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Abstract. The Fokker Planck Equation (FPE) is a partial differential equation for the prob-
ability density and transition probability of a random process. Owing to its broad range of
applications, the FPE has been an interesting research topic. Recently, Radial basis functions
(RBFs) have emerged as a powerful numerical tool for solving partial differential equations
and this paper reports an integrated RBFs (IRBFs) based numerical method for the solution of
FPEs. The use of integration to construct RBF approximants helps avoid the reduction in con-
vergence rate caused by differentiation [1]. Numerical experiments showed that IRBF methods
can yield accurate solutions on a much coarser mesh, thus reducing the computational effort
required for a given degree of accuracy.

Keywords: Fokker-Planck Equation, Parabolic partial differential equation, Integrated Radial
Basis Functions, Collocation point.

1. INTRODUCTION

The Fokker-Planck Equation (FPE) is used to describe a stochastic process in diverse
fields, including plasma physics, biophysics, engineering, neurosciences, nonlinear hydrody-
namics, and polymer physics. The FPE is a partial differential equation for the probability
density and transition probability of such random processes. Owing to its broad range of ap-
plications, the FPE has attracted significant attention of several researchers.

Generally, it is difficult to obtain an analytic solution to a FPE, especially if no separa-
tion of variables is possible or if the number of variables is large. Various numerical methods
for solving FPEs were devised via the transformation of a FPE to a Schrodinger equation or
numerical integration methods [2]. Numerical methods for the solution of FPEs include Finite
Difference Method for2D-problems [3], Variational iteration method [4, 5], Moving Finite
element method [6] and Homotopy perturbation method [7]. Recently, Radial basis functions
(RBFs) have proved to be a powerful numerical tool for approximation of scattered data, and
as a result, have found applications in various fields of research interests [8]. For a numerical
solution of partial differential equations in engineering and sciences, RBF based collocation
methods [9, 10], have increasingly been a focus of research efforts. For the direct of Kansa
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approach [10], various improvements can be made for solvinglarger problems. For example,
one can improve the condition number of the system matrix by alocalisation of the RBF ap-
proximants [11] or domain composition techniques [12]. More recently, numerical schemes,
based on the integrated RBFs (IRBFs) approach, for solving differential differential equations
were reported [1, 13]. The use of integration to construct the RBF approximants is expected to
overcome the problem of reduced convergence rate caused by differentiation [1]. Numerical
experiments showed that IRBF based methods can yield accurate solutions on a coarse mesh
[13], and thus have the ability to reduce the computational effort required for a given degree of
accuracy. In this work, we present a collocation technique incorporating the one dimensional
integrated RBFs (1D-IRBF) for a numerical solution of FPEs.

The paper is organized as follows. Section 2 gives a short review of several forms of the
FPEs. In section 3, the discretization of a FPE using the 1D-IRBF method is detailed. Several
numerical examples are then discussed in section 4 with a conclusion in section 5.

2. THE FOKKER PLANCK EQUATION

Consider the FPE for a field variableu(x, t) of 1–D independent variablesx and timet
as follows [2].

∂u(x, t)

∂t
=

[
−

∂

∂x
A(x) +

∂2

∂x2
B(x)

]
u(x, t) (1)

whereA(x) > 0 is the drift coefficient;B(x) > 0 the diffusion coefficient. The initial condi-
tion is given by

u (x, 0) = f (x) , x ∈ ℜ (2)

wheref(x) is a known function. If the drift and diffusion coefficients depend on time, Eq. (1)
is expressed as

∂u(x, t)

∂t
=

[
−

∂

∂x
A(x, t) +

∂2

∂x2
B(x, t)

]
u(x, t) (3)

In certain applications, the drift and diffusion coefficients are dependent on the distribution
functionu(x, t) itself and the FPE can be expressed (see [2, 4] for details) by

∂u(x, t)

∂t
=

[
−

∂

∂x
A(x, t, u) +

∂2

∂x2
B(x, t, u)

]
u(x, t) (4)

Generally, Eq. (4) for a vector variablex = (x1, x2, ..., xn)T is rewritten as

∂u(x, t)

∂t
=

[
−

n∑

i=1

∂

∂xi
Ai (x, t, u) +

n∑

i,j=1

∂2

∂xixj
Bi,j (x, t, u)

]
u(x, t) (5)

Mathematically, FPE is a second–order parabolic partial differential equation (more details can
be found in [2]). In the next sections, a 1D-IRBF based computational technique is described
for the numerical solution of FPEs.

3. 1D-IRBF MESHFREE METHOD FOR THE SOLUTION OF FPEs

For the sake of explanation, consider the FPE in the form (1) with (x, t) ∈ Ω × [0, T ].



3.1. 1D-IRBFs for a time dependent function

At a given timet, the highest-order derivative of the dependent variableu(x, t) (the
second order for a FPE) is decomposed as

∂2u(x, t)

∂x2
=

Nx∑

i=1

wi(t)G
[2]
i (x), (6)

where{wi(t)}
Nx

i=1 is the set of RBF weights;{G[2]
i (x)}Nx

i=1 the set of Multi-quadric RBFs (MQ-
RBFs), generally considered as one of the best RBFs for the approximation of a function [14],
and given by

G
[2]
i (x) =

(
(x − ci)

2 + a2
i

)1/2
, (7)

where{ci}
Nx

i=1 is a set of centres and{ai}
Nx

i=1 a set of MQ-RBF widths [15].
The corresponding first-order derivative and the function itself are then determined

through integration as follows.

∂u(x, t)

∂x
=

Nx∑

i=1

wi(t)G
[1]
i (x) + C1(t), (8)

u(x, t) =
Nx∑

i=1

wi(t)G
[0]
i (x) + C1(t)x + C2(t), (9)

whereG
[1]
i (x) =

∫
G

[2]
i (x)dx, G

[0]
i (x) =

∫
G

[1]
i (x)dx andC1 andC2 are unknown constants of

integration at timet.
Collocating equations (6), (8) and (9) at a set of grid points{xi}

Nx

i=1 yields the following
set of algebraic equations

∂2
ũ(x, t)

∂x2
= G̃

[2](x)w̃(t), (10)

∂ũ(x, t)

∂x
= G̃

[1](x)w̃(t), (11)

ũ(x, t) = G̃
[0](x)w̃(t), (12)

where

G̃
[2] =




G
[2]
1 (x1) G

[2]
2 (x1) · · · G

[2]
Nx

(x1) 0 0

G
[2]
1 (x2) G

[2]
2 (x2) · · · G

[2]
Nx

(x2) 0 0
...

...
. . .

...
...

...
G

[2]
1 (xNx

) G
[2]
2 (xNx

) · · · G
[2]
Nx

(xNx
) 0 0


 ,

G̃
[1] =




G
[1]
1 (x1) G

[1]
2 (x1) · · · G

[1]
Nx

(x1) 1 0

G
[1]
1 (x2) G

[1]
2 (x2) · · · G

[1]
Nx

(x2) 1 0
...

...
. ..

...
...

...
G

[1]
1 (xNx

) G
[1]
2 (xNx

) · · · G
[1]
Nx

(xNx
) 1 0


 ,

G̃
[0] =




G
[0]
1 (x1) G

[0]
2 (x1) · · · G

[0]
Nx

(x1) x1 1

G
[0]
1 (x2) G

[0]
2 (x2) · · · G

[0]
Nx

(x2) x2 1
...

...
. . .

...
...

...
G

[0]
1 (xNx

) G
[0]
2 (xNx

) · · · G
[0]
Nx

(xNx
) xNx

1


 ,



w̃(t) = (w1(t), w2(t), · · · , wNx
(t), C1(t), C2(t))

T ,

ũ(x, t) = (u1(x, t), u2(x, t), · · · , uNx
(x, t))T ,

dk
ũ(x, t)

dxk
=

(
dku1(x, t)

dxk
,
dku2(x, t)

dxk
, · · · ,

dkuNx
(x, t)

dxk

)T

,

whereui = u(xi, t) with i = (1, 2, · · · , Nx).
Owing to the presence of integration constants in the IRBF based approximants, one

can beneficially introduce in the algebraic equation systemadditional constraints such as nodal
derivative values (more details can be found in [13, 1]). Thus, the algebraic equation system
(12) can be reformulated as follows.

(
ũ

f̃

)
=

[
G̃[0]

L̃

]
w̃ = C̃w̃,

wherẽf = L̃w̃ are additional constraints. The conversion of the network-weight space into the
physical space yields

w̃ = C̃
−1

(
ũ

f̃

)
, (13)

C̃
−1 is the conversion matrix. By substituting (13) into (6) and (8), the second and first-order

derivatives ofu(x, t) will be expressed in terms of nodal variable values as follows.

∂2u(x,t)
∂x2 = D2xũ(x, t) + k2x,

∂u(x,t)
∂x

= D1xũ(x, t) + k1x,
(14)

whereD1x andD2x are known vectors of lengthNx; andk2x andk1x scalars. Applying (14) at
each and every collocation point yields

∂2
ũ(x,t)
∂x2 = D̃2xũ(x, t) + k̃2x,

∂ũ(x,t)
∂x

= D̃1xũ(x, t) + k̃1x,
(15)

whereD̃2x andD̃1x are known matrices of dimensionNx × Nx; and k̃2x and k̃1x are known
vectors of lengthNx.

3.2. Temporal and spatial discretization of FPEs

The FPE (1),(x, t) ∈ Ω × [0, T ], is rewritten as follows

∂u

∂t
− B

∂2u

∂x2
+

(
A − 2

∂B

∂x

)
∂u

∂x
+

(
∂A

∂x
−

∂2B

∂x2

)
u = 0, (16)

wherex, t, u(x, t), A(x) andB(x) are defined as before.
Assume that the time interval[0, T ] is partitioned intonT equal subintervals[tn, tn+1] of

length∆t = T/nT with t0 = 0 andtNT
= T . In fully discrete schemes, Eq. (16) is discretized

with respect to both time and space variables. The discretization in time is accomplished by a
time-stepping scheme, followed by the spatial discretization based on the 1D-IRBFN method.

Applying theθ-scheme to Eq. (16) yields

un+1 − un

∆t
+ θLun+1 + (1 − θ)Lun = 0, (17)



wheretn+1 = tn + ∆t, un+1 = u(x, tn+1) and the operatorL is given by

L(.) = −B
∂2(.)

∂x2
+

(
A − 2

∂B

∂x

)
∂(.)

∂x
+

(
∂A

∂x
−

∂2B

∂x2

)
(.). (18)

For the Crank-Nicolson method (θ = 0.5 and second-order accurate), Eq. (17) is
expressed as

un+1 + αLun+1 = un − αLun, (19)

whereα = 0.5∆t.
For the fully implicit method (θ = 1), Eq. (17) is rewritten as

un+1 + αLun+1 = un, (20)

whereα = ∆t.
For the fully explicit method (θ = 0), Eq. (17) is given by

un+1 = un − αLun, (21)

whereα = ∆t.
Equations (19)-(21) together with the constraints (boundary or/and initial conditions)

at timetn+1 are then spatially discretized using the 1D-IRBF approach described in section
3.1. The obtained solution is the values of the field variableat the grid points. Simulation
is terminated when either the desired time (transient problem) or convergence (steady state
problem) is reached. In the next section, the fully implicitmethod is used for time discretization
of the FPEs.

4. NUMERICAL EXAMPLES

The present method is verified with some numerical experiments which have been de-
scribed in [4, 16, 17]. It is worth noting that the problems are solved on a bounded interval
which is uniformly discretized. The approximate solutionsobtained are compared with the
analytic ones using the following error norms

Ne =

√∑N
i=1 (un(xi) − uex(xi))

2

∑N
i=1(uex(xi))2

RMSE =

√∑N
i=1 (un(xi) − uex(xi))

2

N

whereu(xi), uex(xi) are the numerical and exact solutions foru respectively at a collocation
pointxi and timetn andN the total number of test points.

4.1. Example 1

Consider the FPE (1)

∂u(x, t)

∂t
=

[
−

∂

∂x
A(x) +

∂2

∂x2
B(x)

]
u(x, t) (22)
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Figure 1. The absolute error ofu with respect tox at timest = 0.1, t = 0.5 andt = 1.

with A(x) = −1, andB(x) = 1 and initial conditionu(x, 0) = x, (x ∈ [0, 1]). The exact
solution to the problem isu(x, t) = x + t.

The problem is solved in the time period[0, 1] with time step size∆t = 0.01. Figure
1 shows the error ofu with respect tox at timest = 0.1, t = 0.5 andt = 1 using the present
method with25 collocation points in comparison with the exact solution.

The problem is also solved using15 and36 collocation points. The values ofNe and
RMSE using50 test points with15, 25 and36 collocation points are given in table 1. The
results show that the method yields a higher degree of accuracy while using relatively coarse
grids in comparison with others, including the Kansa RBF (table 2) and Hermite RBF (table 3)
approaches.

Table 1. Values ofNe andRMSE for numerical examples 1,2,3 for several sets of collocation
points (15, 25 and 36) using the 1D-IRBF collocation method.The number of test points is
N = 50 and∆t = 0.01.

Example 1 Example 2 Example 3
N Ne RMSE Ne RMSE Ne RMSE
15 3.45e − 6 1.16e − 6 3.62e − 4 6.74e − 4 4.16e − 4 7.86e − 4
25 8.25e − 7 2.89e − 7 2.22e − 5 3.54e − 5 9.28e − 6 1.13e − 5
36 5.48e − 9 1.94e − 9 7.62e − 7 2.37e − 7 5.12e − 7 6.38e − 7

4.1.1 Example 2

Consider the Fokker-Planck equation (1) with

A(x) = x, B(x) =
x2

2
, (23)
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Figure 2. Exact and approximate solutions foru are plotted againstx at timest = 0.1, t = 0.5
andt = 1.

t ∈ [0, 1], x ∈ [0, 1], and initial conditionu(x, 0) = f(x) = x. The exact solution is given by
u(x, t) = x exp(t).

Similarly, the problem is solved with time step size∆t = 0.01 and three sets of col-
location points as in example 1. Errors are shown table 1 using 50 test points as in example
1. A comparison with the other results given in tables 2 and 3 confirms higher accuracy of the
present solution.

4.1.2 Example 3

Consider the backward Kolmogorov FPE (see [2] for more details) as follows

∂u(x, t)

∂t
= −

[
A(x, t)

∂

∂x
+ B(x, t)

∂2

∂x2

]
u(x, t) (24)

where the drift and diffusion coefficients depend on both time and space as follows

A(x, t) = −(x + 1), B(x, t) = x2 exp(t). (25)

With the initial condition

u(x, 0) = f(x) = x + 1, x ∈ [0, 1], (26)



Table 2. Values ofNe andRMSE for numerical examples 1,2,3 for several sets of collocation
points (25, 36, 49 and 81) using the Kansa’s RBF approach,∆t = 0.01 and the number of test
pointsN = 50. Data are obtained from source [16]

Example 1 Example 2 Example 3
N Ne RMSE Ne RMSE Ne RMSE
25 2.81e − 2 1.22e − 2 3.37e − 2 4.40e − 2 2.74e − 2 7.94e − 2
36 1.50e − 3 6.52e − 4 1.91e − 2 2.50e − 2 3.94e − 3 1.12e − 2
49 1.34e − 4 5.83e − 5 8.68e − 4 1.13e − 3 7.23e − 4 2.04e − 3
81 9.20e − 6 4.00e − 6 1.94e − 5 2.53e − 5 2.18e − 5 6.18e − 5

Table 3. Values ofNe andRMSE for numerical examples 1,2,3 for several sets of collocation
points (25, 36, 49 and 81) using the Hermite RBF without time discretization scheme. The
number of test points isN = 50. Data are obtained from source [16].

Example 1 Example 2 Example 3
N Ne RMSE Ne RMSE Ne RMSE
25 1.48e − 4 6.41e − 5 2.12e − 4 1.21e − 4 1.73e − 4 2.23e − 4
36 2.30e − 5 9.92e − 6 7.11e − 5 5.43e − 5 1.13e − 4 1.61e − 4
49 2.81e − 6 1.21e − 6 8.63e − 6 6.86e − 6 8.29e − 5 8.61e − 5
81 3.83e − 8 1.65e − 8 4.93e − 8 3.12e − 8 1.35e − 7 1.76e − 7

the exact solutionto the problem isu(x, t) = (x + 1) exp(t).
Figure 2 shows the approximate solution with respect tox using a very coarse grid of

15 collocation points at timest = 0.1, t = 0.5 andt = 1. The problem is also solved with
25 and36 collocation points. Similar comments as in examples 1 and 2 can be made here
regarding results in tables 1, 2 and 3.

In general, although the accuracy of solutions tends to decrease with time, the results
claimed that the present method can reach high order accuracy using coarse grids.

5. CONCLUSION

The 1D-IRBF based meshfree method has been successfully developed for the com-
putation of FPEs. The advantages of the present approach include (i) to yield a meshless
discretisation of FPEs; (ii) to improve the approximation accuracy by avoiding the reduction in
convergence rate caused by differentiation; (ii) to reducethe noise in the approximation via the
use of integration as a smoothing operator to construct the approximants. The present method
is demonstrated with several forms of FPEs. The obtained results show that the present method
yields a high degree of accuracy with relatively coarse grids.
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