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Abstract. The Fokker Planck Equation (FPE) is a partial differential equation for the prob-
ability density and transition probability of a random process. Owing to its broad range of
applications, the FPE has been an interesting research topic. Recently, Radial basis functions
(RBFs) have emerged as a powerful numerical tool for solving partial differential equations
and this paper reports an integrated RBFs (IRBFs) based numerical method for the solution of
FPEs. The use of integration to construct RBF approximants helps avoid the reduction in con-
vergence rate caused by differentiation [ 1] . Numerical experiments showed that IRBF methods
can yield accurate solutions on a much coarser mesh, thus reducing the computational effort
required for a given degree of accuracy.
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1. INTRODUCTION

The Fokker-Planck Equation (FPE) is used to describe a stochastic process in diverse
fields, including plasma physics, biophysics, engineering, neurosciences, nonlinear hydrody-
namics, and polymer physics. The FPE is a partial differential equation for the probability
density and transition probability of such random processes. Owing to its broad range of ap-
plications, the FPE has attracted significant attention of several researchers.

Generally, it is difficult to obtain an analytic solution to a FPE, especially if no separa-
tion of variables is possible or if the number of variables is large. Various numerical methods
for solving FPEs were devised via the transformation of a FPE to a Schrodinger equation or
numerical integration methods [2]. Numerical methods for the solution of FPEs include Finite
Difference Method for2D-problems [3], Variational iteration method [4, 5], Moving Finite
element method [6] and Homotopy perturbation method [7]. Recently, Radial basis functions
(RBFs) have proved to be a powerful numerical tool for approximation of scattered data, and
as a result, have found applications in various fields of research interests [8]. For a numerical
solution of partial differential equations in engineering and sciences, RBF based collocation
methods [9, 10], have increasingly been a focus of research efforts. For the direct of Kansa



approach [10], various improvements can be made for solairgger problems. For example,
one can improve the condition number of the system matrix lmcalisation of the RBF ap-
proximants [11] or domain composition techniques [12]. Bogcently, numerical schemes,
based on the integrated RBFs (IRBFs) approach, for solhifeyential differential equations
were reported [1, 13]. The use of integration to construeRBF approximants is expected to
overcome the problem of reduced convergence rate causeifféngutiation [1]. Numerical
experiments showed that IRBF based methods can yield decgmlutions on a coarse mesh
[13], and thus have the ability to reduce the computatiofiaiteequired for a given degree of
accuracy. In this work, we present a collocation technigueriporating the one dimensional
integrated RBFs (1D-IRBF) for a numerical solution of FPEs.

The paper is organized as follows. Section 2 gives a shagwesf several forms of the
FPEs. In section 3, the discretization of a FPE using theRBH method is detailed. Several
numerical examples are then discussed in section 4 with @uwsion in section 5.

2. THE FOKKER PLANCK EQUATION

Consider the FPE for a field variabléx, t) of 1-D independent variablesand timet
as follows [2].
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whereA(z) > 0 is the drift coefficient;B(z) > 0 the diffusion coefficient. The initial condi-
tion is given by

u(z,0)=f(z), zeRN 2)
wheref(x) is a known function. If the drift and diffusion coefficientsgend on time, Eq. (1)
is expressed as
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In certain applications, the drift and diffusion coeffidierare dependent on the distribution
functionu(z, t) itself and the FPE can be expressed (see [2, 4] for details) by
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Generally, Eq. (4) for a vector variabde= (1, 7o, ..., z,,)* is rewritten as
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Mathematically, FPE is a second—order parabolic partfmintial equation (more details can
be found in [2]). In the next sections, a 1D-IRBF based comafporal technique is described
for the numerical solution of FPEs.

3. 1D-IRBF MESHFREE METHOD FOR THE SOLUTION OF FPEs

For the sake of explanation, consider the FPE in the form {th) (&, ¢) € Q2 x [0, 7.



3.1. 1D-IRBFsfor atime dependent function

At a given timet, the highest-order derivative of the dependent varialfle t) (the
second order for a FPE) is decomposed as

Nz
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where{w;(t)} 7, is the set of RBF weight,G!” ()} the set of Multi-quadric RBFs (MQ-
RBFs), generally considered as one of the best RBFs for gerjmation of a function [14],
and given by

G (2) = (v — i) +a2) ", ()

where{c;}=, is a set of centres anfd; } ", a set of MQ-RBF widths [15].
The correspondlng first-order derivative and the functitself are then determined
through integration as follows.
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whereGl'(z) = [ GP(2)dz, G(z) = [ GI'(z)dz andC, andC, are unknown constants of

mtegratlon at time.
Collocating equations (6), (8) and (9) at a set of grid pofatg *~, yields the following

set of algebraic equations
o”u(x, t)
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wherewu; = u(x;, t) withi = (1,2,---, N,).

Owing to the presence of integration constants in the IRB§ebapproximants, one
can beneficially introduce in the algebraic equation systdditional constraints such as nodal
derivative values (more details can be found in [13, 1]). §/ibe algebraic equation system
(12) can be reformulated as follows.
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wheref = Lw are additional constraints. The conversion of the netweelght space into the

physical space yields
wzé*<%), (13)

C-! is the conversion matrix. By substituting (13) into (6) aB)l the second and first-order
derivatives ofu(z, t) will be expressed in terms of nodal variable values as falow
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whereD,, andD,, are known vectors of lengt,; andk,, andk,, scalars. Applying (14) at
each and every collocation point yields
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Whereﬁgac andﬁlm are known matrices of dimensios, x N,; and?%h and?%lx are known
vectors of lengthV,.

3.2. Temporal and spatial discretization of FPEs
The FPE (1)(z,t) € 2 x [0,T], is rewritten as follows

ou 0*u 0B\ Ou 0A 0°B

wherez, t, u(z,t), A(z) and B(x) are defined as before.

Assume that the time intervdl, 7] is partitioned into:, equal subintervalg,,, ¢, ] of
lengthAt = T'/ny with t, = 0 andty,. = T'. In fully discrete schemes, Eq. (16) is discretized
with respect to both time and space variables. The diset@iizin time is accomplished by a
time-stepping scheme, followed by the spatial discrabpnabased on the 1D-IRBFN method.

Applying thef-scheme to Eq. (16) yields

n+1 n
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wheret"t1 = " + At, u" ™! = u(x, t"*1) and the operatof is given by

ey = -2 (A 20—3) o) | <8—A - 62—3> (). (18)
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For the Crank-Nicolson method (= 0.5 and second-order accurate), Eq. (17) is
expressed as
u" ™+ alu™t = u" — alu”, (29

wherea = 0.5At.
For the fully implicit method{ = 1), Eq. (17) is rewritten as

u" ™+ alu™T = un, (20)

wherea = At.
For the fully explicit method{ = 0), Eq. (17) is given by

u"t =" — alu”, (22)

wherea = At.

Equations (19)-(21) together with the constraints (bompnd&/and initial conditions)
at time¢"*! are then spatially discretized using the 1D-IRBF approagstdbed in section
3.1. The obtained solution is the values of the field varialéhe grid points. Simulation
is terminated when either the desired time (transient prablor convergence (steady state
problem) is reached. In the next section, the fully implcéthod is used for time discretization
of the FPEs.

4. NUMERICAL EXAMPLES

The present method is verified with some numerical experisnhich have been de-
scribed in [4, 16, 17]. It is worth noting that the problems ablved on a bounded interval
which is uniformly discretized. The approximate solutiaidained are compared with the
analytic ones using the following error norms

n 2
N, = \/ZZ (50— uele)

Zi:l (u™(z;) — ue:c(xi))z
RMSE = \/ N

whereu(z;), u..(z;) are the numerical and exact solutions forespectively at a collocation
pointz; and timet™ and NV the total number of test points.

4.1. Example 1
Consider the FPE (1)

ou(z,t) [ 0 0?

ot _%A() Ox?

— B(z)| u(z,t) (22)
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Figure 1. The absolute error afwith respect tar at timest = 0.1, ¢t = 0.5 andt = 1.

with A(x) = —1, andB(z) = 1 and initial conditionu(z,0) = x,
solution to the problem ig(z,t) = = + t.

The problem is solved in the time peri¢@ 1] with time step sizeAt = 0.01. Figure
1 shows the error of with respect tor at timest = 0.1, t = 0.5 andt = 1 using the present
method with25 collocation points in comparison with the exact solution.

The problem is also solved usiri§g and36 collocation points. The values @f, and
RMSE using50 test points withl5, 25 and 36 collocation points are given in table 1. The
results show that the method yields a higher degree of acguvhile using relatively coarse
grids in comparison with others, including the Kansa RBBI&&) and Hermite RBF (table 3)

approaches.

(z € [0,1]). The exact

Table 1. Values ofV, and RM S E for numerical examples 1,2,3 for several sets of collocatio
points (15, 25 and 36) using the 1D-IRBF collocation methdde number of test points is
N =50 andAt = 0.01.

Example 1 Example 2 Example 3
N N, RMSE N, RMSE N, RMSE
15| 3.45¢—6 | 1.16e — 6 | 3.62e —4 | 6.74e — 4 | 4.16e — 4 | 7.86e — 4
25| 825e—7 (289 —7 222 —5|354e—5|928¢e—6 | 1.13e —5
36| 548 —9|1.94e—9 | 7.62e—7|237e—7|512e —7 | 638 —7

4.1.1 Example?2

Consider the Fokker-Planck equation (1) with

(23)
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Figure 2. Exact and approximate solutionsdcare plotted against at timest = 0.1,¢ = 0.5
andt = 1.

t € [0,1], z € [0, 1], and initial conditionu(x,0) = f(x) = z. The exact solution is given by
u(z,t) = xexp(t).

Similarly, the problem is solved with time step sia¢ = 0.01 and three sets of col-
location points as in example 1. Errors are shown table lgusintest points as in example
1. A comparison with the other results given in tables 2 andr8iams higher accuracy of the
present solution.

4.1.2 Example3

Consider the backward Kolmogorov FPE (see [2] for more tgtas follows

ou(z,t) 5, 02
5 = A(x,t)% + B(x,t)w u(z,t) (24)

where the drift and diffusion coefficients depend on botretamd space as follows
A(x,t) = —(z+1), B(x,t) =2 exp(t). (25)
With the initial condition

u(z,0) = f(z)=2+1, z€]l0,1], (26)



Table 2. Values ofV, and RM S E for numerical examples 1,2,3 for several sets of collocatio
points (25, 36, 49 and 81) using the Kansa’s RBF approa¢hs 0.01 and the number of test

points N = 50. Data are obtained from source [16]

Example 1 Example 2 Example 3
N N, RMSE N, RMSE N, RMSE
25128le—2|122¢—2|337Te—2 | 440e —2 | 2.T4e — 2 | 7.94e — 2
36| 1.50e —3 | 6.52¢ —4 | 1.91e—2 | 2.50e —2 | 3.94¢ — 3 | 1.12¢ — 2
49| 1.34e —4 | 5.83e —5 | 8.68¢ —4 | 1.13e —3 | 7.23e — 4 | 2.04e — 3
81]9.20e —6|4.00e —6 | 1.94e —5 | 2.53e —5 | 2.18e — 5 | 6.18¢ — 5

Table 3. Values ofV, and RM S E for numerical examples 1,2,3 for several sets of collocatio
points (25, 36, 49 and 81) using the Hermite RBF without tinsemtization scheme. The
number of test points i% = 50. Data are obtained from source [16].

Example 1 Example 2 Example 3
N N, RMSE N, RMSE N, RMSE
25 148¢ —4 | 64le—5|212¢e—4 | 1.2le—4 | 1.73e —4 | 2.23¢ — 4
36|230e—5{992e—6|71le—5|543e—5| 1.13¢e —4 | 1.6le — 4
49| 2.8le—6 | 1.21e — 6 | 8.63¢ — 6 | 6.86e — 6 | 8.29¢ — 5 | 8.61le — 5
81| 383 —8|1.65e—8|493e—8|3.12e—8|1.35e—7 | 1.76e — 7

the exact solutionto the problemisz, t) = (z + 1) exp(?).

Figure 2 shows the approximate solution with respeat tsing a very coarse grid of
15 collocation points at times = 0.1, ¢ = 0.5 and¢ = 1. The problem is also solved with
25 and 36 collocation points. Similar comments as in examples 1 andr2be made here
regarding results in tables 1, 2 and 3.

In general, although the accuracy of solutions tends toedeer with time, the results
claimed that the present method can reach high order agcusaty coarse grids.

5. CONCLUSION

The 1D-IRBF based meshfree method has been successfuljoged for the com-
putation of FPEs. The advantages of the present approatiden¢) to yield a meshless
discretisation of FPEs; (ii) to improve the approximaties@racy by avoiding the reduction in
convergence rate caused by differentiation; (ii) to redheenoise in the approximation via the
use of integration as a smoothing operator to constructgpeoaimants. The present method
is demonstrated with several forms of FPEs. The obtainedtseshow that the present method
yields a high degree of accuracy with relatively coarsegrid
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