleetdaroblem to present a non-linearity.
This non-linearity is handled with the fixed-point iterationethod. The IHTP is solved us-
ing three methods: the Levenberg-Marquardt (LM), the tteedy regularized Gauss-Newton
(IRGN), and the conjugate gradient (CG). The three methods@rgared in performance
and accuracy. The numerical experiments to find the 458otherm were realized using a
hearth similar to that of Blast Furnace 3 of steelmaker ArcBlittal Tuba@o. The solution is
validated through simulated measurements with differerdenlevels.

The paper is organized as follows. Section 2 presents setladut the direct problem.
Section 3 describes the main ideas about inverse heatdrgrsblems; it also delineates three
methods to solve them — the Levenberg-Marquardt, the ietatregularized Gauss-Newton,
and the conjugate gradient methods. Section 4 presentsitherical experiments that consider
the simulated measures of temperature in a hearth simithatof Blast Furnace 3 (BF3). The
paper closes with a summary of our main conclusions.



2. Direct problem

The direct problem associated with estimating a wear linesists of calculating the
temperature distribution along the hearth. To solve theatliproblem we use the Galerkin
formulation for the finite element method [12]. Only relaliy small irregularities exist in the
geometry, material properties, and boundary conditiorthénangular direction of the hearth.
Hence, the direct problem can be represented, as depictéd.ih as a two-dimensional ax-
isymmetric problem. Moreover, since it has the charadtesi®f a thermal equilibrium prob-
lem, we can assume the problem to be a steady-state problams, fhe heat transfer problem
of the hearth is governed by the Eq.(1):

—V - (kVT)=0inQ Q)
wherek = k(7)) is the temperature-dependent thermal conductivity.
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Figure 1. Simplified domain

Boundary 1 presents the Dirichlet boundary condition:

T = Esotherm (2)

whereT; merm 1S the imposed temperature. This is the boundary conditdretestimated in
the inverse problem. The boundaries 2 and 5 presents the &guboundary condition, where
the heat flux is null due to the continuity of the domain ontthespective normal directions:
oT
k== =0 3
97 3
Boundaries 3 and 4 present the Robin boundary condition, wiichrs due to the external

cooling in these regions:

oT

whereh is the convective heat transfer coefficient andis the ambient temperature.



2.1. Galerkin finite element formulation

Considering the discretization 6f in sub-domaing)¢, wheree = 1,...,n., andng
is the number of elementsl’. denotes the boundary 6i¢, assuming that).Q2¢ = Q and
N.Q° = 0.

After doing the appropriate finite element approximationsidering the linear triangu-
lar element, a linear system, shown in Eq. (5), is obtainaahfihe Galerkin formulation, which
is solved by the Diagonal Preconditioned Conjugate Gradimthod [15].

Au=F (5)
where,
nel
A=Ad, a5 = / KV N, - VN;dQ + / hN;N;dl (6)
e= e re
nel e
F=Af, fo = / W Nl =Y ( / kVN; - VN;dQ)g; )
e= r e

= .
h j=1

where A is the assembling operatat, is the vector of nodal temperatures; is the finite

element interpolation function for linear triangular elemts,n;, is the number of nodes that the
Dirichlet boundary condition is considered apds the prescribed value to each node

2.2. Non-linearity of the thermal conductivity

The thermal conductivity of the refractory blocks from wtithe hearth is made is
temperature-dependent. Thus, Eq.(1) is actually:

—V - (K(T)VT) =0 (8)

This non-linearity is handled with the fixed-point iteratimethod [15]. Eqg. (9) considers a
non-linear iterative process where the thermal condugtiviat will be used in the iteration
iter + 1 is the one that was obtained in the iteration-.

i v (k(Titer)VTiter-‘rl) =0 (9)

In the Blast Furnace 3, the thermal conductivity of the matetihat compose the hearth has an
approximately linear variation with respect to the tempeea Thus, in this work we consider:

R(T317) = Ty + 8 (10)

whereT}**" is the temperature at the barycenter of the elemgobtained from the nodal tem-
peratures of the elemertt; is the thermal conductivity with linear behavior at the edgrte, and
the parameters andj are calculated from the thermal conductivity data. Theahdondition
T° considered is the direct problem approximation with a fixatli® for the thermal conduc-
tivity for each material. The stopping criterion adoptedtfee fixed-point iteration method was
the Euclidian norm| 71 — T"¢r|| with a tolerance of0~*.



3. Inverse problem

The IHTP of estimating the hearth wear line consists of esiimy the 115€C isotherm.
This means it is necessary to estimate the value offthg...,, that is the prescribed value
shown in Eqg. (2). To estimate this boundary condition, we para three methods of solving
inverse problems: the Levenberg-Marquardt (LM), the tieedy regularized Gauss-Newton
(IRGN) and the conjugate gradient (CG). All three consist ofimizing the least squares
norm:

1
S(P) =) [V = Ti(P) (11)

i=1
where S(P) is the sum of squares to be minimized, called the objectivetfan; Y is the
vector of observed temperaturés(P) is the vector of estimated temperatures, dnd the
number of measurements. The estimated temperafuf€s are obtained from the solution of
the direct problem at the domain’s measurements positions.s, Ymeas), Using the vector
as the current value of the unknown parameters being estihf&t, 4., in this problem).

3.1. Levenberg-Marquardt method

Levenberg [16] introduced his technique in 1944. In 1963rdydardt [17] introduced
a new approach to what was basically the same technique. udliatigwas trying to obtain a
method that, in the neighborhood of the minimum of the ondinaast squares norm, would
tend to the Gauss method. However, in the neighborhood ofnitial guess used for the
iterative procedure, Marquardt wanted the method to tertdasteepest descent method. The
least squares norm used for this method is presented in . The iterative solution of the
Levenberg-Marquardt method is given by:

PR = P (9T 4t (MY - T(P) (12)

where P is the vector of parameters that are being estimafei; the sensitivity matrix (see
Section 4, for details)y” is the vector of observed temperatur€ép) is the vector of estimated
temperaturesy” is a positive scalar called the damping parameter (&g a diagonal matrix.
Thus, the method consists of solving the following lineastsyn obtained from Eq. (12):

[(J))T T+t QFJAPE = (JM)TY — T (P¥)] (13)
whereP**! = P* + AP*. In our implementatior(* is calculated as follows:
QF = diag[(J*)T T (14)

The damping parameter is initially considered ag® = 0.001. It is used to improve,
in each iteration, the update of the parameters. Ifth**!) calculated in the current iteration
is such thatS(P**+!) > S(P*), the vector of parameterB**1) is not updated, ang* is
considered to be equal tdy*. If the S(P*1) calculated in the current iteration is such that
S(PH1) < S(P*), the vector of parameter8**! is updated to that calculated in the current
iteration, and:**! is considered be equal €ol.*. As inverse problems are typically ill-posed,



the termp*QF in Eq. (12) helps with instabilities in cases wheleg(.J7.J) ~ 0. The damping
parameter*) is usually larger at the beginning of the iterations. Thiseécause the problem, in
the region around the initial guess used for the iteratiee@dure, is generally ill conditioned.
With larger values for the damping parameter, the LM methesdl$ to the steepest descent
method. With smaller such values, the LM method tends to @es§-Newton method.

3.2. Iteratively regularized Gauss-Newton method

The iteratively regularized Gauss-Newton (IRGN) method waposed by [3]. The
IRGN is basically the Gauss-Newton method with regulartratechniques. Tests and propos-
als using the IRGN algorithm can be found in [2, 6, 9, 13, 20, ZhE least squares norm used
for this method is:

1 1
S(P) = 31Yi = T(P)IP + 5  al| (P = PLTL(P — P)| (15)
whereL” L is a regularization matrixy is a regularization parameter? is the initial suggested
value for the vector of estimating parametérs
Both being based on the Gauss-Newton method, the IRGN and LMaaetresemble
one another. The former, however, considers a differentlaggation method. The iterative

solution of the IRGN method is given by:
[(JEJFE + o LT L) APY = [(JYT(Y — T(P")) + o* LY L(P — P°)] (16)
The solutionP**! calculated with the IRGN method is used to updateas follows:
PiY = PR 4 gFAPF (17)

wheref* is a step size that makég P*™!) < S(P*). In our implementation we usetf = 1.0
and for every iteration where the conditigi{ P**!) < S(P*) was not accepted, we used
pF+t = 0.54%. The regularization matrix” L can be calculated as [6, 9:

2
L'L =) wpL{Ly (18)
k=0
where:
Lo =1 e R%»*"™ (19)
1 -1

L= € Rw-1%" (20)

1 -1

1 2 -1
Ly = € Rw-2%" (21)
1 2 -1

wherew, > 0 are weighting factors such thit;_ w; = 1. The regularization parameteris
chosen such that;;., > 0 and:

1> Qiter+1

>rand lim e, =0 (22)

Oliter iter—o0



with » < 1. The value ofr decreases with each iteration, and the first term can bendieted
as the optimal regularization parameter of the Tikhonowulaggzation method [7]:

ag ~ 8 L e [1/2;1] (23)

where) is the noise level of the temperature measurements.

3.3. Conjugate gradient method

The conjugate gradient method is a powerful iterative tegrnfor solving linear and
non-linear inverse problems of parameter estimation. Whenused with appropriated stop-
ping criterion, the method belongs to the class of iterategularization techniques. Details
about the convergence of the method can be found in [5, 8,4]1, Tlhe least squares norm
used for this method is done according to Eq. (11). The iterablution of the CG method to
minimize the functionS(P) can be defined by:

Prtl = pk_ gkt (24)

where 3% is the step size and" is the direction of descent. The direction of descent can be
calculated as:
d* = VS(P*) + ~Fd"1 (25)

There are different expressions for calculating the cdefficy”. In this paper we used the
Polak-Ribiere [1, 5] definition, since it has improved comgerce in nonlinear estimation prob-
lems [5, 19]:

e e {[VS(PRIVS(PF) — V(P

v = ZN [VS(P’H)B fork=1,2,... (26)

Jj=1

wherey? = 0 for & = 0. The term[V.S(P")]; can be calculated by differentiating Eq. (11) with
respect to the vector of unknown parameters

VS(P*) = —2(J"T[Y — T(P*)] (27)

The search step sizgF, is calculated by minimizing(P*!) with respect to3* and can be
given in the matrix form as:

[T [T(PY) — V]

k_
B = [JEdF]T[JkdF] (28)
3.4. Sensitivity matrix
The sensitivity matrix is given by:
_8T1 8T1 8T1 aTl ]
8P1 6P2 8P3 o 8PN
aTT(P> T 8T2 aTQ aTQ 8T2
J(P) = { e } = |0 0P 0Py 0Py (29)
or, oT, T, OT
_8P1 8P2 8P3 8PN_




where N is the number of unknown parameters ani$ the number of measurements. Each
element of the sensitivity matrix is called a sensitivitgffiwient. The sensitivity coefficient;;
is given by the first derivate of the temperature with respetite unknown parametét;:

oT;
op,

The derivate that appears in Eq.(30), can be approximatéditydifferences. Using a forward
difference, the sensitivity coefficients can be approxeddiy:

T;(Pl,PQ,...,Pj—l-SPj,...?PN)—E(Pl,PQ,...7]Dj,...7PN)

gy
J EPj

(31)
wheres is used as = 10~%.

3.5. Stopping criterion

The following stopping criterion was used for all methodplemented in this work:

S(P*1) < g (32)
|P* — PF|| < &y (33)

wheree; ande, are prescribed tolerances ajhd|| is the Euclidean norm. Equation (32) tests
whether the least squares norm is small enough, which iseegbéor the solution of an inverse
problem. The stopping criterion given by Eq.(33) means thatiterative process should stop
when the changes in the parameter vector are quite smallislawork we considereg) = ¢ =
1074,

3.6. Errors

The errors in the estimated temperatures (Eq.(34)) anddregtimated parameters
(Eq.(35)) are calculated, respectively, as follows:

T(P)—-Y
ET(P) = H (HX)/H ” (34)
HP — PrealH
ep = 12— Treall (35)
HPrealH

whereer(p) is the error in the estimated temperaturgsjs the error in the estimated parame-
ters;T'(P) is the vector of estimated temperaturksis the vector of observed temperaturés;

Is the vector of estimated parameters, d&hg, is the vector of real parameters. The values of
the errors are given as percentages.

4. Numerical experiments

The numerical experiments of finding the 1260isotherm are carried out by using
simulated measures of temperature in a hearth (locateccatgkiMittal Tuba&o) similar to that
of Blast Furnace 3 (BF3). Figure 2(a) shows the poitit®3, C', D, E andF’ on the prescribed



boundary, the hearth materials, the thermocouples posit@nd the cooling characteristics of
the convective boundaries. Figure 2(b) shows the mesh gsedrated by Easymesiwith
5,881 nodes and 11,382 elements. Table 1 shows the corevgetrameters of the cooling
boundaries and Table 2 shows the thermal conductivity oh&seth materials.

Different values were considered for the weighting factorthe regularization method
of the IRGN. All of them, however, led to similar behaviorscklas the number of iterations,
computational times and convergence. Since they were stasime showed only the results
of one combination of these parameterg & 0.4, w; = 0.3, wy = 0.3).

Two experiments were done) Experiment 1 estimates thé,» (see, Fig. 2(a)), which
is considered the prescribed value through Segmént(ii) Experiment 2 estimates the, 3,
Tgse, Tep, Tpr andTxr which are the five parts of the prescribed boundary (segménts
BC,CD, DE andEF).

[] Material 1
[ Material 2
Il Material 3
Il Vaterial 4

Side cooling
= Thermocouple

(water)

Bottom cooling (air)

(a) Materials (b) Mesh — 5,881 nodes and 11,382 ele-
ments

Figure 2. Materials and mesh of the BF3.

Table 1. Convective parameters.

Convective heat transfer coefficientAmbient temperature
Side cooling | hwater = 150W/m?2°C Twater = 35°C
Bottom cooling| hui = 100W/m?°C Toir = 30°C

Table 2. Material properties.

Materials | Thermal conductivitf W/m°C)

Material 1 | k1(T") = 0.0046286 * T' + 9.96

Material 2 | k2(T") = 0.0035 « T + 12.1

Material 3 | k3(T) = 0.0017714 « T + 20.46
ka(T)

Material 4 = 0.0005 *T" 4+ 1.50

2Available at: http://www-dinma.univ.trieste.it/nirfresearch/easymesh/



To generate the simulated measurements, the direct prablsoived considering that
all parameters involved with the problem are known, inatgdihe T, .., the parameter to
be estimated by the inverse method. After solving the dpeaiblem with the parameters being
considered real, the simulated measurements are genasateitbws:

Y =T+ (1£0) (36)
where:
YT = [Y1,Ya, ..., Yy measuments) 1S the vector with real measurements and is the input data of
the inverse problem;
TT = [T\, Ts, . .., Ty measuments) 1S the solution vector obtained from the estimated pararsete

0 is the random noise level.

We have set value ranges to generate the noise levels. Fopexeb% noise is gener-
ated by using values between 0 and 5%; 10% noise is genenatesirty values between 5 and
10%; 15% noise is generated by using values between 10 andal®P20% noise is generated
by using values between 15 and 20%. We chose 32 positionsd@inulated measurements.
Fig. 2(a) shows the thermocouple configuration.

In both experiments, we solved the inverse problem five tifoegach range of noise
level and calculated the average of these five solutions.e&ohn time, we consider the same
set of random noise levels for all algorithms and for bothegkpents. Thus, we can compare
the convergence of the estimated parameters for all afgositand compare the quality of the
solution between both experiments.

In both experiments, we considered the temperatuté@fC for the prescribed bound-
ary (Eqg. (2)) for both experiments. Thus, in Experiment’ly = 1400°C'; in Experiment 2,
Tap = 1400°C, Trc = 1400°C', Top = 1400°C, Tpr = 1400°C andTrr = 1400°C. When
we calculate the errors, those are the values used for thernéc,, (Egs. (34) and (35)).

Table 3 compares the three algorithms for Experiment 1. fitetalgorithms were very
similar for this first experiment. They all converged prealiy to the same value. The number
of iterations and the computational time were similar, loutarms of computational time the
CG method achieved, at almost all noise levels, a bettertreSigure 3 shows the estimated
wear for Experiment 1. The wear for each noise level is rdltdehe results in Tab. 3. As we
can see, the estimated wear line for different noise legedmost the same.

Table 4 compares the three algorithms for Experiment 2. igékperiment, we can
see that the CG method requires more computational time amd itepations. Once again,
all three methods converged practically to the same value.c&v see that, the LM method
achieved results similar to those of the IRGN method. HowekerlRGN's results were better
with fewer iterations and less computational time.

Figure 4 shows the estimated wear for Experiment 2. The wwagdch noise level is
related to the results in the Table 4. Once again, the esdnaéar line was similar to all the
noise levels used, but in Experiment 1 the errors in the eséichparameters were smaller.

The results of Experiment 2, were more sensitive than thbSgpmeriment 1 to the noise
in the simulated measurements. Since the second experiradrd larger degree of freedom,
that behavior was expected. As both experiments used the galoe of noise levels for each
related test, we can tell that the second test led to a solutith smaller error in the estimated



Table 3. Comparing the three used algorithms for differergentevels on the Experiment 1.

|

Noise Level 0%

|

Method | Iter | ep (%) ET(P) (%) | Tap (OC) t(s)
LM 3 0.00 0.00 1400.00 | 6.98
CG 3 0.00 0.00 1400.00 | 6.87

IRGN 3 0.00 0.00 1400.00 | 7.03
] Noise Level 0% to 5% \

Method | Iter | ep (%) | epp)(%) | Tar (°C) | t(s)
LM 4 0.48 3.01 1406.77 | 9.67
CG 3 0.48 3.01 1406.77 | 8.72

IRGN 3 0.48 3.01 1406.77 | 7.05
] Noise Level 5% to 10% \

Method | Iter | ep (%) ET(P) (%) Tar (OC) t(S)
LM 4 0.85 7.76 1411.86 | 8.90
CG 3 0.85 7.76 1411.86 | 6.95

IRGN 3 0.85 7.76 1411.86 | 7.06
] Noise Level 10% to 15% \

Method | Iter | ep (%) | erp)(%) | Tar (°C) | t(s)
LM 4 1.21 12.54 1416.95 | 8.88
CG 3 1.21 12.54 1416.95 | 6.86

IRGN 3 1.21 12.54 1416.95 | 7.00
] Noise Level 15% to 20% \

Method | Iter | ep (%) | erp)(%) | Tar (°C) | t(s)
LM 4 1.57 17.21 1422.03 | 8.84
CG 3 1.57 17.21 1422.03 | 6.84

IRGN 3 1.57 17.21 1422.03 | 7.06

0%

0% to 5%
5% to 10%
10% to 15%
15% to 20%

Figure 3. Estimated wear line for different noise levelstfe Experiment 1.



Table 4.

Comparing the three used algorithms for differergentevels on the Experiment 2

|

Noise Level 0%

|

Method | Iter | ep (%) | erp)(%) | Tan (°C) | Tsc (°C) | Tep (°C) | Tpe (°C) | Ter (°C) | 1(S)
LM 3 0.00 0.00 1400.00 | 1400.00 | 1400.01 | 1399.99 | 1400.02 | 18.63
CG 11 0.01 0.00 1400.02 | 1400.04 | 1400.00 | 1399.85 | 1400.41 | 61.28

IRGN 3 0.00 0.00 1400.00 | 1400.00 | 1400.00 | 1400.00 | 1400.00 | 17.81
] Noise Level 0% to 5% \

Method | Iter ep (%) ET(P) (%) TaB (OC) Tee (OC) Tep (OC) ThE (OC) Ter (OC) t(S)
LM 4 1.04 2.94 1399.34 | 1428.48 | 1396.28 | 1410.49 | 1389.24 | 22.86
CG 10 1.03 2.94 1399.30 | 1428.41 | 1396.41 | 1410.38 | 1389.52 | 56.44

IRGN 4 1.04 2.94 1399.34 | 1428.48 | 1396.30 | 1410.48 | 1389.25 | 23.36
] Noise Level 5% to 10% \

Method | Iter | ep (%) | erp)(%) | Tas (°C) | Tc (°C) | Tcp (°C) | Tpr (°C) | Ter (°C) | 1(S)
LM 4 2.26 7.56 1375.88 | 1456.34 | 1424.61 1413.31 | 1378.55 | 23.35
CG 11 2.25 7.56 1375.90 | 1456.38 | 1424.61 | 1413.13 | 1378.99 | 61.57

IRGN 4 2.26 7.56 1375.88 | 1456.33 | 1424.63 | 1413.27 | 1378.61 | 22.99
] Noise Level 10% to 15% \

Method | Iter | ep (%) | erp)(%) | Tan (°C) | Tsc (°C) | Tep (°C) | Tpr (°C) | Ter (°C) | 1(S)
LM 5 3.70 12.19 1352.44 | 1484.11 | 1452.93 | 1416.16 | 1367.75 | 28.43
CG 11 3.70 12.19 1352.46 | 1484.14 | 1452.97 | 1415.98 | 1368.22 | 63.15

IRGN 4 3.70 12.19 1352.44 | 1484.12 | 1452.94 | 1416.15 | 1367.79 | 22.63
] Noise Level 15% to 20% \

Method | Iter Ep (%) ET(P) (%) TaB (OC) Tee (OC) Tep (OC) ThE (OC) Ter (OC) t(S)
LM 4 5.19 16.72 1329.00 | 1511.82 | 1481.23 | 1419.05 | 1356.88 | 23.29
CG 11 5.18 16.72 1329.02 | 1511.85 | 1481.32 | 1418.82 | 1357.35 | 62.83

IRGN 4 5.19 16.72 1328.99 | 1511.82 | 1481.20 | 1419.07 | 1356.79 | 22.85

Figure 4. Estimated wear line for different noise levelstfar Experiment 2
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temperaturess¢p)). However, as evidenced in Tabs. 3 and 4, smaller errorseiestimated
temperatures do not always mean smaller errors in the dstihparameters.

Figures 5, 6, 7 show, respectively, the behaviors of LM, C@l, iGN errors for Ex-
periment 2. The value of the vecter ) decreases, for all algorithms, at each iteration. This
IS expected, since all of them guarantee that the objeativetion decreases in each iteration.
The reduction in the value af;p) does not necessarily mean a reduction of the error in the
estimated parameters. This behavior appears in accordaticthe increase in noise level.
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Figure 5. Behavior of LM errors in Experiment 2
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Figure 6. Behavior of CG errors in Experiment 2
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Figure 7. Behavior of IRGN errors in Experiment 2

Since the domain is a radial section of the blast furnacetheae can generate a tridi-
mensional view of the wear line. This is done by rotating thditmensional domain around the
center of the hearth, even though it is known that the weaesarcross radial sections. Figure
8 gives an idea of how the wear would be in three dimensions.pldts showing the estimated
wear line (Figs. 3, 4 and 8) were all generated with Paraview

Temp (¢C) Temp (¢C)
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-1000 =1000
§800 §800
}%2600 %600
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31.41 31.44

(a) Noise level 0% (b) Noise level 15% to 20%

Figure 8. Tridimensional estimated wear.

4.1. Conclusions

We presented a model that estimates, using inverse projdleensear line in a blast fur-
nace hearth. On the temperature map along the hearth, thidimees considered the isotherm
of 115CC, the lowest temperature at which iron can exist in liquidrforThe inverse prob-
lem was solved with three methods: the Levenberg-Marqudrdtconjugate gradient, and the
iteratively regularized Gauss Newton.

Two experiments were done. In the first one, we estimatedamyparameter, the tem-
perature along the prescribed boundary. In the second andiwded the prescribed boundary

3Available at: http://www.paraview.org/



into five parts, and estimated those parameters. The expetritn estimating one parameter
was less sensitive to variations in noise level than was tperement estimating five param-
eters. This was due to the latter having more degrees ofdreed\evertheless, since the
prescribed boundary is an approximation of the real problemas interesting to divide it to
enable future tests with real temperature measures.

For the experiment estimating a single parameter, the theglkods presented quite sim-
ilar behavior — similar number of iterations and similar gartational time. For the experiment
estimating five parameters, the CG method needed more desatand thus more computa-
tional time, to converge. As expected, since they have amfarmulations, the IRGN and the
LM methods were similar in their number of iterations and pomational time.
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