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Abstract. A key part to the iron-making blast furnace is the hearth. How well it functions
significantly affects the performance of the whole furnace and, ultimately, the hot metal quality.
The hostile conditions of the hearth lead to the erosion of the refractory lining; the extent of the
erosion is known as the wear line. The wear line is usually the main factor limiting the length of
a furnace’s campaign. To measure the wear line while the furnace is in regular operation is of
course impossible, yet such information would be useful in operation planning. Estimating the
wear line in a blast furnace hearth is as close as we can get to obtaining this information, and
this paper presents a model for doing just that. The procedure is based on the solution of a non-
linear inverse heat transfer problem. The observations are temperature measurements at points
inside the blast furnace hearth and the unknown is the location of the 1150oC isotherm. This
work considers: (i) the finite elements to solve the direct problem, (ii) the fixed-point iteration
method to solve the non-linearity of the direct problem due the thermal conductivity depending
on the temperature, (iii) three methods to solve the inverse problem. We estimate, using all three
methods, the wear line of a hearth with characteristics similar to those of Blast Furnace 3 at
steelmaker Arcelor Mittal Tubarão1. The methods, the performance and accuracy of which this
paper compares, are the Levenberg-Marquardt, the iteratively regularized Gauss-Newton, and
the conjugate gradient. We validate the solution using simulated measurements with different
noise levels.
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1. Introduction

When we determine unknown causes by observing their effects, we are solving an in-
verse problem. In inverse heat transfer problems (IHTP), some of the unknown causes are ini-
tial conditions, thermo-physical properties, and heat flux. Their effects are usually temperature
measurements at points along a domain [18].

IHTP belongs to a class of mathematical problems known as ill-posed problems. This
means that small perturbations in the observed data can lead to large errors in the solution. Such
problems are in direct contrast to Hadamard’s well-posed problems [10]. Well-posed problems

1http://www.arcelormittal.com/br/tubarao/

Blucher Mechanical Engineering Proceedings
May 2014, vol. 1 , num. 1
www.proceedings.blucher.com.br/evento/10wccm



require three conditions: (i) a solution must exist; (ii) the solution must be unique; (iii) given
small changes to input data, the solution must be stable (i.e., stability condition).

Such an inverse heat transfer problem is solved in this paperwhere the wear on a blast
furnace hearth, a key part to iron-making blast furnaces, isestimated. The hostile conditions
inside a hearth erode the refractory lining, which is known as the wear line. Such erosion is
usually the main factor limiting the length of the furnace campaign. While impossible to obtain
during regular operation, direct measures of the lining’s erosion would be useful in the planning
of strategic operations. If the hearth relining is scheduled too late, there is a risk of an outbreak
with potentially catastrophic consequences. On the other hand, a too early relining of the hearth
causes unnecessary loss of production and capital [4]. Thispaper thus presents a model to better
estimate the wear line of a blast furnace hearth.

The lowest temperature at which iron can exist in liquid form, 1150oC, is known as the
eutectic temperature of carbon-saturated iron [22]. Finding the 1150oC isotherm is the same as
finding the wear line. In the present non-linear IHTP, the unknown is the location of the 1150oC
isotherm. The observations are temperature measurements at points inside the blast furnace
hearth. These measures are taken by thermocouples located inside the refractory walls of the
hearth.

A number of papers deal with estimating the 1150oC isotherm. For example, Gonzalez
and Goldschmit in [9], solved the inverse geometry problem based on a radial basis functions
(RBF) geometry representation. Zhao et al. [24] compared different characteristics of the all-
carbon brick, such as the wear line, and the ceramic cup synthetic hearth bottoms. Brannbacka
and Sax́en [4] focused on the mathematical formulation of the problem, yielding a general
model optimized for fast computation. Zagaria et al. [23] present a model they call MUSA that
combines online readings of temperatures and historical data to predict hearth erosion and the
skull profile.

This work solves the associated direct problem consideringthe Galerkin formulation for
the finite element method. The thermal conductivity of the blocks making up the hearth’s re-
fractory walls are temperature-dependent, causing the direct problem to present a non-linearity.
This non-linearity is handled with the fixed-point iteration method. The IHTP is solved us-
ing three methods: the Levenberg-Marquardt (LM), the iteratively regularized Gauss-Newton
(IRGN), and the conjugate gradient (CG). The three methods arecompared in performance
and accuracy. The numerical experiments to find the 1150oC isotherm were realized using a
hearth similar to that of Blast Furnace 3 of steelmaker Arcelor Mittal Tubar̃ao. The solution is
validated through simulated measurements with different noise levels.

The paper is organized as follows. Section 2 presents details about the direct problem.
Section 3 describes the main ideas about inverse heat transfer problems; it also delineates three
methods to solve them – the Levenberg-Marquardt, the iteratively regularized Gauss-Newton,
and the conjugate gradient methods. Section 4 presents the numerical experiments that consider
the simulated measures of temperature in a hearth similar tothat of Blast Furnace 3 (BF3). The
paper closes with a summary of our main conclusions.



2. Direct problem

The direct problem associated with estimating a wear line consists of calculating the
temperature distribution along the hearth. To solve the direct problem we use the Galerkin
formulation for the finite element method [12]. Only relatively small irregularities exist in the
geometry, material properties, and boundary conditions inthe angular direction of the hearth.
Hence, the direct problem can be represented, as depicted inFig.1, as a two-dimensional ax-
isymmetric problem. Moreover, since it has the characteristics of a thermal equilibrium prob-
lem, we can assume the problem to be a steady-state problem. Thus, the heat transfer problem
of the hearth is governed by the Eq.(1):

−∇ · (k∇T ) = 0 in Ω (1)

wherek = k(T ) is the temperature-dependent thermal conductivity.

Figure 1. Simplified domain

Boundary 1 presents the Dirichlet boundary condition:

T = Tisotherm (2)

whereTisotherm is the imposed temperature. This is the boundary condition to be estimated in
the inverse problem. The boundaries 2 and 5 presents the Neumann boundary condition, where
the heat flux is null due to the continuity of the domain on their respective normal directions:

−k
∂T

∂~n
= 0 (3)

Boundaries 3 and 4 present the Robin boundary condition, whichoccurs due to the external
cooling in these regions:

−k
∂T

∂~n
= h(T − T∞) (4)

whereh is the convective heat transfer coefficient andT∞ is the ambient temperature.



2.1. Galerkin finite element formulation

Considering the discretization ofΩ in sub-domainsΩe, wheree = 1, ..., nel, andnel

is the number of elements.Γe denotes the boundary ofΩe, assuming that∪eΩ
e = Ω and

∩eΩ
e = ∅.

After doing the appropriate finite element approximation considering the linear triangu-
lar element, a linear system, shown in Eq. (5), is obtained from the Galerkin formulation, which
is solved by the Diagonal Preconditioned Conjugate Gradientmethod [15].

Au = F (5)

where,

A =
nel

A
e=1

ae, aeij =

∫

Ωe

k∇Ni · ∇NjdΩ +

∫

Γe
h

hNiNjdΓ (6)

F =
nel

A
e=1

f e, f e
i =

∫

Γe
h

hT∞NidΓ−

ne
bc

∑

j=1

(

∫

Ωe

k∇Ni · ∇NjdΩ)gj (7)

whereA is the assembling operator,u is the vector of nodal temperatures,Ni is the finite

element interpolation function for linear triangular elements,ne
bc is the number of nodes that the

Dirichlet boundary condition is considered andgj is the prescribed value to each nodej.

2.2. Non-linearity of the thermal conductivity

The thermal conductivity of the refractory blocks from which the hearth is made is
temperature-dependent. Thus, Eq.(1) is actually:

−∇ · (k(T )∇T ) = 0 (8)

This non-linearity is handled with the fixed-point iteration method [15]. Eq. (9) considers a
non-linear iterative process where the thermal conductivity that will be used in the iteration
iter + 1 is the one that was obtained in the iterationiter.

−∇ · (k(T iter)∇T iter+1) = 0 (9)

In the Blast Furnace 3, the thermal conductivity of the materials that compose the hearth has an
approximately linear variation with respect to the temperature. Thus, in this work we consider:

ke(T
iter
b ) = αT iter

b + β (10)

whereT iter
b is the temperature at the barycenter of the elemente, obtained from the nodal tem-

peratures of the element;ke is the thermal conductivity with linear behavior at the elemente, and
the parametersα andβ are calculated from the thermal conductivity data. The initial condition
T 0 considered is the direct problem approximation with a fixed value for the thermal conduc-
tivity for each material. The stopping criterion adopted for the fixed-point iteration method was
the Euclidian norm‖T iter+1 − T iter‖ with a tolerance of10−4.



3. Inverse problem

The IHTP of estimating the hearth wear line consists of estimating the 1150oC isotherm.
This means it is necessary to estimate the value of theTisotherm that is the prescribed value
shown in Eq. (2). To estimate this boundary condition, we compare three methods of solving
inverse problems: the Levenberg-Marquardt (LM), the iteratively regularized Gauss-Newton
(IRGN) and the conjugate gradient (CG). All three consist of minimizing the least squares
norm:

S(P ) =
I

∑

i=1

[Yi − Ti(P )]2 (11)

whereS(P ) is the sum of squares to be minimized, called the objective function; Y is the
vector of observed temperatures;T (P ) is the vector of estimated temperatures, andI is the
number of measurements. The estimated temperaturesTi(P ) are obtained from the solution of
the direct problem at the domain’s measurements positions(xmeas, ymeas), using the vectorP
as the current value of the unknown parameters being estimated (Tisotherm, in this problem).

3.1. Levenberg-Marquardt method

Levenberg [16] introduced his technique in 1944. In 1963, Marquardt [17] introduced
a new approach to what was basically the same technique. Marquardt was trying to obtain a
method that, in the neighborhood of the minimum of the ordinary least squares norm, would
tend to the Gauss method. However, in the neighborhood of theinitial guess used for the
iterative procedure, Marquardt wanted the method to tend tothe steepest descent method. The
least squares norm used for this method is presented in Eq. (11). The iterative solution of the
Levenberg-Marquardt method is given by:

P k+1 = P k + [(Jk)TJk + µkΩk]−1(Jk)T [Y − T (P k)] (12)

whereP is the vector of parameters that are being estimated;J is the sensitivity matrix (see
Section 4, for details);Y is the vector of observed temperatures;T (P ) is the vector of estimated
temperatures;µk is a positive scalar called the damping parameter, andΩk is a diagonal matrix.
Thus, the method consists of solving the following linear system obtained from Eq. (12):

[(Jk)TJk + µkΩk]∆P k = (Jk)T [Y − T (P k)] (13)

whereP k+1 = P k +∆P k. In our implementation,Ωk is calculated as follows:

Ωk = diag[(Jk)TJk] (14)

The damping parameterµk is initially considered asµ0 = 0.001. It is used to improve,
in each iteration, the update of the parameters. If theS(P k+1) calculated in the current iteration
is such thatS(P k+1) ≥ S(P k), the vector of parametersP (k+1) is not updated, andµk is
considered to be equal to10µk. If the S(P k+1) calculated in the current iteration is such that
S(P k+1) < S(P k), the vector of parametersP k+1 is updated to that calculated in the current
iteration, andµk+1 is considered be equal to0.1µk. As inverse problems are typically ill-posed,



the termµkΩk in Eq. (12) helps with instabilities in cases wheredet(JTJ) ≈ 0. The damping
parameter (µk) is usually larger at the beginning of the iterations. This is because the problem, in
the region around the initial guess used for the iterative procedure, is generally ill conditioned.
With larger values for the damping parameter, the LM method tends to the steepest descent
method. With smaller such values, the LM method tends to the Gauss-Newton method.

3.2. Iteratively regularized Gauss-Newton method

The iteratively regularized Gauss-Newton (IRGN) method wasproposed by [3]. The
IRGN is basically the Gauss-Newton method with regularization techniques. Tests and propos-
als using the IRGN algorithm can be found in [2, 6, 9, 13, 20, 21]. The least squares norm used
for this method is:

S(P ) =
1

2
‖Yi − Ti(P )‖2 +

1

2
∗ α‖(P − P 0)LTL(P − P 0)‖2 (15)

whereLTL is a regularization matrix;α is a regularization parameter;P 0 is the initial suggested
value for the vector of estimating parametersP .

Both being based on the Gauss-Newton method, the IRGN and LM methods resemble
one another. The former, however, considers a different regularization method. The iterative
solution of the IRGN method is given by:

[(Jk)TJk + αkLTL]∆P k = [(Jk)T (Y − T (P k)) + αkLTL(P − P 0)] (16)

The solutionP k+1 calculated with the IRGN method is used to updateP k as follows:

P k+1
GN = P k + βk∆P k (17)

whereβk is a step size that makesS(P k+1) < S(P k). In our implementation we usedβ0 = 1.0

and for every iteration where the conditionS(P k+1) < S(P k) was not accepted, we used
βk+1 = 0.5βk. The regularization matrixLTL can be calculated as [6, 9]:

LTL =
2

∑

k=0

wkL
T
kLk (18)

where:
L0 = I ∈ R

np×np (19)

L1 =







1 −1
. .. . . .

1 −1






∈ R

np−1×np (20)

L2 =







1 2 −1
.. . . .. . . .

1 2 −1






∈ R

np−2×np (21)

wherewk ≥ 0 are weighting factors such that
∑2

k=0wk = 1. The regularization parameterα is
chosen such thatαiter > 0 and:

1 ≥
αiter+1

αiter

≥ r and lim
iter→∞

αiter = 0 (22)



with r < 1. The value ofα decreases with each iteration, and the first term can be determined
as the optimal regularization parameter of the Tikhonov regularization method [7]:

α0 ∼ δ2/2ν+1, ν ∈ [1/2; 1] (23)

whereδ is the noise level of the temperature measurements.

3.3. Conjugate gradient method

The conjugate gradient method is a powerful iterative technique for solving linear and
non-linear inverse problems of parameter estimation. When it is used with appropriated stop-
ping criterion, the method belongs to the class of iterativeregularization techniques. Details
about the convergence of the method can be found in [5, 8, 11, 14]. The least squares norm
used for this method is done according to Eq. (11). The iterative solution of the CG method to
minimize the functionS(P ) can be defined by:

P k+1 = P k − βkdk (24)

whereβk is the step size anddk is the direction of descent. The direction of descent can be
calculated as:

dk = ∇S(P k) + γkdk−1 (25)

There are different expressions for calculating the coefficient γk. In this paper we used the
Polak-Ribiere [1, 5] definition, since it has improved convergence in nonlinear estimation prob-
lems [5, 19]:

γk =

∑N
j=1{[∇S(P k)]j[∇S(P k)−∇S(P k−1)]j}

∑N
j=1[∇S(P k−1)]2j

for k = 1, 2, . . . (26)

whereγ0 = 0 for k = 0. The term[∇S(P k)]j can be calculated by differentiating Eq. (11) with
respect to the vector of unknown parametersP :

∇S(P k) = −2(Jk)T [Y − T (P k)] (27)

The search step size,βk, is calculated by minimizingS(P k+1) with respect toβk and can be
given in the matrix form as:

βk =
[Jkdk]T [T (P k)− Y ]

[Jkdk]T [Jkdk]
(28)

3.4. Sensitivity matrix

The sensitivity matrix is given by:

J(P ) =

[

∂T T (P )

∂P

]T

=





















∂T1

∂P1

∂T1

∂P2

∂T1
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∂PN
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∂TI
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(29)



whereN is the number of unknown parameters andI is the number of measurements. Each
element of the sensitivity matrix is called a sensitivity coefficient. The sensitivity coefficientJij
is given by the first derivate of the temperature with respectto the unknown parameterPj:

Jij =
∂Ti

∂Pj

(30)

The derivate that appears in Eq.(30), can be approximated byfinite differences. Using a forward
difference, the sensitivity coefficients can be approximated by:

Jij ∼=
Ti(P1, P2, . . . , Pj + εPj, . . . , PN )− Ti(P1, P2, . . . , Pj , . . . , PN)

εPj

(31)

whereε is used asε = 10−4.

3.5. Stopping criterion

The following stopping criterion was used for all methods implemented in this work:

S(P k+1) < ε1 (32)

‖P k+1 − P k‖ < ε2 (33)

whereε1 andε2 are prescribed tolerances and‖ · ‖ is the Euclidean norm. Equation (32) tests
whether the least squares norm is small enough, which is expected for the solution of an inverse
problem. The stopping criterion given by Eq.(33) means thatthe iterative process should stop
when the changes in the parameter vector are quite small. In this work we consideredε1 = ε2 =

10−4.

3.6. Errors

The errors in the estimated temperatures (Eq.(34)) and in the estimated parameters
(Eq.(35)) are calculated, respectively, as follows:

εT (P ) =
‖T (P )− Y ‖

‖Y ‖
(34)

εP =
‖P − Preal‖

‖Preal‖
(35)

whereεT (P ) is the error in the estimated temperatures;εP is the error in the estimated parame-
ters;T (P ) is the vector of estimated temperatures;Y is the vector of observed temperatures;P

is the vector of estimated parameters, andPreal is the vector of real parameters. The values of
the errors are given as percentages.

4. Numerical experiments

The numerical experiments of finding the 1150oC isotherm are carried out by using
simulated measures of temperature in a hearth (located at Arcelor Mittal Tubar̃ao) similar to that
of Blast Furnace 3 (BF3). Figure 2(a) shows the pointsA, B, C, D, E andF on the prescribed



boundary, the hearth materials, the thermocouples positions, and the cooling characteristics of
the convective boundaries. Figure 2(b) shows the mesh used,generated by Easymesh2, with
5,881 nodes and 11,382 elements. Table 1 shows the convective parameters of the cooling
boundaries and Table 2 shows the thermal conductivity of thehearth materials.

Different values were considered for the weighting factorsin the regularization method
of the IRGN. All of them, however, led to similar behaviors, such as the number of iterations,
computational times and convergence. Since they were so similar, we showed only the results
of one combination of these parameters (w0 = 0.4, w1 = 0.3, w2 = 0.3).

Two experiments were done: (i) Experiment 1 estimates theTAF (see, Fig. 2(a)), which
is considered the prescribed value through SegmentAF ; (ii) Experiment 2 estimates theTAB,
TBC , TCD, TDE andTEF which are the five parts of the prescribed boundary (segmentsAB,
BC, CD, DE andEF ).

(a) Materials (b) Mesh – 5,881 nodes and 11,382 ele-
ments

Figure 2. Materials and mesh of the BF3.

Table 1. Convective parameters.

Convective heat transfer coefficientAmbient temperature
Side cooling hwater = 150W/m2oC Twater = 35oC
Bottom cooling hair = 100W/m2oC Tair = 30oC

Table 2. Material properties.

Materials Thermal conductivity(W/moC)
Material 1 k1(T ) = 0.0046286 ∗ T + 9.96
Material 2 k2(T ) = 0.0035 ∗ T + 12.1
Material 3 k3(T ) = 0.0017714 ∗ T + 20.46
Material 4 k4(T ) = 0.0005 ∗ T + 1.50

2Available at: http://www-dinma.univ.trieste.it/nirftc/research/easymesh/



To generate the simulated measurements, the direct problemis solved considering that
all parameters involved with the problem are known, including theTisotherm, the parameter to
be estimated by the inverse method. After solving the directproblem with the parameters being
considered real, the simulated measurements are generatedas follows:

Yi = Ti ∗ (1± δi) (36)

where:
Y T = [Y1, Y2, . . . , Yn measuments] is the vector with real measurements and is the input data of
the inverse problem;
T T = [T1, T2, . . . , Tn measuments] is the solution vector obtained from the estimated parameters.
δ is the random noise level.

We have set value ranges to generate the noise levels. For example, 5% noise is gener-
ated by using values between 0 and 5%; 10% noise is generated by using values between 5 and
10%; 15% noise is generated by using values between 10 and 15%, and 20% noise is generated
by using values between 15 and 20%. We chose 32 positions for the simulated measurements.
Fig. 2(a) shows the thermocouple configuration.

In both experiments, we solved the inverse problem five timesfor each range of noise
level and calculated the average of these five solutions. Foreach time, we consider the same
set of random noise levels for all algorithms and for both experiments. Thus, we can compare
the convergence of the estimated parameters for all algorithms and compare the quality of the
solution between both experiments.

In both experiments, we considered the temperature of1400oC for the prescribed bound-
ary (Eq. (2)) for both experiments. Thus, in Experiment 1,TAF = 1400oC; in Experiment 2,
TAB = 1400oC, TBC = 1400oC, TCD = 1400oC, TDE = 1400oC andTEF = 1400oC. When
we calculate the errors, those are the values used for the vector Preal (Eqs. (34) and (35)).

Table 3 compares the three algorithms for Experiment 1. The three algorithms were very
similar for this first experiment. They all converged practically to the same value. The number
of iterations and the computational time were similar, but in terms of computational time the
CG method achieved, at almost all noise levels, a better result. Figure 3 shows the estimated
wear for Experiment 1. The wear for each noise level is related to the results in Tab. 3. As we
can see, the estimated wear line for different noise levels is almost the same.

Table 4 compares the three algorithms for Experiment 2. In this experiment, we can
see that the CG method requires more computational time and more iterations. Once again,
all three methods converged practically to the same value. We can see that, the LM method
achieved results similar to those of the IRGN method. However, the IRGN’s results were better
with fewer iterations and less computational time.

Figure 4 shows the estimated wear for Experiment 2. The wear for each noise level is
related to the results in the Table 4. Once again, the estimated wear line was similar to all the
noise levels used, but in Experiment 1 the errors in the estimated parameters were smaller.

The results of Experiment 2, were more sensitive than those of Experiment 1 to the noise
in the simulated measurements. Since the second experimenthad a larger degree of freedom,
that behavior was expected. As both experiments used the same value of noise levels for each
related test, we can tell that the second test led to a solution with smaller error in the estimated



Table 3. Comparing the three used algorithms for different noise levels on the Experiment 1.

Noise Level 0%

Method Iter εP (%) εT (P )(%) TAF (oC) t(s)
LM 3 0.00 0.00 1400.00 6.98
CG 3 0.00 0.00 1400.00 6.87

IRGN 3 0.00 0.00 1400.00 7.03

Noise Level 0% to 5%

Method Iter εP (%) εT (P )(%) TAF (oC) t(s)
LM 4 0.48 3.01 1406.77 9.67
CG 3 0.48 3.01 1406.77 8.72

IRGN 3 0.48 3.01 1406.77 7.05

Noise Level 5% to 10%

Method Iter εP (%) εT (P )(%) TAF (oC) t(s)
LM 4 0.85 7.76 1411.86 8.90
CG 3 0.85 7.76 1411.86 6.95

IRGN 3 0.85 7.76 1411.86 7.06

Noise Level 10% to 15%

Method Iter εP (%) εT (P )(%) TAF (oC) t(s)
LM 4 1.21 12.54 1416.95 8.88
CG 3 1.21 12.54 1416.95 6.86

IRGN 3 1.21 12.54 1416.95 7.00

Noise Level 15% to 20%

Method Iter εP (%) εT (P )(%) TAF (oC) t(s)
LM 4 1.57 17.21 1422.03 8.84
CG 3 1.57 17.21 1422.03 6.84

IRGN 3 1.57 17.21 1422.03 7.06

Figure 3. Estimated wear line for different noise levels forthe Experiment 1.



Table 4. Comparing the three used algorithms for different noise levels on the Experiment 2

Noise Level 0%

Method Iter εP (%) εT (P )(%) TAB (oC) TBC (oC) TCD (oC) TDE (oC) TEF (oC) t(s)
LM 3 0.00 0.00 1400.00 1400.00 1400.01 1399.99 1400.02 18.63
CG 11 0.01 0.00 1400.02 1400.04 1400.00 1399.85 1400.41 61.28

IRGN 3 0.00 0.00 1400.00 1400.00 1400.00 1400.00 1400.00 17.81

Noise Level 0% to 5%

Method Iter εP (%) εT (P )(%) TAB (oC) TBC (oC) TCD (oC) TDE (oC) TEF (oC) t(s)
LM 4 1.04 2.94 1399.34 1428.48 1396.28 1410.49 1389.24 22.86
CG 10 1.03 2.94 1399.30 1428.41 1396.41 1410.38 1389.52 56.44

IRGN 4 1.04 2.94 1399.34 1428.48 1396.30 1410.48 1389.25 23.36

Noise Level 5% to 10%

Method Iter εP (%) εT (P )(%) TAB (oC) TBC (oC) TCD (oC) TDE (oC) TEF (oC) t(s)
LM 4 2.26 7.56 1375.88 1456.34 1424.61 1413.31 1378.55 23.35
CG 11 2.25 7.56 1375.90 1456.38 1424.61 1413.13 1378.99 61.57

IRGN 4 2.26 7.56 1375.88 1456.33 1424.63 1413.27 1378.61 22.99

Noise Level 10% to 15%

Method Iter εP (%) εT (P )(%) TAB (oC) TBC (oC) TCD (oC) TDE (oC) TEF (oC) t(s)
LM 5 3.70 12.19 1352.44 1484.11 1452.93 1416.16 1367.75 28.43
CG 11 3.70 12.19 1352.46 1484.14 1452.97 1415.98 1368.22 63.15

IRGN 4 3.70 12.19 1352.44 1484.12 1452.94 1416.15 1367.79 22.63

Noise Level 15% to 20%

Method Iter εP (%) εT (P )(%) TAB (oC) TBC (oC) TCD (oC) TDE (oC) TEF (oC) t(s)
LM 4 5.19 16.72 1329.00 1511.82 1481.23 1419.05 1356.88 23.29
CG 11 5.18 16.72 1329.02 1511.85 1481.32 1418.82 1357.35 62.83

IRGN 4 5.19 16.72 1328.99 1511.82 1481.20 1419.07 1356.79 22.85

Figure 4. Estimated wear line for different noise levels forthe Experiment 2



temperatures (εT (P )). However, as evidenced in Tabs. 3 and 4, smaller errors in the estimated
temperatures do not always mean smaller errors in the estimated parameters.

Figures 5, 6, 7 show, respectively, the behaviors of LM, CG, and IRGN errors for Ex-
periment 2. The value of the vectorεT (P ) decreases, for all algorithms, at each iteration. This
is expected, since all of them guarantee that the objective function decreases in each iteration.
The reduction in the value ofεT (P ) does not necessarily mean a reduction of the error in the
estimated parameters. This behavior appears in accordancewith the increase in noise level.

(a) Noise level: 0% (b) Noise level: 15% to 20%

Figure 5. Behavior of LM errors in Experiment 2

(a) Noise level: 0% (b) Noise level: 15% to 20%

Figure 6. Behavior of CG errors in Experiment 2



(a) Noise level: 0% (b) Noise level: 15% to 20%

Figure 7. Behavior of IRGN errors in Experiment 2

Since the domain is a radial section of the blast furnace hearth, we can generate a tridi-
mensional view of the wear line. This is done by rotating the bi-dimensional domain around the
center of the hearth, even though it is known that the wear varies across radial sections. Figure
8 gives an idea of how the wear would be in three dimensions. The plots showing the estimated
wear line (Figs. 3, 4 and 8) were all generated with Paraview3.

(a) Noise level 0% (b) Noise level 15% to 20%

Figure 8. Tridimensional estimated wear.

4.1. Conclusions

We presented a model that estimates, using inverse problems, the wear line in a blast fur-
nace hearth. On the temperature map along the hearth, the wear line is considered the isotherm
of 1150oC, the lowest temperature at which iron can exist in liquid form. The inverse prob-
lem was solved with three methods: the Levenberg-Marquardt, the conjugate gradient, and the
iteratively regularized Gauss Newton.

Two experiments were done. In the first one, we estimated onlyone parameter, the tem-
perature along the prescribed boundary. In the second one, we divided the prescribed boundary

3Available at: http://www.paraview.org/



into five parts, and estimated those parameters. The experiment to estimating one parameter
was less sensitive to variations in noise level than was the experiment estimating five param-
eters. This was due to the latter having more degrees of freedom. Nevertheless, since the
prescribed boundary is an approximation of the real problem, it was interesting to divide it to
enable future tests with real temperature measures.

For the experiment estimating a single parameter, the threemethods presented quite sim-
ilar behavior – similar number of iterations and similar computational time. For the experiment
estimating five parameters, the CG method needed more iterations, and thus more computa-
tional time, to converge. As expected, since they have similar formulations, the IRGN and the
LM methods were similar in their number of iterations and computational time.
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