
ROBUST OPTIMIZATION USING REDUCED-ORDER MODELING FOR
NON-LINEAR STATIC TRUSS SYSTEM

Renato de S. Motta1, Silvana M. B. Afonso2

1,2 Federal University of Pernambuco, Department of Civil Engineering, Rua Acadêmico
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Abstract. In this work a design optimization tool to obtain robust optimum designs of trusses
under nonlinear conditions is described and implemented. The robustness measures con-
sidered here are the expected value and standard deviation of the function involved in the
optimization problem. To calculate such quantities, we employ two nonintrusive uncertainty
propagation analysis techniques that exploit deterministic computer models: Monte Carlo
(MC) method and Probabilistic Collocation Method (PCM). When using these robustness
measures combined, the search of optimal design appears as a robust multi-objective opti-
mization (RMO) problem. To overcome the time consuming problem inherent in a RMO prob-
lem a model reduction technique using the proper orthogonal decomposition (POD) method
will be employed to provide fast outputs for nonlinear analysis of trusses. A structural sizing
optimization (SSO) algorithm incorporating such procedure in the structural and sensitiv-
ity stochastic analyses will be used to obtain efficient optimal trusses design. Optimization
studies will be conducted for trusses problems considering different loads level, exploring the
material plasticity. Comparisons will be conducted with the SSO approach via traditional
FEM and via POD.

Keywords: Robust Optimization, Multi-Objective Optimization, Proper Orthogonal Decom-
position, Nonlinear Static Problem, Probabilistic Collocation Method.

1. INTRODUCTION

On the design of most engineering applications, the traditional optimization approach
is to consider deterministic models and parameters. However, some degree of uncertainty
in characterizing any real engineering system is inevitable. Unfortunately, the deterministic
approach generally leads to a final design whose performance may degrade significantly or
constraints can be violated because of perturbations arising from uncertainties. In this scenario
a better target that provides an optimal design is one that gives a high degree of robustness.
That is a design which is relatively invariant with respect to changes in uncertain parameters.
The process to find such optimal is referred to as robust [design] optimization (RO) [1, 2].
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Commonly uncertainty in material properties, variation in geometry, uncertainty in
loading and boundary condition, etc. are included in the design process by introducing simpli-
fied hypothesis. The efficient way to consider the uncertainties is by computing the statistics
of the responses involved. Here, we discuss two nonintrusive uncertainty propagation analy-
sis that exploit deterministic computer models: Monte Carlo (MC) method and Probabilistic
Collocation Method (PCM) [3]. These approaches consider the computational system (code)
as a black-box, which returns a function values given an input vector.

Several robustness measures have been proposed in the literature, in particular, the ex-
pected value and standard deviation of the function involved in the optimization problem are
considered here. When using these robustness measures combined, the search of optimal ro-
bust design appears as a robust multi-objective optimization (RMO) problem, as this involves
more than one objective.

The computation of the Pareto frontier [4, 5] solutions is the adequate procedure when
a multi-objective problem has to be solved. Efficient Pareto distribution has been obtained for
two objectives problems by means of algorithms such as NBI (Normal-Boundary Intersection)
[6], and NNC (Normalized Normal-Constraint) [7]. These two strategies are implemented in
this work together with other commonly considered approaches in literature such as weighted
sum method and min-max method. For more than two objectives the modified NBI procedure
(NBIm), developed for this propose, is also considered.

As the generation of Pareto points and the uncertainty analysis could be very costly,
approximation techniques based on reduced-order modeling (ROM) approach are also incor-
porated in our procedure via proper orthogonal decomposition (POD) method [8, 9]. Here
the POD method will be employed to provide to the optimizer, fast nonlinear response cal-
culations for the trusses. Such technique approximates the numerical model by reducing the
total number of degree of freedom of the original problem (high fidelity (HF) model). General
reduced-order models are obtained by projecting the HF model in some low order basis. The
POD is a ROM that, basically, projects the problem into a subspace formed by a optimum
orthonormal basis functions, in the sense that it consider the most significant shape (greatest
variance) of the output subspace. The process encompass two stages: The offline stage is done
once to compute the basis of the projection. After completed, this basis is used in the online
stage to obtain the approximated results.

A Structural sizing optimization (SSO) algorithm incorporating such procedure in the
structural, sensitivity and probabilistic analyses will be used to obtain efficient optimal trusses
design under nonlinear conditions. Optimization studies will be conducted for trusses prob-
lems considering different loads level, exploring the material plasticity. Comparisons will be
conducted with the SSO by traditional FEM and by POD.

2. NONLINEAR STATIC ANALYSIS

The nonlinear static analysis employed in this work, will consider only the nonlinear
stress-strain relation (material nonlinearity). In this sense, the displacements and internal
forces relationship is nonlinear. The objective is to find the solution field (displacement) so
that the internal forces equals the external forces



Fi(u) = Fe (1)

The iterative procedure generally used to obtain solution of plastic analysis is the
Newton-Raphson (NR) method. The NR method iteratively approximates the nonlinear equa-
tion by a linearization in the current point (solution). In the plastic analysis it can be formu-
lated for the kth iteration as
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Δuk = Fe or KtΔuk = R (2)

in which Kt = dFi

du

(
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)

is the tangent stiffness matrix, and R = Fe − Fi

(
uk
)

is the residual
load vector.

The iterative technique on its own can only provide a single ’point solution’. In prac-
tice, we will often prefer to trace the complete load/deflection response (equilibrium path).
To this end, it is useful to combine the incremental and iterative solution procedures. The
’tangential incremental solution’ can then be used as a ’predictor’ which provides the starting
solution, for the iterative procedure. A good starting point can significantly improve the con-
vergence of iterative procedures and increases the possible incremental load step. Indeed it
can lead to convergence where otherwise divergence would occur [10].

There are various incremental load step methods. A constant increment is considered
here, in which the increment is proportional to the pressure at the yield stress. The incre-
ment (proportional factor) used in the analysis procedure will be specified in the Application
section.

3. REDUCED ORDER METHODS

The large scale models require high computational costs. The reduced order method
attempt to approximate high dimension system in a low dimension space. Most of ROMs
project the high dimension system into a lower dimension space [11]. A simple example is
the discrete system equation:

Ku = F , K ∈ Rn,n and u,F ∈ Rn (3)

This system can be project into a subspace W of base Z ∈ Rn,w with w < n. As a
result, the problem becomes

ZTKZu = ZTF , or simply KW� = FW (4)

where KW = ZTKZ∈Rw,w , FW = ZTF ∈ Rw and the vector � ∈ Rw, in which Z� =

uW ≈ u is the linear coefficient of the approximation output vector uW . Thus, the space W
and consequently the base vectors Z are fundamentals to the efficiency of the method and they
commonly represent the differences between the ROMs.

3.1. Proper orthogonal Decomposition

POD is a ROM that, basically, project the problem into a subspace formed by a op-
timum orthonormal basis functions, in the sense that it considers the most significant shape



(greatest variance) of the output (u) subspace. A practical way to obtain these vectors is com-
puting a set of u vectors for various system configurations (times, design variables, parame-
ters, loads steps, ) then, a singular value decomposition (SVD) is performed and to compute
the eigenvalues of the covariance matrix of the outputs [12, 8]. This procedure is related to
the method of snapshots. The method of snapshots was introduced by Lawrence Sirovich in
1987 [13] as a way to reduce the computational requirements of the POD basis. The snapshot
matrix X can be written as:

X =
[
u1,u2, . . . ,um

]
(5)

the number of snapshots m is assumed to be sufficiently large for represent the field of solu-
tions u.

This POD basis can be obtained directly through a SVD of the snapshot matrix X.

X = SDVT where XV = SD and XTS = VDT (6)

in above equation D is related to the eigenvalues such as diag(D) = [Λ1,Λ2, . . .Λn], Λi =√
�i, and V are eigenvectors of the autocorrelation matrix X.

To compute the POD basis, the first w eigenvalues such that

1−
w∑
i=1

�̄i < tol�, in which �̄i =
�i∑
k

�k
(7)

must be found. In the equation 7, the tol� parameter is the tolerance related to the energy
error in the POD approximation. Note that [w < m < n]. After the number w of significant
singular components be determined, the POD basis is computed

Z = Sw (8)

where the upper w index, indicate the first w vectors (column) of the matrix.
To proceed the POD in the solution of the nonlinear structural analysis, the standard

iterative equation (2) has to be changed, so that the displacement vector u is the unknown,
rather than Δu, following to

Kt (uk − uk−1) = Rk or Ktuk = Rk + Ktuk−1 (9)

This is due to the fact that the displacement vector u (correlated) is easier to approxi-
mate than the vector Δu (uncorrelated).

As can be seen, the POD has equivalence to the principal component analysis (PCA),
the singular value decomposition (SVD) and Karhunen-Love (KL) decomposition, and has
been widely and successfully applied in various disciplines, including fluid mechanics, static
and dynamic structural mechanics, oceanography, statistics, economics, image processing, etc
[14].



4. PROBLEM FORMULATION

The deterministic approach for optimization problem can leads to a final design whose
performance may be very sensible to parameters variation. The Robust Optimization (RO)
considers the uncertain to leads a design less susceptible to variability on uncertain parameters
(U ). In this work, two objective controls will be considerate: the mean and the standard
deviation of a selected output function. This lead to a multi-objective optimization (MO)
problem which is mathematically formulated as [1].

minF(U,x) =
[
E (f(U,x)) , � (f(U,x))

]
(10)

subject to:

gi (U,x) ≤ 0 i = 1, ...m
ℎj (U,x) = 0 j = 1, ...ℓ
xℓk ≤ xk ≤ xuk k = 1, ...ndv

(11)

In which E(∗) is the expected value, �(∗) is the standard deviation, F is the selected
output and x is the design variable vector. The MO problem presented above is solved using
the techniques described in Section 6.

5. STATISTICS CALCULATIONS

Assuming U as a random variable, any function f(U) will be random, with its specific
probability density function (PDF) P (U). The expected value of f(U), called mean of f(U),
can calculated as [15]:

E [f(U)] = f̄ =

∫ ∞
−∞

f(U)P (U)dU (12)

and its variance �2
f = �[f(U)]2

�2
f = E

[(
f(U)− f̄

)2]
=

∫ ∞
−∞

(
f(U)− f̄

)2
P (U)dU (13)

in which �f is the standard deviation.
In the present work two methodologies are employed for statistics calculations of sev-

eral responses. They are Monte Carlo method and Probabilistic collocation method. Both
methodologies are described in the following subsections.

5.1. Monte Carlo Method

The MC method is the most popular non-intrusive method and can be used for any
problem related to uncertainty propagation [16]. Given the joint probability distribution func-
tion of the involved random variables, the MC method can be applied for approximated cal-
culations of the statistics response of a particular quantity, including its distribution, with an
arbitrary error, as long a sufficient number of samplings points is given. This approach has
also been used as a b̈enchmarkẗo validate other techniques for statistics calculations. In this
method the functions f(U) of interest are calculated in several random points Uk , generated



taking into account their probability distribution P (U), then the integrals of Eqs. 12 and 13
are respectively approximated as

f̄ ≈ f̄MC = 1
m

m∑
i=1

f(U(i))

�[f(U)]2 = �2
f ≈ �̂2

f = 1
m−1

[
m∑
i=1

(
f(U(i))

2)−mf̄ 2
MC

] (14)

In which m is the number of sampling points, f̄MC is the MC approximation for the
mean values of f(U) and �̂f is the MC approximation for the standard deviation.

5.2. Probabilistic Collocation Method

The basic idea of PCM is to approximate the function f(U) by polynomial functions
and to evaluate the integrals of Eqs. 12 and 13 by Gaussian quadrature. Gaussian quadrature
is based on the concept of orthonormal polynomials. These concepts are briefly described
here.

In the numerical integration by Gaussian quadrature for integrals of the form

F =

∫
f (U)P (U) dU (15)

The function f(U) is approximated by a polynomial of order 2n− 1 as follows [17]

f(U) ≈ f̂(U) =

(
n−1∑
i=0

biℎi(U)

)
+ ℎn(U)

(
n−1∑
i=0

ciℎi(U)

)
(16)

for i = 1 . . . n in which bi and ci are the coefficients of the approximation, to be obtained, and
ℎi(U) are polynomials of order i from a orthonormal basis with respect to the weight function
P (U).

The statistics evaluations defined in Eqs. 12 and 13 via PCM is a direct application of
Gaussian quadrature in which the PDF is the weighting function. Hence, by orthonormality,
the approximated Gaussian quadrature integral Eq. (15) can be expressed as follows

F ≈ b0ℎ0

∫
F

P (U) dU = b0 (17)

To find the coefficients bi and ci of the Eq. (16) would be necessary to evaluate the
function f(U) in 2n points. However, as the integral presented in Eq. (17) does not depend
on the coefficients ci, it is required the calculations of function f(U) only at the n roots (U∗)
of ℎn(U), in this way canceling the second part of Eq. (16), as ℎn(U∗) = 0. For more details
concerning coefficients evaluations see [3].

The orthonormal polynomials are defined for each PDF and the roots (U∗) of each
polynomial ℎi(U) are the quadrature points or integration point. Solving the approximation
of Eq. (16) to find b0, it follows that the mean value and, analogously, the standard deviation
of an output of interest are approximated by PCM as



f̄PC =
n∑
i=1

Pif(Uk∗)

�̂2
PC =

n∑
i=1

Pif(Uk∗)2 − f̄ 2
PC

(18)

in which Pi, : i = 1 . . . n, are the weight coefficients and U∗ the integration points, calculated
once PDF is given.

6. MULTIOBJECTIVE STRATEGIES

Pareto optimality concept [4] is used here to obtain MO solutions. The Pareto minima,
are points xp which for no other point x exist such that:

a) fk(x) ≥ fk(xp) for k = 1, . . . , nobj

b) fj(x) < fj(xp)

for one objective function (fj) at least. The discussions about this concept can be found in
detail elsewhere [18, 6, 5].

Using the Pareto concept, the designer has to identify as many Pareto points as possi-
ble. These points can be used to construct a point-wise approximation to the Pareto front.

There are several techniques to obtain the set of Pareto minima. In this work we will
consider the so-called objective weighting sum (WS) method, Min-Max method, the normal
boundary intersection (NBI) method [6], and the normalized normal-constrain (NNC) method
[7]. Currently, in literature, the later two strategies are pointed to have more success to obtain
the Pareto curves. Such techniques are discussed in detail elsewhere [5].

7. APPLICATION

A plane truss will be optimization here, considering material nonlinearity under static
load conditions. The geometric configuration and boundary conditions are presented in Figure
1, where the total number of degrees of freedom is 1210 [19].

The points of the stress-strain curve considered are illustrated in Table 1.

Table 1. Stress-Strain Curve.

Stress Strain (KN/cm2)
0.0025 51.750
0.0037 62.100
0.0050 72.450
0.0100 82.800
0.0175 93.150
0.0350 103.500
0.0750 113.850

Figure 1 shows the random variables (U) and the design variables (x). Thus, two
random variables are considered: the vertical load on the top of the structure (U1) and the
horizontal load on the top-left side of the structure (U2). The first one (U1) has a log-normal



Figure 1. Structure and problem definition.

distribution with mean �1 = 4KN/cm and standard deviation �1 = 2KN/cm, the second
random variable (U2) has a normal distribution with mean �2 = 0 and standard deviation
�2 = 1KN/cm. Three designs variables are considered, which are the cross section area of the
bars of three regions, as shown Figure 1. The initial cross section areas (designs variables) are
equal to one and the design variables are bounded by 0.1 ≤ x ≤ 10.

The robust optimization problem can be formulated as:

min
[
d̄(U,x) �d(U,x)

]
subjectto :
vol∗(x) ≤ 1
xl ≤ xi ≤ xu ,i = 1 . . . n

(19)

in which d(U,x) cm is the horizontal displacement in the top left corner of the structure, see
Figure 1. The vol∗() is the relative volume of the structure, i.e., the current volume divided
by the initial volume (vol(x0) = 12371.1 cm3), xl and xu are the lower and upper boundary of
the design variables, respectively. The load increment used during the nonlinear analyses was
Py/10, in which Py is the load level that lead to the yield stress.

A 1210x246 snapshot matrix (X) was obtained through the analysis via FEM of 30
different cases (considering different values for design variables and random variables). For a
required tolerance of tol� = 10−5, the size of POD basis generated was w = 50, for more de-
tails refer to [19]. To the statistical evaluation via PCM, in the initial design, the computational
time consuming when using POD and fully FEM was 0.29s and 0.98s, respectively.

Also for the initial design, the PCM solution for different approximation degrees was



confronted with the MC solution using 105 integration points. The PCM considering a 3x3
integration points grid (approximation of 5tℎ degree) achieves a relative difference to the MC
solution of 10−3. The computational time consuming via MC was about 104 times greater
than via PCM. Thus, the RMO procedure via PCM considering 9 collocation points was used.

The RMO problem was solved using the PCM approximations to evaluate the statistics
of the structure. The nonlinear analysis were performed via POD reduced order model (for
w = 50). The Pareto points obtained via the various MO methods cited here, are shown in
Fig. 2. As expected, the results via NBI and NNC agree closely. The better Pareto points
distribution was obtained by these two methods.

Figure 2. Pareto solutions via different MO methods.

The four multi-objective optimization performance, are shown in Table 2. In that table,
the number of function evaluations (F. Count) is the total number of statistic analysis evaluated
to obtain the Pareto points. the uniformity distribution of the Pareto points parameter (Evness),
that appears in table 2, indicates the quality of the distribution of the points, the closer to zero
the better [7, 5]. The most efficient method in this example was the NBI method, about 2
times faster than the others.



Table 2. Optimization performance considering PCM with POD methods.

MO Method Time (s) F Count Evness
WS 50.7 210 0.300

MinMax 119.2 299 0.896
NBI 27.3 143 0.109
NNC 58.6 181 0.109

8. CONCLUSIONS

In this paper a RMO problem was solved using PCM to evaluate the statistics (1st
and 2nd statistical moment) of the response of a truss under nonlinear condition and several
multi-objective optimization techniques (Ws, Min-Max, NBI and NC methods) were used to
obtain Pareto solutions. A POD algorithm was implemented to approximate nonlinear FEM
analysis, considering the material nonlinearity. A good agreement in the nonlinear structural
results and the optimum points by the fully FEM and POD analysis was achieved. For an
error tolerance of 10−5 a basis of just 50 components is used to approximate an output of
1210 components. In summary:

∙ The computational time consuming to obtain results by POD was 1/3 of the computa-
tional time consuming to obtain results via FEM, demonstrating the effectiveness of the
method;

∙ The statistics computation via PCM require about 103 times less integration point than
the MC method, for the same relative error;

∙ For the bi-objective example, the most efficient MO method was the NBI method, about
2 times faster than the others and obtaining evenly distributed Pareto points.

Acknowledgements

The authors acknowledges the Brazilian research agency CNPq and Pernambuco state
research agency FACEPE for the financial support of various research projects developed in
this area by the PADMEC Research Group.

References

[1] Schuller G.I., Jensen H.A., “Computational Methods in Optimization Considering Un-
certainties - An Overview”. Computational Methods and Applications in Mechanical En-
gineering, 2008.

[2] Motta, R. S., Afonso, S.M.B, Lyra, P.R.M, “Structural Robust Optimization Consider-
ing Reduced-Basis Method”, Msc. Thesis (in Portuguese), Civil Engineering Department,
UFPE, Recife-PE Brazil, 2009

[3] Ramamurthy D., “Smart Simulation Techniques For the Evaluation of Parametric Uncer-
tainties on Black Box Systems”. Msc Thesis, Washington State University, 2005



[4] Collette, Y., Siarry, P., “Multiobjective Optimization: Principles and Case Studies”,
Springer, 2004

[5] Motta, R. S., Afonso, S.M.B, Lyra, P.R.M, “A Modified NBI and NC Method For the
Solution of N-Multiobjective Optimization Problems”. Structural and Multidisciplinary
Optimization (Print), v. 1, p. 1-21, 2012

[6] Das, I.; Dennis, J.E., “Normal Boundary Intersection: A New Method for Generating
Pareto Surface in Nonlinear Multicriteria Optimization Problems”, SIAM J Optimization,
Vol. 8 No. 3, pp. 631-657, 1996

[7] Messac, A.; Mattson C.A., “Normal Constraint Method With Guarantee of Even Rep-
resentation of Complete Pareto Frontier”, 45th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics & Material Conference, Palm Springs, CA, 2004

[8] Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H. and Wu, C.G., “Proper Orthogo-
nal Decomposition and its Applications-Part I: Theory”, Journal of Sound and Vibration,
252(3), page 527-544, 2002

[9] Cardoso, M. A., “Development and Application of Reduced-Order Modeling Procedures
For Reservoir Simulation”, Dissertation for the Degree of Doctor of Philosophy. Stanford
University, 2009

[10] Crisfield, M. A., “Non-linear Finite Element Analysis of Solids and Structures - VOL-
UME 1: ESSENTIALS”, John Wiley & Sons Ltd, Chichester, England, 2000

[11] Afonso, S.M.B, Lyra, P.R.M, Albuquerque, T.M. M., R. S., Motta, “Structural Analysis
and Optimization in the Framework of Reduced-Basis Method”. Structural and Multidis-
ciplinary Optimization (Print) , Springer Berlin / Heidelberg, v. 40, p. 177-199, 2010.

[12] Burkardt , J., Gunzburger. M., Lee, H. C., “POD and CVT-based Reduced-Order Mod-
eling of Navier-Stokes Flows”, Comput. Methods Appl. Mech. Engrg. 196, 337-355, 2006

[13] Sirovich, L., “Turbulence and the Dynamics of Coherent Structures, Part 1: Coherent
Structures”, Quarterly of Applied Mathematics, Vol. 45, No. 3, pp. 561-571, 1987

[14] Tan, B. T., “Proper Orthogonal Decomposition Extensions and Their Applications in
Steady Aerodynamics”, Master of Engineering in High Performance Computation for En-
gineered Systems (HPCES), Singapore-MIT Alliance, 2003

[15] Meyer, P. L., “Probabilidade: Aplicaes Estatstica”, 2nd edition, LTC, Rio de Janeiro,
1983

[16] Keane, A. J., Nair, P. B., “Computational Approaches for Aerospace Design: The Pursuit
of Excellence”, John-Wiley and Sons. 602 p., 2005.

[17] Stoer J., Bulirsch R., “SIntroduction to Numerical Analysis - Second Edition”. Springer-
Verlag, Heidelberg, Berlin. p. 150-166, 1991



[18] Arora J. S.; Messac, A.; Mullur, A. A., “Optimization of Structural and Mechanical
System. Chapter 4 - Multiobjective Optimization: Concepts and Methods”. Jasbir S Arora,
University of Iowa, USA, 2007

[19] Motta, R. S., Afonso, S. M. B., “Optimization of Trusses under Nonlinear Condi-
tions Considering the Proper Orthogonal Decomposition Method”. In: XXXII CILAMCE -
Iberian Latin American Congress on Computational Methods in Engineering, Ouro Preto,
2011.


