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Abstract. An important parameter to analyze the efficiency of the heart as a pump is Car-
diac Ejection Fraction (EF), which is clinically highly correlated to the functional status of
the heart. Diverse non invasive methods can be applied to measure EF, like Computer To-
mography, Magnetic Resonance, Echocardiography, and others. Nevertheless, none of these
techniques can be used to continuous monitoring of such parameter. On the other hand, elec-
trical impedance tomography (EIT) may be applied to accomplish this goal. In addition, low
cost and high portability are also EIT’s features that justify the research for solutions in-
volving such technique to monitor EF. EIT consists in reconstruct images of the conductivity
distribution of the interior of a conductor domain by applying electric currents and measur-
ing electrical potential on the boundary of the body. Mathematically, EIT can be classified
as a non-linear inverse problem. This work proposes a method for the continuous estimation
of cardiac ejection fraction, addressing it as an optimization problem. The models used in
our approach assume that recent two-dimensional magnetic resonance images of the patient
are available, and use them to reduce the search space. Another important feature is the
parametrization of the geometry of internal inclusions inside the domain, which also reduces
the cost of the method. This work proposes a Hybrid Iterated Local Search (ILS) heuristic for
EIT inverse problem using Levenberg-Marquardt Method as local search. Experiments are
performed on two-dimensional images with synthetically generated data for electric poten-
tials. Two different protocols for current injection are tested in such experiments and prelimi-
nary results are presented.

Keywords: Cardiac Ejection Fraction, Electrical Impedance Tomography, Inverse Problem,
Iterated Local Search.

1. Introduction

Cardiac ejection fraction (EF) is an important parameter to analyze the efficiency of
the heart as a pump. It indicates the amount of blood that is pumped from each ventricle



at each step of a heart cycle. In other words, EF is a measure of the blood fraction ejected
from the ventricles in one heart cycle. Although it is possible to determine both left and right
ventricles ejection fraction, clinically is more common to use only the ejection fraction of
the left ventricle (EFLV), so the general term “ejection fraction” is often used to refer to the
EFLV. By definition, the ejection fraction is calculated as follows:

PV EDV — ESV 0
EDV ~ EDV
where PV denotes the volume of blood pumped, given by the difference between end-

EF =

diastolic volume (EDV) and end-systolic volume (ESV). Diverse non-invasive techniques can
be applied to determine EF, as echocardiography, cardiac magnetic resonance, and others.
Although such techniques are able to produce high definition images for well-accurate diag-
nostics, they cannot be used for continuous monitoring, due specially to their high costs. To
reach this goal, an alternative technique could be Electrical Impedance Tomography (EIT),
which has advantages in terms of portability and in the fact of not using ionizing radiation,
besides its low cost.

Electrical Impedance Tomography consists in reconstructing conductivity distribution
images from the inside of a body, based on current injection and potential measurement pro-
tocols, where those potential measurements are taken on the boundary of the domain. This
technique has been largely applied in different fields, as industrial monitoring [1], geophysics
[2], and biomedical engineering [3,4]. In the context of the latest field, recent work [5] has
discussed viability of EIT to continuous monitoring of cardiac ejection fraction, and other re-
lated works [6—8] have shown preliminary results on the same subject. Such works deal with
2-D model of the human torso, contemplating internal inclusions for the heart ventricles and
the lungs. The lungs are considered in the studies once their low conductivities work as bar-
riers to the electrical currents used in the experiments. The mentioned 2-D model for human
torso with cavities inclusions for the lungs and heart ventricles is used on the study presented
here.

This work addresses the inverse problem of determining cardiac ejection fraction by
means of EIT, from an optimization point of view. Recent work has shown that Levenberg-
Marquardt Method (LMM) is well-suited for this purpose [9]. However, LMM is a local
search method, and the quality of local optima obtained by that kind of strategy depends on
the initial solution given to the technique. Global techniques, like Genetic Algorithms have
also been tested for the problem [10], but LMM provided the best results, so far. Hence,
a natural evolution of the research is to try methods using multiple local searches, fed with
different initial solutions, like Multistart Local Search or Iterated Local Search (ILS), that has
some advantages over the first, as will be further discussed in this work. Therefore, our work
proposes the application of ILS heuristic to the EIT inverse problem, in order to investigate
the impact of using this approach versus the classic version of Levenberg-Marquardt. The
methods used in this study are presented next section, starting with the 2-D torso model.



2. Methods

2.1. Two-dimension Models for the Human Torso

The human torso model used in this work is the same used in [9]. It models the torso
as a 2-D surface with five different regions. Two of them representing the lungs, one for each
heart ventricle and the last one to represent the rest of the torso. The shape of the regions of
interest are obtained by manual segmentation of magnetic resonance images, in two different
phases of heart cycle: end of systole and end of diastole. For simplicity matters, the shape of
the lungs and torso are considered constant during a heart cycle. Figure 1 illustrates the result
of such manual segmentation.

Thorax (torso)

Heart Cavities

Figure 1. Manual segmentation of a magnetic resonance image

After the segmentation, an important step on modeling is to represent the boundary
lines of the regions by means of extended x-splines [11] curves with minimum number of
control points. There are 7 control points for left ventricle and 8 control points for right
ventricle. As the goal of our method is to recover the ventricles shape from electric potential
measurements taken on the boundary of the body, and with each control point represented by
two coordinates, there are 7 x 2 + 8 x 2 = 30 spline parameters (variables) to be estimated
during the optimization process. In other words, the technique would have to find the best
set of values of the parameters of these splines that minimizes the geometric errors in shape
recovering. In addition, we apply a strategy to reduce the number of parameters. The main
idea behind the strategy is to use only one parameter to define the position of each control
point. Once the same control points were used in both systolic and diastolic phases, it is
possible to connect their positions in each phase through a line. Then, for each control point
1, a linear interpolation, parametrized by a scalar ¢;, is performed to determine intermediate
values between the two phases. In such convention, ¢; = 0, V4, is relative to the position of
spline control points ¢ at the end of systole, while ¢; = 1, Vs, is relative to the position of
spline control points ¢ at the end of diastole. Provided that, the goal is redefined to recover the
cavities shape by estimating 15 parameters ¢;,7 = 1...15, instead of the 30 original ones.

Besides geometrical issues, it is also important to discuss electrical issues for our
model. The main feature to electrically identify a biological tissue is its conductivity. Main
factors that influence the properties of biological tissues are presented by Grimnes [12]. The
tissues can be classified in thirty different kinds, according to their electrical properties [13]
and can be grouped in four major groups: epithelium, muscle, connective tissue and nervous
tissue. The conductivity of a tissue can also be influenced by other “environment” issues, like



the frequency of electrical current, presence of water, temperature, etc.

In this work, we have taken some assumptions in order to simplify the problem. The
first assumption is that the conductivity of a tissue is known, constant and isotropic. The
last one has to do with the kinds of tissue themselves. We assume there are three different
tissue conductivities in our model associated to: lungs, heart cavities and torso. Such assump-
tions are important sonce biological tissues are very difficult to characterize and even in the
literature electrical properties values reported vary substantially.

For the tissues that composes the torso region, Bruder et al. [14] suggests to work
with a mean resistivity value to represent such region. The resistivity of the air is 102°Qcm,
but it is difficult to determine the resistivity of a lung filled with air. Rush et al. [15] propose
a scheme to represent heart cavities filled with blood, which comprises a simplified resistiv-
ity distribution for the blood tissue surrounded by homogeneous material with resistivity ten
times greater. Based on this, we have extended this scheme to represent lung regions filled
with air. Table 1 present some resistivity values found in literature for our tissues of interest:
lungs, blood, heart and torso.

Table 1. Resistivity values for biological tissues found in literature.

Tissue | Resistivity ({2 cm) Reference(s)
150 Barber and Brown [16]
Blood 150 Yang and Patterson [17]
100 Schwan and Kay [18]
400 Patterson and Zhang [19]
Heart 250 Yang and Patterson [17]
400 - 800 Baysal and Eyuboglu [20]
727 - 2363 Barber and Brown [16]
Lung 1400 Patterson and Zhang [19]
600 - 2000 Baysal and Eyuboglu [20]
Torso 500 Bruder et al. [14]

In our experiments, we have taken the values of 1000€2cm for torso and of 100§2¢m for
blood. For the lungs, we used two different values of Ratio of Lung to Torso resistivity (RLT):
RLT = 20, corresponding to 20000€2cm for lung resistivity and RLT = 50, corresponding
to 50000€2cm for lung resistivity. Subsections 2.2 and 2.3, present, respectively, the forward
and inverse problem of EIT using the model described here.

2.2. The Forward Problem

The forward problem of EIT consist of calculating electrical potentials on the external
boundary of the torso generated by a current injection on a pair of electrodes. In the forward
problem, the conductivity (or resistivity) distribution of the domain is known. In the model
used in this work, the domain is divided in regions with different conductivities, as mentioned
before. The electrical potential (¢) for every point must satisfy Laplace’s equation:

V¢ =0, 2)

subject to the boundary conditions:
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where I'; is the interface between lung and torso region; I's is the interface between
blood and torso region; I's is the external boundary of the body; 'Y is the portion of I's in
which the i** electrode is placed on; J; is the electric current injected through the i*" electrode;
and o7, o and o, are, respectively, torso, blood and lung conductivities.

The present work uses the Boundary Elements Method (BEM) [21] to solve the for-
ward problem, with implementation based on the one used in [22]. Next section describes the
inverse problem associated with the forward problem presented here.

2.3. The Inverse Problem

From an electric point of view, the inverse problem associated to EIT aims on gener-
ating an image of the electrical resistivity from measures of electrical potential at the external
boundary. From a geometric point of view, the aim is to recover the shape of the ventricular
cavities via the estimation of vector t, containing the parameters ¢;,7 = 1...15, as described in
Section 2.1. This problem can be formulated as an optimization problem. Our goal is to min-
imize an objective function that computes the distance between measured electrical potential
values (taken from a pair of electrodes on the external boundary of the body) and the com-
puted ones. The computed potential values depend on the heart cavities shape, parametrized
by vector t and they are calculated as described in Section 2.1. Therefore, the goal is to find
the best parameter vector t that minimizes:

1 s 1 T3\2
F = SIROIF = 5 Y (6(), - ) 3)

j=1

where ¢, is the j'* measured electrical potential; ¢(t); is the corresponding computed
electrical potential that depends on the heart cavity shape parametrized by t, calculated as
described in Section 2.2; m is the number of measurements taken, and depends on the current
injection pattern; and R(t) is the so called residual vector. It is important to note that, in this
work, the values of <;§j, which were supposed to be measured, are synthetically generated.
The optimization problem presented this section is solved, in this work, using two different
approaches, described in Subsections 2.3.2, 2.3.3 and 2.3.4.

Before discussing optimization methods, it is important to pay some attention to an
important aspect though. The inverse problem is here defined in terms of minimizing the
residual between measured and computed values. Thus, there must to be some criteria to
determine such residuals, or errors. As we are interested in obtain images from the inside
domain of a body, we used geometric error, presented next Subsection, to determine the
accuracy of the implemented techniques. Nevertheless, although such metric is used inside



the optimization methods, for instance, to determine if a solution is better than a previous one,
at the Section 3.3, which presents the computational results of our work, other kind of metric
is used to compare those techniques.

2.3.1 Geometric Error

In the context of this work, we define geometric error as the difference between the
geometry of the inclusion obtained by an optimization method and the “real”, known, geom-
etry. In this work, the “real” geometries refer to the ones corresponding to the synthetically
generated data. Intuitively, the geometric error can be evaluated by visual inspection of the
generated images. However, when two or more images are too close to each other, such visual
inspection cannot be precise enough to determine which one is more accurate. Besides, for
the purpose of automatizing the process of calculating the geometric error, a visual inspection
is ineffective. Thus, objective metrics are needed to accomplish such purposes.

The geometric error is calculated in the following way. The known mesh of target
inclusion is refined by dividing each element into ten parts. For each node of the mesh of
elements of the identified inclusion, the distance to the closest node of the target mesh is
calculated. The obtained values are accumulated until all nodes of the identified inclusion are
considered. The total value obtained is divided by the number of nodes of the boundary of the
identified inclusion and by the target perimeter. The result is the geometric error. The obtained
value is non-dimensional. An unitary value means that, in average, each node of the boundary
of the identified inclusion is far from the target by the value of the target perimeter. The value
of the error aims on reflecting the quality of the obtained images in the optimization process.
Further studies could contemplate other geometric features, like the area of an inclusion. More
on geometric error and some strategies to compute it in EIT problem can be found in [23].
Once presented the metric used to determine the quality (or the error) of a minimizing solution,
next Subsections present the optimization techniques themselves.

2.3.2 Levenberg-Marquardt Method and Related Work

The problem represented by Equation 3 is a non-linear least square problem, and dif-
ferent methods can be applied to solve this optimization problem. Peters et al. [9] addressed
such problem with Levenberg-Marquardt Method (LMM) [24], which is also in the basis for
our approach. LMM can be viewed as a modification of Gauss-Newton method, with the
model trust region approach. The minimizer of the non-linear least-square problem is ob-
tained iteratively in the method. At each step, updates to t approximation are given by the
minimizer t, of the following constrained linear least-squared problem:

minimizes | R(to) + J(to)(t: —to) ]|,
subject to llt: — toll, < do
where R(t) = ¢(t) — ¢
OR;
JeR™™ J,; =

oty



Where R(t) is the residual vector; ty is the current value for the minimization param-
eters vector; t is the updated solution vector; .J is the Jacobian matrix with the derivatives of
each element of the residual vector with respect to the optimization variables; and d is the ini-
tial radius value for the trust region. The vector t., solution of the constrained minimization
problem, is given by

ti =ty — (J(to)"J(to) + u) ™" (to) " R(to), “)

where I is the identity matrix. The parameter p is the parameter that provides the
modification of Gauss-Newton method, mentioned earlier, and its value changes form one
iteration to another. A more detailed description about Levenberg-Marquardt Method can be
found in [24].

In this work, LMM is used in two different ways. First, a set of independent executions
of LMM, each one using a different initial guess for t that is randomly chosen, composes a
traditional Multistart Local Search method based on LMM. In the second scheme LMM is
used as the local search method for the heuristic called Iterated Local Search (ILS) [25].

A more detailed discussion about the experimental setup and other related issues is
presented in the next sections. By now, we limit the discussion to the fact that Levenberg-
Marquardt was the method chosen to implement the local search, in spite of other alternatives,
due to its promising results shown in [9]. Other previous works have adopted different alter-
natives, such as Powell’s method [26], Genetic Algorithms [27, 28] and Feasible Arc Interior
Point Algorithm (FAIPA) [29], but LMM has been shown as the best alternative, so far.

In next subsection, we describe the ILS metaheuristic, used to compose the hybrid
approach proposed in this work.

2.3.3 Iterated Local Search

The ILS metaheuristic is a template for the development of a heuristic, i.e. is a meta-
heuristic. The ILS template defines that first a local search is applied to an initial solution.
Then, at each iteration, a perturbation of the obtained local optimum is performed, followed
by a local search method being applied to the perturbed solution, resulting in a new local op-
timum. Finally, this new local optimum is subjected to some acceptance criteria, and replaces
the old one if it attends to certain predefined conditions. This process is repeated until some
stopping criteria are attended. Such process is described by Algorithm 1.

Before presenting our implementation of the ILS template, is necessary, though, to
bring a light to some details of ILS method.

e Local search. Any method, deterministic or stochastic, can be used as a local search in
ILS metaheuristic. That method is treated from a black box point of view. It is important
to note that population-based heuristics, like Genetic Algorithms, are not suitable for
this purposes, in principle, once local search is usually a single-solution based method,
like Levenberg-Marquardt.

e Perturbation Method. This should be a large move of the current solution, in order
to provide diversification to ILS solutions and as an attempt of pushing the search to



Algorithm 1: Template for Iterated Local Search algorithm
input : An initial solution s,
output: Best solution found

// Apply a predefined local search method
1 s, < local_search(sp);

2 repeat
// Perturb local optimum obtained
3 s' < Perturbation(s,, search_history);
// Apply local search on the new perturbed solution
4 s’ « local search(s’) ;
// Accepting criteria
5 S, < Acceptance(s,,s., search_history);

¢ until Stopping criteria;

another basin of attraction. It is important that the perturbation method preserves some
part of the given solution while strongly perturb the other. This is intended to keep some
“good” information and at the same time to diversificate the obtained solutions.

e Acceptance criteria. It defines the conditions that a new solution (local optimum) have
to satisfy to replace the current one.

Figure 2 ilustrates the basic schema in which Iterated Local Search is based on. A
last important observation about ILS is that it differs from a Multistart Local Search where
initial guesses are usually chosen randomly. ILS presents an improvement, since it is an
iterative process where local searches are performed using perturbed versions of previously
found local optima.

Initial Solution

Perturbation

/

Objective

Local Optimum

New Local Optimum

| Seach Space |
Figure 2. ILS basic schema
Next, we present our implementation of ILS using Levenberg-Marquardt as the local

search method, as well as the perturbation method and acceptance criteria used. We call our
implementation ILS-LM.



2.3.4 Hybrid ILS-LM Heuristic

To define our ILS implementation, we need to determine some important points. First
one, and most important of all, we set LM method as the local search procedure. We also pro-
pose a perturbation method that guarantees a minimum of diversification of the local optima.
This perturbation method, that we call K-dPerturb, will be better described next. Finally, we
have to establish the acceptance and stopping criteria. Algorithm 2 illustrates the choices
made in this work.

Algorithm 2: Hybrid ILS-LM proposed
input : maxit: maximum number of iterations to be executed
input : Initial solution s(: systolic or diastolic ventricle cavity of a normal heart
input : perc: the percentage of vector t parameters (represented here by s,) that are
affected by random perturbation
input : ¢): precision used in expansion of a k-d tree node
output: Best solution found

s, < Levenberg-Marquardt(sy);
initialize k-dTree with s,;
repeat
s" < K-dPerturb(s,, k-dTree, perc, €y);
s, < Levenberg-Marquardt(s’) ;
sy < SimpleAcceptance(s,,s.,, k-dTree);
until maxit times;

N N R W N -

Before continuing, an important observation here is that for simplicity reasons, we
ommited the passing of the “measured” values (¢; in the inverse problem formulation) as
parameters to the procedures described by the algorithms presented in this section, but one
should keep in mind they are needed to calculate the precision of the methods used. Observed
this, we can continue with the analysis of the heuristic ILS-LM.

SimpleAcceptance implements a criterion in which the solution s, replaces s, if its
relative error is lower than the one of the current solution. Accepted or not, every considered
solution s/, is added to the search history, implemented with a k-d tree data structure [30, 31],
described later. This approach focuses only on intensification, i.e., it just aims on the qual-
ity of solutions. In our proposal, diversification aspects are provided inside the perturbation
method. Thus, K-dPerturb is a partially random method using the same k-d tree structure of
SimpleAcceptance to avoid generating repeated or very similar solutions, which could lead to
the same local optima. As already mentioned, the k-d tree structure also works, in this case, as
a search history. High-level algorithms for SimpleAcceptance and K-dPerturb are presented,
respectively, in Algorithms 3 and 4.

It is worth to observe that we have defined in the implementation that a node from
k-dTree can be expanded when the distance between two solutions belonging to that node is
greater than a given precision €y, which was kept during our experiments with the value 1072
Also, we kept as constant the values of perc = 0.15 and maxit = 11, the maximum number
of performed iterations. The choice of maxit = 11 was due to how we compared ILS-LM
and LMM, and is discussed later.



Algorithm 3: Simple acceptance method
input : s,: current best solution
input : ¢.: candidate to be the new current best solution
input : k-dTree structure, with history of all s, found
output: Solution s,, updated current best solution

n < node of k-dTree where s’ should be placed on;
if n can be expanded then

expand n;
insert s, in k-dTree;

AW N =

s if error(s,) < error(s.) then
L Sy S5

=)}

The steps related to the perturbation of a control point p, that is, the process comprised
by lines from 6 to 16 in Algorithm 4, implement a way of controllably disturb such control
point. The basic idea is simple and consists in produce a new value for the parameter ¢,
corresponding to that point. Concerning to the description of the perturbation method, the
terms p or ¢; are used interchangeably.

These controlled perturbations work as the following. After a control point p is se-
lected for being perturbed, its two neighbors are identified (p;es+ and pyign:). Then, a line
segment, connecting such neighbors, is traced (segRef) and the orthogonal projection of p
over segRef is obtained (p,.;). These are the preparation steps. Next, the method calcu-
lates limits to the perturbation. Those limits are calculated in order to be dimensionless, just
like the parameters ¢;. Yet, they are intended to promote as much perturbation as possible,
but without producing values too far from a feasible geometry, so the maximum normalized
propotion between the distances d1,, d2, and d3, is used as such limitation. This resulting
factor has the desired features: is dimensionless and promote good perturbations, without too
much relaxation. Figure 3 illustrates the distances used in perturbation factor calculation.

Figure 3. Distances used in perturbation factor calculation.

Besides the perturbation process, another key feature of our implementation is the use
of a k-d tree to keep the search history of obtained local optima. Such data structure allows the
algorithm to prioritize unexplored regions of search space, in an attempt to avoid redundant
efforts on performing searches towards already found local optima. The k-d tree data structure



Algorithm 4: K-d Perturbation method

input : s.: current best solution

input : k-dTree structure, with history of all s, found

input : perc and ¢;: the same of Algorithm 2

output: Solution s’ to be provided as initial solution for Levenberg-Marquardt local
search

1 n < k-dTree node corresponding to s,;
2 accept < false;

3 repeat
// Perturbation phase
4 {ts} < randomly selected perc percent of ¢ parameters from s.;
5 foreach t € {ts} do
// Preparation steps
6 p < point corresponding to t;
7 Dieft <— neighbor of p in anti-clockwise direction;
8 Dright <— neighbor of p in clockwise direction;
9 refSeg < line segment from pic s 1O Prignes
10 Portn, <— orthogonal projection of p in refSeg;
// Perturbation factor calculation steps
1 dl, < dist(p, Dortn);
12 d2p A diSt(porthupleft);
13 d3p — diSt(porthapright»;
w ||ty metta
15 perturbFactor < randomly select a value in [—d,,, d,|;
// Perturb: new value for {t does not need to be in
[0,1]
16 t < t + perturbFactor;
// Validation of diversification phase
17 n' < k-dTree node corresponding to s’;
18 if n # n’ then
19 insert s’ in k-dTree;
20 accept < true;
21 else
22 if (n = n') and (n can be expanded) then
23 expand n;
24 insert s” in k-dTree;
25 accept <— true;
26 else
27 L discard s’;

28 until accept = true;

is presented next Subsection.



2.3.5 K-d trees

A k-d tree [30,31] is a data structure for organizing points in a k-dimensional space,
by means of establishing partitions in that space. In this work, the referred space is the search
space of the optimization method, i.e. the space composed by the feasible values of vector t.
From a computational point of view, k-d tree can be implemented as a binary tree with good
performance on retrieving information. Each node of the current state of the tree represents
a point in the space. If the node is not a leaf, its geometric interpretation could be thought as
implicitly generating a splitting hyperplane diving the space in two parts.

Every node in the tree is associated with one of the k£ dimensions. The direction of
splitting hyperplane is orthogonal (perpendicular) to the axis corresponding to that dimension.
This way, all of the points of the space with coordinate values, corresponding to the selected
dimension, that are inferior to that one of the node lie on the left subtree, while the points with
values greater than that one of the node lie on the right subtree. Therefore, the hyperplane
would be the region of the space with that value for the selected dimension and its normal
would be the corresponding axis.

As there are different possible ways of choosing the order of axis selection, also there
are different possible ways to construct k-d trees. The most common one consists in choosing
the axis in a cyclic manner, returning to the first axis after the last one has been chosen. The
order of axis are usually predefined. For example, in R? space, one could select z — axis for
root node, after y — axis for the children nodes of root, and then z — axis for the grandchildren
of root, returning to x — axis for next generation, and to y — axis for next generation and so
on. Figure 4 shows an example of both generated data strcuture and the corresponding space
division, for a particular case of R? where the points in Table 2 are inserted into the structure
in the order thei appear in referred Table.

Table 2. Sequence of points inserted into kd-tree example.

Order | Point || Order | Point

1 4, 10) 7 9, 6)
(7,9) 8 5,3)
(1,8) 9 3,1
8,4) 10 2,5)
(5, 10) 11 6,1)
(7,3)

QN | AW

In our implementation, the use of a k-d tree provides a method for fast retrieving the
spatial position of a stored local minimum (vector t representation), as well as the possibility
of prioritizing different regions of the space when perturbing a solution. If a perturbation
generates a new solution that is not far enough (such criterion is determined by parameter
€p) from an existing point in the tree, this perturbation is not considered and a new one is
generated. In the other way, if a new solution is accepted in the distance criterion, it can be
placed in the tree, splitting the search space into new smaller portions that can be explored
later.

Summing up, the k-d tree structure consists in a log of all intermediate solutions gen-
erated during the execution of ILS-LM. That is, it keeps all local optima generated by each of
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Figure 4. Left: space partitions and right: generated k-d tree for the point sequence in Table
2

Levenberg-Marquardt (local search) execution and also all the solutions returned (approved)
by K-dPerturb. Once discussed this last aspect of our proposal, in Section 3, we discuss the
experiments performed in this work, as well as the obtained results.

3. Results

Before taking a look into the experiments performed and their corresponding com-
putational results, it is important to discuss a little about a factor that directly influences the
experiments, the stimulation patterns.

3.1. Stimulation Patterns

The choice of current injection protocols and electrical potential measurements is an
important aspect on studying EIT problem. The problem is ill-conditioned, so the image
generated is very sensible to the choices made. Nevertheless, this work do not focuses on
the study of such protocols and measurements. A deeper discussion on the subject can be
found on [32]. We are limited here to test the same two patterns used in [9]. The first one is
called diametrical. It is called this way because of an analogy with a circular domain, where
the electrodes used to inject current would be diametrically opposed. In this pattern, eight
different cases of current injection are taken. For each case, there are thirteen measures of
potential. This yields 13 x 8 = 104 measures.

The other pattern, called alternative, consists of an attempt to explore the region of
interest better than other regions. Hence, the electrodes used to inject current are taken near to
the heart, in this pattern. These electrodes are also called driven electrodes. Therefore, there
are six cases of current injection with thirteen measures, what yields 13 x 6 = 78 measures.
Figure 5 presents diagrams for both patterns. Each doubled arrow line indicates a pair of
driven electrodes in each case of current injection.

Once again, it is important to note that the terms “measure” or “measured” used, in
the context of this study, refers to synthetically generated values, generated by numerical
methods.



Figure 5. Stimulation patterns simulated. Left: diametrical pattern. Right: alternative pattern.

Next section presents the experimental setup for the tests performed.

3.2. Experimental Setup

As mentioned before, the experiments performed in this work aim at reducing geo-
metric error, what directly has to do with minimizing the error while determining EF. To do
so, we need to establish target values for EF that the tested techniques have to found. We call
those values target values. Such target values were determined as described next.

For the two dimensional model used in the present work, the areas of the transversal
section of heart cavities were assumed to be proportional to their volumes, that is, a cylindrical
approximation is used, so that EF is calculate by

EDA - ESA 5)
EDA ’

where EDA stands for the area of transversal section of the ventricle at the end of
diastole, while ESA stands for the area of transversal section of the ventricle at the end of
systole. Applying Equation 5 to values obtained from segmentation of MR images taken at
the end of systole and at the end of diastole, we have calculated that EF of left ventricle is
59.24%, while EF of right ventricle is 29.95%.

An artificial cardiac disfunction was synthetically generated then. Such disfunction

EF =

consists in alterating cardiac cycle by making the end-systolic volume being greater than the
normal, while the end-diastolic volume remains unaltered. This configures a new heart cycle,
in which EF of left ventricle values 33.01% and EF of right ventricle values 16.19%. These
are the target values to be estimated by the optimization methods used here.

Once defined the target values, we needed to determine initial guesses to the minimiza-
tion techniques. Two different initial guesses for vector t were used. The first one corresponds
to the shape of the ventricles at the end of diastole (¢; = 1, V7) while the second corresponds to
the shape at the end of systole (¢; = 0, V7). In both cases, they refer to the values of a normal
heart. A comparison of target values and initial guesses can be viewed in Figure 6.

Altogether, eight different experimental setups were submitted to LM and ILS-LM.
Each one of these experimental setups is composed by one of two possible values for Ratio of
Lung to Torso resistivity (LT = 20 or RLT = 50); one of two possible values for stimulus
pattern (diametrical or alternative); and one of two possible values for initial guess (¢; = 0 or
t; = 1). Thus, there are 2 x 2 x 2 = § different experimental setup combinations, concerning



-------------- Region of Interest (ROI)

(a)

Initial Guess (b)

Target

Figure 6. Targets (dark green) and initial guesses (red) given to the optimization procedures:
(@t; =0,V (b) t; = 1,Vi.

to RLT, stimulus patterns and initial guesses values. The results of such experiments, as well
as more information about the executions, are shown in Section 3.3.

3.3. Computational Results

The experiments performed where set up the way described in the last subsection. In
addition, other configurations used in the work were already mentioned, namely ¢; = 1072,
perc = 0.15 and n = 11 for our ILS-LM method. One should remember that the first local
search performed by ILS-LM is executed outside the loop, so we have a total of 1 + 11 = 12
LM executions inside the metaheuristic. In order to make a fair comparison, we executed
the LM algorithm 12 times, each one using a different and randomly chosen initial guess.
One of the 12 Levenberg-Marquardt executions receives the same initial guess as the one
used for the ILS approach. The rest of them receive randomly perturbated (in 15% of control
points) versions of this initial approximation. The perturbation used to generate these initial
aproximations is the same used inside K-dPerturb, as described in Subsection 2.3.4.

As already mentioned, the metric used here to compare the optimization methods (rel-
ative errors to target EF values) is not the same used inside the implementations to measure
the quality of solutions (geometric error). The first one is more adequated to the analysis
performed in this section, while the second can be more easily applied inside the algorithm,
when compared tho the prior metric. As the two metrics are directly correlated, such change
of measurements does not affect the conclusions made. The relative error to ejection fraction
is computed as below:

EF - EF
EF 7
where A% is the relative error, EF is the ejection fraction calculated from the values
obtained by the optimization techniques and £ F' is the target value for ejection fraction. Such
target values are 16.19 for the right ventricle and 33.01 for the left ventricle, as mentioned in

A% = 100 x (6)



Subsection 3.2. The value of EF is calculated according to Equation 5, using, for it, the values
of area of the geometric shapes resulting from the solutions returned by each minimization
technique tested.

As the hybrid technique returns only its best solution, we have made the same to the
pack of executions of classic LM. To compare results, we consider only the best result of the
twelve executions of LM. Table 3 summarizes those results. The values presented in the table
are the relative errors obtained by each method.

Table 3. Relative errors obtained in the set of experiments.

Diametrical Pattern
LM (Best Solution Found) ILS Approach
Initial Guess RLT=50 RLT=20 RLT=50 RLT=20
RV LV RV LV RV LV RV LV
t, =0 -18.10% | 4.15% | -5.19% | 3.03% | -8.03% | 2.76% | -6.42% | 1.85%
t,=1 247% | -2.36% | -191% | 0.03% | -1.98% | 0.21% | -5.37% | -0.06%
Alternative Pattern
LM (Best Solution Found) ILS Approach
Initial Guess RLT=50 RLT=20 RLT=50 RLT=20
RV LV RV LV RV LV RV LV
t;=0 -19.33% | 8.09% | 25.51% | -9.18% | -8.71% | 3.70% | 15.69% | -3.45%
t;=1 15.26% | -0.15% | 28.47% | -10.18% | 10.75% | 0.24% | 17.23% | -4.03%

One can see that, in general, diametrical pattern presents better results than the alter-
native pattern. The only exception is the case of left ventricle with RLT = 50 for classic
Levenberg-Marquardt. Once diametrical pattern uses more pair of electrodes, this may indi-
cates that more studies should be made in the direction of finding the best injection protocol
with minimum of measures taken. Another important observation is that, also with only one
exception (right ventricle, RLT = 20, diametrical pattern), the hybrid approach has found
better results than classic LM.

Concerning to initial guesses, for the diametrical pattern, all results using ¢; = 1,V:
(end of diastole) were better than using ¢; = 0, Vi (end of systole). In some cases, like right
ventricle with RLT = 50, the improvement was significant. For the case of the alternative
pattern, the end of diastole was a better initial guess only in three out of eight cases. Hence,
the best initial guess may vary with the protocol of current injection and measurement used.

Concerning the Ratio of Lung to Torso resistivity, the value of RLT = 20 has shown
better results for both techniques, once again, with only one exception (right ventricle, ¢; = 1,
ILS-LLM), when considering diametrical pattern. The opposite occurred when considering the
alternative pattern.

In terms of computational costs, each execution of classic LM took about 25 min for
the diametrical pattern, and about 20 min for the alternative pattern, what yields near 5 hours
of execution for the more expensive case (diametrical) and about 4 hours for the cheapest one
(alternative). The execution of ILS-LM was a little faster: around 4 hours and 30 min for
the diametrical case and around 3 hours and 45 minutes for the alternative pattern. Such tests
were taken in a machine with Intel Core 15, 2.8 GHz, 4GB of RAM and the methods were
implemented in C/C++ and Fortran77 languages.



4. Conclusions

Comparing the different protocols, the behavior of the diametrical one seems to be
more stable. The results of diametrical pattern were more accurate than the alternate one,
but with higher costs and using more measures. However, the reduction of execution time
in about 20% obtained by the alternate pattern, justifies further investigations on the topic of
stimulation patterns.

The most important conclusion of this work is about the optimization technique used.
The Iterative Local Search implementation improved the quality of the obtained solutions and
reduced the execution time of the inverse problem. The results suggest that this new hybrid
method explores the search space in a more efficient way, probably due to the perturbation
procedure that allows diversification on the solutions prioritizing regions not yet explored
(due to the use of k-d trees). In addition, the fact of using variations of local optima to feed
local search procedures might have provided faster convergences of the other local searches,
what would explain the the reason why this new hybrid method was faster than the traditional
Multistart Local Search method using LM.

Therefore, the results suggest that this new hybrid method, the ILS-LM, is a promising
technique for the solution of the inverse problem associated to Electrical Impedance Tomog-
raphy. Considering also the fact that some of the aspects of ILS-LM were implemented in
a very simple fashion, like the SimpleAcceptance criteria or the stopping condition, there is
much to be done in the direction of increasingly improve the cost vs. benefit relation of the
techniques used in EIT inverse problem. In addition, future work should also investigate more
intelligent and sophisticated perturbation and acceptation methods than those proposed in this
work.
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