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Abstract. The aim of this paper is to show, using an example, the finite element
potential to simulate ductile fracture problems involving high number of degrees
of freedom. The example consists of a model proposed by Gologanu, Leblond,
Perrin and Devaux (GLPD model) to describe ductile fracture. This model is an
extension of the famous Gurson’s model to address the underlying unlimited lo-
calization problem arising in the Gurson model. The GLPD model was derived
from some refinement of Gurson’s original homogenization procedure; the new
model is of “micromorphic” nature, involving the second gradient of the macro-
scopic velocity and generalized macroscopic stresses of “moment” type, together
with some characteristic “microstructural distance”. The numerical implementa-
tion of this model into finite element codes is quite involved, since its requires the
use of finite element of class @nd the solution of a complex “projection onto

the yield locus” problem. Enakoutsa and Leblond have proposed a numerical
scheme that avoids these two difficulties. We present here some new assessments
of this numerical scheme. First, we develop an analytical solution for the problem
of an elastic hollow sphere, obeying the GLPD model and subjected to hydro-
static tension; this solution agrees very well with the numerical predictions of
the GLPD model. Also, comparisons between experimental and numerical load
vs. displacement curves for an axisymmetric pre-cracked spcimen made of typical
stainless steel are found to yield satisfatory results.
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1 INTRODUCTION

Ductile fracture of porous metals arises from the nucleatipowth and final
coalescence of microvoids. Gurson (1977)’'s model basedlooraogenized” ap-
proach provides a good description of the second stagesptbress. Heuristic
extensions of Gurson model due to Tvergaard (1981) and @aetgand Needle-
man (1984) allow to account for the first and third stages.ctitia finite ele-
ment computations of problems involving ductile fractulways suffer from a
pathological dependency of the results upon the finite eiésize. This problem
originates from the presence of softening in the Gurson inddee way to cir-
cumvate this difficulty is to adopt a nonlocal evolution etira for the porosity
(softening parameter) involving a spatial integral of sdtoeal porosity rate”, as
suggested by Pijaudier-Cabot and Bazant (1987) in the xboteoncrete dam-
age. Enakoutsa et al. (2007) have shown that this solutiowslto eliminate the
pathological mesh effects without degrading the qualitthefagreement between
typical experiments of ductile fracture tests. Howeves,ghcces of this approach
was at the expense of its purely heuristic character andhds of any serious
physical justification. Boundary effects also entail somendacks.

These are good reasons to consider Gologanu et al. (198®femorphic
model of ductile rupture, which was derived from some extan®f Gurson
(1977)'s original homogenization procedure, based onitimmd of homogeneous
boundary strain rate, to conditions mhomogeneouboundaries strain rate. In
Gologanu et al. (1997) model, the velocity imposed on thendauy of the repre-
sentative cell considered is no longer linear but quadveitic respect to the coor-
dinates. Doing so allows to account for sharp gradient ofrosopic mechanical
fields encountered, for instance, near crack tips or dutiragrslocalization. The
output of the procedure was a model of “micromorphic” typmpiving the sec-
ond gradient of the macroscopic velocity and a generalizadroscopic stress of
“moment” type together with some microstructural charaste distance of the
order of the average voids semi-spacing.

The numerical implementation of this model into some finiwreent code
raises two problems. The first one is the apparent need fde felement of
classC!, non-available in standard finite element codes. This nsexbviated
through introduction of some new nodal variables reprasgnihe components of
the strain rate. The second difficulty lies in the necessagration of “projec-



tion” onto the sophisticated yield locus. An implicit alggam similar in principle
to that classically used for the von Mises criterion, altilomuch more complex
in detail, is adopted for this purpose. The details of the aical implementation
are provided in Enakoutsa and Leblond (2009).

The aim of this paper is to follow up the study of the assessewicthe al-
gorithm of Enakoutsa and Leblond. Namely, we shall consierdifferent as-
sessments. The first one is discussed in Section 2. It is ooetevith some
analytic solution developed for the problem of an elastibdwosphere subjected
to hydrostatic tension in the framework of linearized etdist the matrix ma-
terial obeys the GLPD model. Comparisions between the nigalgredictions
of the GLPD model and the analytical solution confirm the sibass of the nu-
merical scheme used by Enakoutsa and Leblond (2009) in thiementation of
this model into SYSTUS finite element code. Hence, this ezfee analytical so-
lution can be used to assess the numerical implementatitmeoGLPD model
in another finite element code. In the second applicatioegmmed in Section 3,
comparisions between experimental and numerical logalatisment curves for
an axisymmetric pre-cracked specimen made of a typicallets steel are found
to yield satisfactory results.

2 GLPD model

The derivation of the GLPD model, based on homogenizatisoofe repre-
sentative “elementary cell” in some plastic porous mediubjexted to conditions
of inhomogeneouboundary strain rate, is presented in detail in Gologanu. et a
(1997) and will not be repeated here. The hypothesis of @dgiof elastic and
plastic strain rates reads

D
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Note that the elastic and plastic paf¥D)¢, (VD)? of the gradient of the strain
rate here have no reason to coincide with the gradieiiis¢), vV (D?) of the elas-

tic and plastic parts of the strain rate. The rest of the efgésef the constitutive
equations of the GLPD model are summarized below.
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2.1 Hypoelasticity law

The elastic parts of the strain rate and its gradient aréaeta the rates of the
stresses and moments through the following hypoelastaity;
&ij = AD;kézj + 2/LDZEJ
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In these expressions; and Mijk are the Jaumann (objective) derivativespf
and M. Also, A andy are Lamé’s coefficients, is the mean half-spacing be-
tween voids, andU® = (Uf),<,<3 is a vector the value of which is fixed by the
equationsV/;;; = 0:
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This vector plays the same role in the model as the compafenf the elastic
strain in the theory of thin plates, which is fraepriori but fixedin fine by the
plane stress condition.

2.2 Yiddcriterion

The plastic behaviour is governed by the following Gursiée-triterion

_ 1 2 ? 30m 2
O(o,M, f) = o <0’eq + ﬁ) + 2p cosh (57) —1—p*=0. 4)
In this expression,

1/2 . . . .
® 0y = (g a;jagj) / (¢’ = deviator ofo) is the von Mises equivalent stress;

o % tr o is the mean stress;

e o represents a kind of average value of the yield stress indtexrdgeneous
metallic matrix, the evolution equation of which is giveridwe;

1This law slightly differs from that proposed by Gologanu bt(4997). The modification is
permissible in view of the minor role played by elasticitydactile rupture problems and allows
for a somewhat easier numerical implementation of the model

2Thisis the radius of the spherical elementary cell considi@r the homogenization procedure.



e pis a parameter connected to the porosity (void volume foagtf through
the relation (Tvergaard (1981), Tvergaard and Needlema84():

N it f<f
p=aft 7 _{fc+5(f—fc) it f> /. ®)

wheregq is “Tvergaard’s parameter’, the “critical” porosity at the onset
of coalescence of voids, and(> 1) a factor describing the accelerated
degradation of the material during coalescence;

e ()% is a quadratic form of the components of the moment tensenddy

A = 0.194
2 _ !
Q=AM+ A My { A = 6.108 ©
whereM; and M;; are the first two invariants a¥1:
1 3
M = §ijiMk:ki , M= §M2/Jklejk 0

(M’ = deviator ofM over its first two indices).

2.3 Flowrule

The plastic parts of the strain rate and its gradient arengbyethe flow rule
associated to the criterion (¢)a the normality propert:

0P
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Dij n nanj
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with
n=0 if ®(c,M,f)<0
9)

n>0 if ®o,M,f)=0.
The terms involving the vectdd? = (U?),<;<3 here represent an arbitrary rigid-
body motion left unspecified by the flow rule (see Gologanul ef1®97)). In
practice, the value diJ? is again fixed by COﬂditiOﬂMz‘jj = 0. This vector plays
the same role in the model as the compori&nof the plastic strain rate in the
theory of thin plates.

3It has been shown by Gologanu et al. (1997) that the normpaidiiperty is preserved in the
homogenization process.



2.4 Evolution of internal parameters

The evolution of the porosity is governed by the followingsgical equation,
which results from approximate incompressibility of thetatiéc matrix:

f=({1-f)trD". (10)
The parametet is given by
7 =0(e) (11)

whereo (¢) is the function providing the yield stress of the matrix nnatleas a
function of the equivalent cumulated strainande is the average value of this
equivalent strain in the heterogeneous matrix. The evanutf € is governed by
the following equation:

(1— f)gé=0:DP+M(VD). (12)

3 Analytical solution of the hollow sphere problem

In this section, we consider the problem of a hollow spheremér and outer
radii ; andr., respectively. The inner surface of this sphere is fixed evtiie
outer one is subjected to hydrostatic tension loading. Th&irmmaterial of th
ehollow sphere obeys the elasticity law Eq.(2). We studyegphlly symmetric
solutions for this problem in the framework of linearizeagtlcity (small dis-
placement, small strain).

Letu, = u denote the radial displacement in the matuxs e, the displace-
ment vector; also, we assume tiat= Au. Taking the derivatives of the moment
and stress components of Eq.(2), we get after a tediouslaatou

Oij,j = (A+2p)w
10X +2 13
Mijx,jk a (13)

aTHY +4u( w)i

The equilibrium equations;; ; — M, ;i jr = 0 yields the following equation:

Aw — kK*w =0, (14)
where
1—-2vb
K = v (15)
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Eq.(14) is similar to those obtained in the problem of ragi&riations of a
sphere, but with-k?w instead ofi?>w. In fact, it can be shown that the vecter
derives from a functio®, that is,w = grad®. Eq.(14) then yields

AP — k2D = cste. (16)

Adjusting the arbitrary:ste in EQ.(16) and solving this equation férwe get in
spherical coordinates

ekr efk:r
b=a—+p4
T

and w=w, =9 (17)
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whereq, g andk are arbitrary constants and the symb(bdanotesag. The radial
T

displacement., = u is then obtained as

w=w, = (VtrD), = (trD), = (u' + 27“)'. (18)

Solving Eq.(18) for, = u , we finally get

u(a:):a(l—%)€+ﬂ(l+%)e_$+vx+%, (19)
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wherex = kr, a, 3, v andé are arbitrary constants. It is necessary to calcultate
the values of these arbitrary constants to completly defireahalytical form of
the displacement. To that end, we define the boundary conditidis, (r;) = 0,
up(r;) = Ay My (re) = 0 andu,(r.) = A.. This allows to form a system of
four linear equations with four unknowas 3, v andd
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(20)




the solution of which is obtained as:
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Egs.(21), (19), (22) and the expressiorinf completly define the expression of
the radial displacement.

4 Numerical applications

Taking advantage of the axisymmetry conditions of the grobtonsidered,
we study only the quarter of the geometry of the problem, reatien two di-
mensions; this yields a mesh discretization of 81 elemditits.external radius,
worth 10mm and is twice the internal radius. Again, the matrix material of the
hollow sphere obeys the elasticity law defined by Eq.(2),Using a high value
of the yield limit, so that the behavior of the matrix staysthe elastic regime
during the entire numerical computation. The value chosethie characteristic
length isb=1 mm. The load is an imposed displacement on the upper surface of

4The terms givingD, are to long and are not provided here; however, it can beyezaditulat-
edvusing Eq.(20)



the hollow sphere; the inner surface of the sphere remains fix

The numerical computations were performed using SYSTUSdee devel-
oped by ESI Group where the GLPD model presented in Sectioaslimple-
mented, in two dimensions. The numerical implementatianlde®en extensively
discussed in Enakoutsa and Leblond (2009); consequenih}| nhot be repeated
here. Recall, however, that this implementation raisesmars problems. The
first one is the apparent need for elements of ctdss This need is obviated
through introduction of some new nodal variables reprasgnihe components of
the strain rate. The second problem lies in the necessargtipeof “projection”
onto the sophisticated yield locus. An implicit algorithimgar in principle to
that classically used for the von Mises criterion, althoagich more complex in
detail,is adopted for this purpose. The convergence ofdlgisrithm is difficult,
because of the large number of nodal degrees of freedomt ihabives, and the
CPU time may increase.

In practise, Enakoutsa and Leblond (2009) have obtainegecged results by
slightly modifying the original algorithm. Their modifiagah consists of fixing
the values of the rate of the plastic deformation as well agiadient to those
of the previous time step. These values become knowns inrtidgm, contrary
to the original algorithm where they were unknowns. The tsotuof the new
problem is then equivalent to that of a purely elastic protgth initial deforma-
tions. The balance equations are solved for on the configuarat timet instead
of t + At and it only remains some weak non-linearities related taJthenann
derivative of the stresses and moments. At convergenceathes of the rate of
the plastic deformation and its gradient are stored, anddistributed into elastic
and plastic parts using the “projection algorithm”. Thejpotion problem itself
does not change. The proposed modification was only validdoy small time
step as it is usually the case in explicit numerical codes.

Presented in contrast here are the results using the drigipéementation
algorithm described in Enakoutsa and Leblond (2009). eigjuliustrate the dis-
tribution of the displacement over a radius of the hollowesptfor several charac-
teristic length distancés 0.5, 1 and 2nm. The results of these comparisons con-
firm the robustness of the numerical scheme proposed by Eisgkand Leblond
(2009) to implement the GLPD model into SYSTUS FE code. Allsey demon-
strate that the analytical solution for problem of an etalstillow sphere obeying



Figure 1: Comparisons computations/theory. Distributodrthe displacement
over a radius of the hollow sphere for several characteristigth distances.
Top: b=0.5nm; Bottom-left: b=1mm; bottom-right:6=2mm. The computations
were performed in the framework of linearized elasticityasbed lines: theory;
dotted lines: GLPD numerical predictions. The numericalles agree very well
with the analytical solution.

the GLPD model and loaded in tension can be viewed as a refeitenassess
future numerical implementations of the GLPD model into Fees that differ
from SYSTUS.

Another more complex numerical application is the probldra pre-cracked
axisymmetric specimen in tension, made of A508 Cl.3 stexlwhich experi-
mental results of fracture tests are available RoussatiérMdudry (1983). The
mesh of this specimen is shown in Figure 2. Advantage is takesymmetry
about the horizontal mid-plane to mesh only the upper hathefstructure. The
semi-height and radius are 22.5 mm and 7.5 mm respectivélg. shape of the
central notch is triangular in a meridian plane; its halenmg angle and depth
are30° and 2.5 mm respectively. A fatigue pre-crack of length 0.9 (mwisible
in the figure) originates from the notch root. Figure 3 shdveséxperimental and
numerical load-displacement curves. The numerical reqdte been obtained
using the GLPD model witth = 55 um. The agreement is quite acceptable in
view of the experimental errors.

The conclusionis that, although the computations usingc&msa and Leblond
(2009)’s numerical scheme are quite time-consuming dugetanicreased number



Figure 2: Mesh of the pre-cracked specimen
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Figure 3: Comparison of experimental and numerical loapldcement curves
of the pre-cracked specimen TA15. The agreement betwedBltR® numerical
predictions and the experiments is acceptable, in vieweeikperimental errors.

of nodal degrees of freedom, Enakoutsa and Leblond (208@jsithm seems to
be a promising tool to simulate the behavior of metallic mate undergoing duc-
tile rupture, especially in the post-bifurcation regimeleése materials.
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