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Abstract. There is a growing trend in both academia and industry towards carrying out 

realistic multiphysics simulations that account for coupling among different fields such as 

stress-displacement, thermal, electromagnetism, etc. This paper describes some recent work 

to implement capabilities for solving electromagnetic field problems in the commercial finite 

element software package, Abaqus, which augment the well-established capabilities (in 

Abaqus) to solve stress-displacement, thermal, and coupled thermo-mechanical problems. 

The specific class of coupled problems described in this paper is known as eddy current 

problems. Eddy currents are generated in a metal workpiece when it is placed within a time-

varying magnetic field. Joule heating arises when the energy dissipated by the eddy currents 

flowing through the workpiece is converted into thermal energy. This heating mechanism is 

usually referred to as induction heating. The time-varying magnetic field is usually generated 

by a coil that carries either a known amount of total current or an unknown amount of 

current under a known potential (voltage) difference. The electric and magnetic fields are 

governed by Maxwell´s equations describing electromagnetic phenomena. The formulation is 

based on the low-frequency assumption, which neglects the displacement current term in 

Ampere´s law. The time-harmonic eddy current analysis procedure is based on the 

assumption that a time-harmonic excitation with a certain frequency results in a time-

harmonic electromagnetic response with the same frequency everywhere in the domain. The 

transient eddy current analysis does not make any such assumption.The eddy current analysis 

provides output, such as Joule heat dissipation or magnetic body force intensity,  that can be 

transferred to drive a subsequent heat transfer, coupled temperature-displacement, or 

stress/displacement analysis. This allows for modeling the interactions of the electromagnetic 

fields with thermal and/or mechanical fields in a sequentially coupled manner. The 

electromagnetic elements use an element edge-based interpolation of the fields instead of the 

standard node-based interpolation. The paper presents the theoretical formulation, outlines 

some of the unique challenges associated with solving electromagnetic field problems, and 

shows a few examples utilizing the new capabilities. 
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1. INTRODUCTION 

The commercial finite element software package, Abaqus, is used in both academia 

and industry for carrying out realistic simulations of engineering problems. Realistic simula-

tions often entail physical situations that are described by multiple fields, each satisfying its 

own set of partial differential equations, as well as appropriate initial and boundary condi-

tions. For example, a stressed solid material may dissipate heat as a result of inelastic defor-

mations, which in-turn affects the stresses in the material through temperature-dependent ma-

terial properties.  In order to solve such problems, one generally needs to solve a coupled sys-

tem of equations describing both mechanical and thermal equilibrium, along with a distribu-

tion of initial temperatures (and possibly strains) as well as appropriate boundary conditions 

on both the temperature and displacement fields. Problems of this type are often extremely 

difficult to solve analytically, especially in the presence of nonlinearities and complex-shaped 

domains involving more than one material, and are generally solved utilizing multiphysics 

numerical simulations. Depending upon the strength of the coupling of the different fields, 

they may be treated as loosely or tightly coupled. In the former case the equations may be 

solved in a staggered manner, while in the latter case the equations must be solved simulta-

neously.  

Abaqus [5] has a number of built-in capabilities for solving such multiphysics prob-

lems. These include relatively traditional areas such as coupled thermal-mechanical, thermal-

electrical, thermal-electrical-mechanical, electrical-mechanical, pore-pressure and displace-

ment (with or without thermal effects), and coupled structural acoustic problems, as well as 

relatively emerging areas such as those involving fluid-structure, electromagnetic-thermal, 

and electromagnetic-thermal-mechanical interactions. This paper describes recent efforts to-

wards developing (natively within Abaqus) capabilities for solving electromagnetic and 

coupled electromagnetic-thermal-mechanical problems. In the following paragraph, the class 

of targeted problems is briefly outlined. This is followed by an outline of the rest of the paper.  

The newly developed capabilities target a fairly broad class of engineering 

applications that include time-harmonic as well as transient eddy-current, and magnetostatic 

problems. Eddy currents are generated in a metal workpiece when it is placed within a time-

varying magnetic field. Joule heating arises when the energy dissipated by the eddy currents 

flowing through the workpiece is converted into thermal energy. This heating mechanism is 

usually referred to as induction heating; the induction cooker is an example of a device that 

uses this mechanism. The time-varying magnetic field is usually generated by a coil that is 

placed close to the workpiece. The coil carries either a known amount of total current, or an 

unknown amount of current under a known potential (voltage) difference. The current in the 

coil usually alternates at a known frequency. The electromagnetic fields generated by the 

alternating current are governed by Maxwell’s equations describing electromagnetic 

phenomena [9, 13], under the standard low-frequency assumption that neglects the 

displacement current term in Ampere’s law. In magnetostatic applications it is assumed that 

the current varies slowly enough that any coupling between electric and magnetic fields can 

be neglected. Thus, magnetostatic simulations are valuable when magnetic fields due to a 



 

 

direct current are needed. The magnetic response of portions of the domain may be strongly 

nonlinear. 

The plan of the rest of the paper is as follows. Section 2 provides a summary of 

Maxwell’s equations in both their strong and weak forms; the latter provides the starting point 

for a finite element implementation. Although the capabilities available in Abaqus are more 

general, the focus of this paper will primarily be time-harmonic eddy current problems. Some 

numerical issues, that arise while trying to solve the discretized system of equations, are also 

discussed. Section 3 presents several example problems that were solved using the newly 

developed capabilities. Finally, Section 4 provides a summary of the paper along with some 

concluding remarks. 

2. FORMULATION 

Electromagnetic phenomena are described by the well known equations of Maxwell 

that are summarized below: 

 ,fρ∇⋅ =D  (1) 

 0,∇ ⋅ =B  (2) 

 ,t∇ × = − ∂ ∂E Β  (3) 

 .f e t∇ × = + + ∂ ∂H J J D  (4) 

In the equations above, the vector quantities D , B , E , and H  refer to the electric flux densi-

ty (alternatively electric displacement), magnetic flux-density (alternatively magnetic induc-

tion), electric field, and magnetic field, respectively. The scalar fρ  and the vector fJ  

represent free charge and volume current density, respectively, the vector eJ  represents the 

volume current density of induced eddy currents in conductor regions, while the variable t  

represents time. Motional effects are not included in this work. The system of equations above 

is augmented by constitutive equations that relate the different field quantities, and are given 

by (in the absence of any permanent magnetization): 

 ,=B µH  (5) 

 ,=D εE  (6) 

 ,e =J σE  (7) 

where the second-order tensor quantities µ , ε , and σ  are known as magnetic permeability,  

electrical (alternatively dielectric) permittivity, and electrical conductivity, respectively. 

While Abaqus supports nonlinear magnetic constitutive response in transient and magnetos-

tatic simulations, the discussion in this paper is limited to the simpler case of linear magnetic 

response only. The last term on the right hand side of equation (4), which is also known as 

Ampere’s law, is referred to as the displacement current. The standard low-frequency assump-



 

 

tion entails neglecting this term, and is appropriate when the wave length of the electromag-

netic waves corresponding to the complete system of Maxwell’s equations (retaining the dis-

placement current term) is very large compared to typical length scales of interest in a prob-

lem. Equation (3) represents Faraday’s law of induction, and states that a time-varying mag-

netic flux density induces an electric field. If the time variation of the different field quantities 

are negligible, the system of equations (1)-(4) decouple into two sets of two-equations each 

describing the limiting cases of electrostatic and magnetostatic problems. For the class of 

problems that are considered in this paper, the free charge density is assumed to be zero. Un-

der this assumption, it can be shown that Maxwell’s equations imply the following form of 

the charge continuity equation: 

 . 0,∇ =J  (8) 

where f=J J  in regions where the current density is prescribed, while e=J J  in conductor 

regions with induced eddy currents. The system of equations described above also need to be 

augmented by initial and boundary conditions, as well as the well-known continuity condi-

tions [9, 13] for the different field quantities across dissimilar material interfaces. 

 The system of equations can be solved by introducing a magnetic vector potential, A , 

such that equation (2) is identically satisfied: 

 .= ∇ ×B A  (9) 

Substitution of (9) into equation (3) leads to the following expression for the electric field: 

 ,t ϕ= −∂ ∂ − ∇E A  (10) 

in terms of A  and a scalar function, ϕ , generally referred to as an electric scalar potential. 

The system of potentials need to be augmented by a gauge condition that serves to define the 

divergence of A . The Coulomb gauge condition, . 0∇ =A , is assumed in this work. It can be 

shown [9] that under the assumptions above, and in the absence of any free charge density, 

0ϕ = . Hence, the electromagnetic fields are completely described by the magnetic vector 

potential, A . This flavor of the formulation is suitable for problems where the volume current 

density is assumed to be known in a portion of the domain that represents the coil. Physically, 

the coil region of the domain represents what are generally referred to as stranded coils, 

where the total current flowing in each strand of wire is known, and hence the distribution of 

current across the coil cross-section can be easily computed in terms of the number and layout 

of the wires and the cross-sectional dimensions of the overall coil. Induction problems often 

involve the use of coils that are massive conductors, as opposed to stranded coils, which are 

driven by either a known voltage difference across the ends, or a known total current entering 

the conductor. The current density in the massive conductor is not known a priori, and is part 

of the solution to the problem. In the latter class of problems, it is essential to retain the elec-

tric scalar potential, ϕ , to accommodate application of voltage or total current loads. Substitu-

tion of equations (9) and (10) in equation (4) leads to the following equation for the magnetic 

vector potential: 



 

 

 ( )1
.ft

−∇ × ∇ × + ∂ ∂ − =µ A σ A J 0  (11) 

The boundary conditions defining the problem can be of two types: essential and natural. The 

essential boundary condition involves specification of the tangential part of A  over some part 

of the boundary 
1Γ : 

 ,t× =A n A  (12) 

while the natural boundary condition involves specification of the tangential component of the 

magnetic field, which is equivalent to specifying the surface current, over the rest of the 

boundary 2Γ : 

 .t× =H n K  (13) 

It may be noted that the electrical permittivity and the electric displacement field do not di-

rectly enter the formulation described above. Additionally, the formulation also assumes that 

the forcing current, fJ , is divergence free. It may also be noted that the Coulomb gauge con-

dition was not explicitly used in deriving the weak form. Such a formulation is often referred 

to as a non-gauged formulation [12]. 

2.1. Weak form of the governing equations 

This section outlines the steps to transform the strong form of the governing equation 

and the boundary conditions, given by (11)-(13), to the corresponding weak form, which pro-

vides the starting point for the finite element discretization of the problem. To this end, it is 

useful to introduce two different spaces of functions; the solution space defined to be the set: 

 ( ) ( ){ }1, ,tS curl on= ∈ × = ΓΑ x A H A n A  (14) 

and the trial space, defined to be the set: 

 ( ) ( ){ }* * *

1, .V curl on= ∈ × = ΓΑ x A H A n 0  (15) 

In equations (14) and (15), the space ( )curlH  refers to functions with square-integrable curl 

over the domain of interest, the superscript (*) is the notation to define a typical member of 

the trial space, and 1Γ  represents the portion of the boundary where the essential boundary 

conditions are prescribed. The steps to obtain the weak form are fairly standard. The first step 

involves multiplying the governing equation (11) by a typical member, ( )*
A x , of the trial 

space of functions, and integrating over the whole domain Ω : 

 ( )( )1 *. 0.ft d−

Ω

∇ × ∇ × + ∂ ∂ − Ω =∫ µ A σ A J A  (16) 

Application of integration by parts and use of the natural boundary conditions over the re-

maining portion of the boundary, 2Γ , leads to the following statement of the weak form of the 

problem. Given the vector functions f
J , tA , and tK , find ( ) S∈A x  such that for all 

( )*
V∈A x , the following equation is satisfied: 



 

 

 ( ) ( )
2

1 * * * *. . . . .f td t d d dS
−

Ω Ω Ω Γ

∇ × ∇ × Ω + ∂ ∂ Ω = Ω +∫ ∫ ∫ ∫µ A A σ A A J A K A  (17) 

Equation (17) provides the starting point of a finite element based approximation, and a solu-

tion to (17) is said to satisfy the system (11)-(13) in a weak sense.  

2.2. Finite element discretization of the weak form 

The weak form is solved by discretizing the domain into a set of finite elements, where 

the solution within each finite element is assumed to be known in terms of shape functions, 

that belong to the solution space, S , and degrees of freedom or coefficients that scale the 

shape functions. It is well known [4, 7, 14] that the standard node-based interpolation, that is 

commonly used is structural mechanics finite element formulations, has serious limitations 

when it comes to solving electromagnetic problems. Interpolation based on so called edge-

element formulations with vector shape functions is more appropriate and works better for 

electromagnetic problems. Thus, within each element the magnetic vector potential, A , is 

interpolated as: 

 ( ) ( ) ,a aA=∑A x N x  (18) 

where ( )a
S∈N x  represents the a -th vector shape function for the element, and aA  

represents the corresponding unknown degree of freedom, and the sum is carried out over the 

total number of degrees of freedom in an element. The reader is referred to [10, and refer-

ences therein] for a detailed presentation of the vector shape function framework. For the pur-

pose of this paper it suffices to note that the vector shape functions are associated with the 

element edges instead of the element nodes, and, for the lowest order elements, the degree of 

freedom corresponding to a given edge represents the tangential component of A  along the 

edge, which is constant on that edge. The form of the interpolation given by equation (18), 

and the interpretation of the shape functions and degrees of freedom discussed above, ensures 

that A  is tangentially continuous across inter-element boundaries. The normal component is 

not continuous across element boundaries. The above continuity properties of the interpola-

tion are consistent with the theoretical continuity requirements [9, 13] on the electromagnetic 

fields across boundaries between dissimilar materials. 

2.3. Time-harmonic solutions 

 Applications such as induction heating are often driven by an alternating or time-

harmonic current. In this section the weak form developed above for the general problem is 

specialized to time-harmonic problems. The corresponding development for transient prob-

lems requires a time-integration scheme, but is otherwise straightforward, and is not discussed 

in this paper. It may be noted, however, that the Abaqus electromagnetic capabilities support 

transient low-frequency electromagnetic as well as magnetostatic procedures. The forcing 

(volume or surface) current density, assuming time-harmonic behavior, may be assumed to be 

of the form (shown below only for the volume current density): 



 

 

 ( ) ( )e ,o i t

f f

ω=J x J x  (19) 

where 

 ( ) ( ) ( )o o o

f f R f I
i= +J x J x J x  (20) 

represents the amplitude of the time-harmonic applied volume current density with real (in-

phase) and imaginary (out-of-phase) components o

f R
J  and o

f I
J , respectively, ω  represents 

the frequency of excitation, and 1i = − . After the transient effects upon the initial applica-

tion of the current load die out, the long-term solution may also be assumed to be of the same 

time-harmonic form as the excitation, i.e.: 

 ( ) ( )e ,o i tω=A x A x  (21) 

where ( )o
A x  represents the amplitude of the solution ( )A x

 
, and may be expressed as: 

 ( ) ( ) ( ) ,o o o

R I
i= +A x A x A x  (22) 

in terms of its real (in-phase) and imaginary (out-of-phase) components. Substitution of (19) 

through (22) into the weak form leads to: 

 ( ) ( )
2

1 * * * *. . . . ,o o o o o o o o

f t
d i d d dSω−

Ω Ω Ω Γ

∇ × ∇ × Ω + Ω = Ω +∫ ∫ ∫ ∫µ A A σA A J A K A  (23) 

which must be solved for ( )o
A x .  

In the rest of this paper all material properties are assumed to be isotropic and piecewise 

constants (i.e., µ=µ I  and σ=σ I , respectively, where µ  and σ  are scalar piecewise con-

stants that represent the isotropic values of the magnetic permeability and the electrical con-

ductivity, respectively, and I  represents the second-order identity tensor), such that the 

second-order tensor quantities representing the magnetic permeability and the electrical con-

ductivity in equation (23) can be replaced by the corresponding scalar quantities. The Abaqus 

implementation does not have this limitation, and the materials properties can be functions of 

the spatial coordinates. With the above simplifications, the final system of equations may be 

written in matrix form as: 

 ,oa oa oa

R I f R
σω+ =KA CA J�  (24) 

 .oa oa oa

R I f I
σ ω− + =CA KA J�  (25) 

In the equations above, the “stiffness” matrix or the so-called curl-curl operator, K , is de-

rived from the first term in equation (23), while the “damping” matrix, σ C , is derived from 

the second term in equation (23). The quantities oa

f R
J�  and oa

f I
J�  (the superscript a  is an index 

for the degree of freedom – consistent with equation (18)) represent the consistent current 

loads at the edges, and are derived from the real and imaginary components of the applied 

volume current density vector (equations (19) and (20)), making use of the right hand side of 

equation (23). Finally the quantities oa

R
A  and oa

I
A  represent the real and imaginary compo-



 

 

nents, respectively, of the edge degrees of freedom. These quantities are the unknowns in the 

above system of algebraic equations.  

As an aside, it may be noted that equation (23) implies that in conductor regions (where 

there is an induced eddy current density, 
eJ , but the forcing current density, fJ , is zero) the 

divergence-free condition on both A  and 
eJ  is satisfied in a weak sense. However, the Cou-

lomb gauge condition (i.e., the divergence-free condition on A ) is not enforced in any man-

ner in the non-conductor regions of the domain.  

2.4. Remarks on the curl-curl operator 

 For the discussion in this section it is assumed that the boundary conditions are homo-

geneous and of the essential type everywhere on the boundary. In this case it is easy to verify 

that the curl-curl operator, K , derived from the first term of equation (23), is nonnegative (or 

positive indefinite). In fact, ( ),KA A  [here ( ). , .  is the notation for the standard inner product 

that is defined as the integral over the domain of the product of the two functions within the 

bracket] is zero for ϕ= ∇A , where ( )ϕ x  is any scalar function that satisfies the homogene-

ous condition × =A n 0  everywhere on the boundary. The above implies that the curl-curl 

operator is strongly singular with a null space that contains all functions of the form ϕ∇ , and 

that a system of linear equations involving only the curl-curl operator on the left hand side 

may not be well-posed (in the sense of producing a solution) unless the right hand side is also 

orthogonal to the aforementioned null-space. 

The presence of the damping matrix serves to somewhat mitigate the effects of the sin-

gularity. However, in a typical eddy current analysis it is very common that large portions of 

the model consist of electrically nonconductive regions, such as air and/or a vacuum. In such 

cases it is well known that the associated system matrix can be very ill-conditioned; i.e., it can 

have many singularities [2]. Different methods have been proposed in the literature over the 

years to address the above issue. These methods are typically based on either introducing a 

tree-gauging [14] technique to solve the system of equations, or adding an artificial 

conductivity to the non-conducting regions, or iterative solvers [3, 8, and references therein] 

that make use of (wherever possible) the analytically determined null-space of the curl-curl 

operator in the context of multigrid formulations. 

Abaqus uses a special iterative solution technique to prevent the ill-conditioned matrix 

from negatively impacting the computed electric and magnetic fields. The default 

implementation works well for many problems. However, there can be situations in which the 

default numerical scheme fails to converge or results in a noisy solution. For such cases 

Abaqus has built-in stabilization mechanisms that employs a “small” amount of artificial 

electrical conductivity in the nonconductive parts of the domain. This approach helps 

regularize the problem and allows Abaqus to converge to the correct solution. The artificial 

electrical conductivity is chosen such that the electromagnetic waves propagating through 

these regions undergo little modification and, in particular, do not experience the sharp 

exponential decay that is typical when such fields impinge upon a real conductor. When the 

user controls the stabilization directly by explicitly specifying the electrical conductivity in 



 

 

nonconducting regions, it is recommended that the artificial conductivity be set to be about 

five to eight orders of magnitude less than that of any of the conductors in the model. 

3. EXAMPLES 

 This section presents four brief examples of eddy current problems that make use of the 

newly developed capabilities in Abaqus. All the problems are discussed in detail in [6], and 

the reader is referred to this reference for additional details beyond those presented here. 

Three of the examples are adapted from a standard suite of problems designed for Testing 

Electromagnetic Analysis Methods (henceforth abbreviated TEAM), while the fourth example 

presents a study of a transverse flux induction heating problem. Three of the examples 

involve time-harmonic simulations, while one example corresponds to a transient simulation. 

 

 

 

 

 

 

 

Figure 1: Geometry of an infinite conducting cylindrical shell immersed in a time-harmonic 

uniform magnetic field. 

3.1. TEAM 2 (Eddy current simulations of long cylindrical conductors in an oscillating 

magnetic field) 

The problem setup is shown in Figure 1. It depicts an infinite conducting cylindrical 

shell immersed in a time-harmonic uniform magnetic flux density. The inner and outer radius 

of the conducting cylindrical shell are a = 0.05715 m and b = 0.06985 m, respectively. Its 

resistivity and relative magnetic permeability are assumed to be ( )1 σ = 3.94 x 10
-8

 Ω -m and 

rµ = 1.0, respectively. The magnetic flux density is assumed to have a magnitude of oB = 0.1 
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T and is oscillating with a frequency of f = 60 Hz. The magnetic flux density is assumed to 

be oriented in the y-direction. It is assumed that the medium in which the cylindrical shell is 

immersed has properties similar to that of a vacuum. For these parameters, the skin depth of 

the conductor is about ( )2 o rδ ωµ µ σ= = 12.9 mm, which is comparable to the shell 

thickness of 12.9 mm. 

The analytical solution to this problem is known and is provided in [6]. Figure 2 shows the 

comparison of the amplitude of the y-component of the magnetic flux density computed using 

Abaqus with that of the analytical solution. The labels `EMC3D8' and `EMC3D4' in the 

legend correspond to the analyses performed with hex-shaped and tet-shaped finite elements, 

respectively. The labels ‘Analytical Truncated’ and ‘Analytical True’ in the legend 

correspond to the analytical solution computed by assuming that the essential. 

 

 

 

 

 

 

 

 

Figure 2: Amplitude of the y-component of magnetic flux density. 

boundary condition is applied on an outer cylindrical boundary surface at a finite distance and 

at infinity, respectively. The figure clearly indicates that the analysis results compare very 

well with the analytical results. 

3.2. TEAM 4 (Eddy current simulation of a conducting brick in a decaying magnetic 

field) 

The problem domain consists of a rectangular brick with a centrally-located rectangular 

through hole, which is placed in a uniform magnetic field that is decaying in time. The objec-

tive is to compute the circulating eddy currents induced in the brick and the ensuing Joule 

heat that is dissipated. The problem setup is shown in Figure 3. The dimensions of the brick 

are: a = 0.1524 m, b = 0.1016 m, and c = 0.0508 m. The brick is assumed to be made of an 

aluminum alloy with a resistivity of ( )1 / σ = 3.94 x 10
-8

 Ω -m and a relative magnetic per-

meability of rµ = 1.0. The dimensions of the hole are assumed to be l = 0.0889 m and w =
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0.0381 m. The orientation of the magnetic flux density is assumed to parallel to the direction 

of penetration of the hole and is assumed to be decaying as ( )exp
o

B B t τ= −  with 
oB = 0.1 T 

and τ = 0.0119 s. The medium surrounding the brick is assumed to have properties similar to 

that of vacuum. 

Figure 4 is shows the magnetic flux density computed using Abaqus for a transient elec-

tromagnetic analysis that is performed over a period of 20 ms. The magnetic flux density is 

plotted along the thickness direction of the brick starting from the center of the hole. The dif-

ferent curves correspond to the values of the magnetic flux density at different instants of time 

(as indicated in the legend). The horizontal axis must be multiplied by 6.35 to get the true 

distance (in mm) along the thickness direction, and the vertical axis should be multiplied by 

0.01 to get the flux density in Tesla. The axes are scaled in this manner to facilitate the com-

parison of the Abaqus results against the results presented in [11]. The plot indicates that far 

away from the conducting brick, the magnetic flux density is the same as that of the external 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Geometry of a brick with a through hole placed in a declaying magnetic field. 

field which is decaying in time. However, at the center of the brick, the magnetic flux density 

is larger due to the eddy currents that are induced in the brick, which will try to compensate 

for the magnetic flux density that is reducing in time. The results compare very well to those 

published in [11]. 
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Figure 4: Time-variation of the variation of magnetic flux density in the thickness direction. 

3.3. TEAM 6 (Eddy current simulations for spherical conductors in an oscillating 

magnetic field) 

The problem domain consists of a conducting spherical shell immersed in a time-harmonic 

uniform magnetic field. The objective is to compute the eddy currents induced in the spherical 

shell by the magnetic field that is varying in time. Lorentz force and Joule heating in the 

conductor are also of interest. The problem setup is shown in Figure 5. For visual clarity, the 

figure depicts the spherical shell with a section of it removed. The inner and outer radius of 

the shell are a = 0.05 m and b = 0.055 m. Its conductivity and relative magnetic permeability 

are assumed to be σ = 5 x 10
8
 S/m and rµ = 1.0. The magnetic flux density is assumed to 

have a magnitude of oB = 1.0 T and is oscillating with a frequency of f = 50 Hz. Without loss 

of generality, it can be assumed that the magnetic field is oriented along the z-direction. The 

medium in which the spherical shell is immersed is assumed to have properties similar to that 

of a vacuum. For these parameters, the skin depth of the conductor is about 

( )2 o rδ ωµ µ σ= = 3.18 mm, which is smaller than the shell thickness of 5 mm. 

The analytical solution to this problem is known and is provided in [6]. Figure 6 shows 

the comparison of the amplitude of the z-component of the magnetic flux density computed 

using Abaqus, with that of the analytical solution. The labels ‘EMC3D8’ and ‘EMC3D4’ in 

the legend correspond to analyses performed using hex-shaped and tet-shaped finite elements, 

respectively. The labels ‘Analytical Truncated’ and ‘Analytical True’ in the legend 

correspond to the analytical solution computed by assuming that the essential boundary 

condition is applied on an outer spherical boundary surface at a finite distance and at infinity, 

respectively. The figure clearly indicates that the analysis results compare very well with the 

analytical solution. 
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Figure 5: Geometry of a spherical shell immersed in a time-harmonic uniform magnetic field. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Amplitude of the y-component of magnetic flux density. 
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Figure 7: Typical setup for transverse flux induction heating.
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Figure 8: Electric field during TFIH.

Figure 9: Magnetic flux density during TFIH.

 

 

 

 

 

 

 

Figure 10: Distribution of Joule heating in the workpiece.

4. CONCLUDING REMARKS
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to Maxwell’s equations under the standard low frequency assumption
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Figure 8: Electric field during TFIH. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Magnetic flux density during TFIH. 

 

 

Figure 10: Distribution of Joule heating in the workpiece. 
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focuses on time-harmonic solutions, the capabilities available in Abaqus are general enough 

to solve transient electromagnetic and magnetostatic problems. Although the discussion in the 

present paper was limited to linear magnetic behavior, complexities related to nonlinear but 

monotonic magnetic constitutive response (characterized by a nonlinear B-H curve) can also 

be accounted for in transient and magnetostatic procedures. 

 The formulation of the problems was described in some detail starting with a discussion 

of Maxwell’s equations. This was followed by a discussion of a non-gauged solution ap-

proach based on the magnetic vector potential. The weak form and the final matrix form of 

the discrete problem were described in some details in the context of a time-harmonic solution 

procedure. Complications arising due to the presence of a significantly large null-space of the 

curl-curl operator, and methods to mitigate them, were also discussed. 

 A number of example problems were presented. In all but one problem, the Abaqus si-

mulation results were compared to analytical solutions and were found to be in excellent 

agreement. The final example discussed a generic setup of a transverse flux induction heating 

(TFIH) problem. 

 Abaqus provides a strong multiphysics portfolio, and the new electromagnetic capabili-

ties augment this portfolio allowing users to carry out more realistic simulations in an inte-

grated manner with all the other capabilities of Abaqus, mainly in the areas of structural me-

chanics and heat transfer. 
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