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Abstract. Boundary element methods are often employed in the numerical prediction of rail-
way induced vibrations. The evaluation of large models is limited, however, due to the compu-
tational requirements in terms of memory storage and computation time, which impedes to ri-
gorously account for the presence of multiple buildings in an urban area. This paper presents
a novel hierarchical boundary element method for elastodynamics based on halfspace Green’s
functions; meshing of the free surface and the layer interfaces is hence avoided. Numerical
examples are discussed to demonstrate the effectiveness of the methodology, indicating that
the model size can be increased with an order of magnitude, which allows to perform large
scale boundary element computations. A synthetic case study of an urban environment is
finally introduced to investigate the influence of the trough–soil coupling of closely spaced
buildings on the wavefield in the soil and the structural response.

Keywords: Boundary element method,H –matrices, elastodynamics, halfspace Green’s func-
tions, railway induced vibrations.

1. INTRODUCTION

The numerical prediction of vibrations in buildings due to railway traffic is a problem
of dynamic soil–structure interaction (SSI) where wave propagation in the soil couples the
source (track/tunnel) and the receivers (surrounding buildings). In the past decades, several
numerical models have been developed [1, 20]. Analytical or finite element (FE) models are
used for the track/tunnel and coupled to a boundary element (BE) model for the soil to ac-
count for dynamic SSI. In order to avoid the meshing of the free surface and the soil layer
interfaces, the use of Green’s functions for a horizontally layered halfspace in the BE for-
mulation is preferred. Innovative numerical techniques have been developed to avoid a full
three–dimensional (3D) model of the structure. For structures exhibiting a regular geometry
such as railways, a significant reduction in computation time can be obtained. If longitudi-
nally invariant structures are dealt with, a Fourier transform of the longitudinal coordinate is
appropriate, while the Floquet transform can be applied if periodic structures are considered.
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Although the aforementioned innovative numerical techniques enhance the applicabi-
lity of the numerical models, the evaluation of large modelsstill remains a challenge from a
computational point of view, due to CPU and memory limitations. This is largely attributed to
the fact that dense, fully populated unsymmetric matrices arise from the BE formulation. As
a result, the state–of–the–art numerical models only allowto take the through–soil coupling
of very few structures into account, and are unable to rigorously model dense urban areas
characterized by many closely spaced structures.

The aim of this paper is therefore to develop a numerical model which allows to pre-
dict railway induced vibrations in an urban environment. Such a model should be based on a
fast BE method in order to reduce the overall complexity. Several fast BE methods have been
developed, including the fast multipole method (FMM) [23],the panel clustering technique
[17] and methods based on hierarchical matrices [16]. In theFMM, the Green’s functions
are reformulated by using a multipole expansion, and this has proven to be very efficient in
case analytical expressions of the Green’s functions are athand. The application of the FMM
method to elastodynamics is therefore limited to formulations based on closed form full space
fundamental solutions [9, 15]. For problems involving a layered halfspace, however, a huge
amount of boundary elements should be sacrificed in order to discretize the free surface and
the layer interfaces if a BE formulation based on full space fundamental solutions is employed.
The FMM method is therefore not suited in the context of railway induced vibrations. Fast
BE methods based on hierarchical matrices in combination with efficient algorithms such as
adaptive cross approximation provide an alternative to tackle problems in which analytical ex-
pressions of the Green’s functions are not available, as these methods are in essence algebraic
tools to approximate the BE matrices. This approach has already been applied successfully to
isotropic [8] and anisotropic [21] elastodynamic problems.

To the knowledge of the authors, however, no efforts have been made in the literature
to develop and apply a fast BE method for elastodynamics based on Green’s functions for a
horizontally layered halfspace. In this paper, such a method based on hierarchical matrices is
presented and applied for the first time, which eventually allows to predict railway induced
vibrations in an urban environment. The text is organized asfollows. Section 2 summarizes
the basic principles of hierarchical BE methods. The numerical implementation of the me-
thodology is validated in section 3. The applicability of the novel approach to the prediction
of railway induced vibrations in an urban environment is finally illustrated by means of a
synthetic case study in section 4.

2. A HIERARCHICAL BOUNDARY ELEMENT METHOD FOR ELASTODYNAMI CS
BASED ON GREEN’S FUNCTIONS FOR A HORIZONTALLY LAYERED HALF-
SPACE

In the boundary element method, the boundary integral equation relating the field
variables to the elastodynamic state on the boundary of the domain is discretized, resulting in
a boundary element system of equations. For unbounded domains, the displacementŝu(ω)
and tractionŝt(ω) at the collocation points are related as follows in the frequency domain:

(

T̂(ω) + I

)

û(ω) = Û(ω)t̂(ω) (1)



The system matriceŝU(ω) andT̂(ω) are in general fully populated unsymmetric matrices,
while I represents a unity matrix, corresponding to the integral free term in the boundary in-
tegral equation. The latter vanishes for a bounded domain. The computation of the system
matricesÛ(ω) andT̂(ω) requires integration over the Green’s functions. The Green’s dis-
placementŝuG

ij(x
′,x, ω) and tractionŝtGns

ij (x′,x, ω) correspond to the fundamental solutions
at a receiver locationx in a directionej due to a unit time–harmonic point load at a source
locationx′ in a directionei. A quadratic amount of memory (O(N2

DOF)) is required to store
the system matriceŝU(ω) andT̂(ω). Furthermore, solving the set of equations (1) by means
of direct numerical solvers such asLU–decomposition requires a cubic amount of numerical
operations (O(N3

DOF)). The application of the classical boundary element methodis therefore
currently limited to problems of an order of magnitude ofO(104) [22].

The use of hierarchical matrices (H –matrices) provides an elegant way to treat fully
populated matrices with almost linear complexity [13]. AH –matrix is a data–sparse rep-
resentation of a certain matrix, consisting of a collectionof block matrices of various sizes.
The construction of aH –matrix requires several steps. First, a hierarchical cluster tree is
constructed based on the boundary element mesh. At the lowest level (i.e. level 0), the cluster
consists of the complete BE mesh. Each cluster is recursively partitioned into two (more or
less equal) sons. Several techniques are available in orderto obtain a suitable cluster tree
(e.g. nested dissection [12, 14], cardinality balanced clustering [6], . . . ). In what follows, a
clustering strategy based on principal component analysis(PCA) will be employed [22]. In
PCA, the eigenvectors of the covariance matrix of a cluster are first calculated. The eigenvec-
tor corresponding to the largest eigenvalue gives the direction of the longest expanse of the
considered cluster. A separation plane orthogonal to the aforementioned eigenvector is drawn
through the center of the cluster, dividing it in two (more orless equal) sons. This procedure
can recursively be applied to every son, until the clusters contain less or equal elements (or
nodes) than a prescribed numberNmin. Second, admissible cluster pairs(X, Y ) are identi-
fied, i.e. cluster subdomains which satisfy a geometric admissibility criterion such that the
corresponding fundamental solutions are smooth [4, 22]:

min {diam(X), diam(Y)} < ηdist(X,Y) 0 < η < 1 (2)

wherediam(X) denotes the maximal expanse of clusterX anddist(X,Y) is the minimal
distance between clustersX andY . The parameterη affects the number of admissible blocks
and the quality of the approximation of the admissible pairs[21].

For an admissible cluster pair(X, Y ), the fundamental solutions are smooth enough
such that the corresponding block BE matricesT̂(X,Y )(ω) ∈ Cm×n andÛ(X,Y )(ω) ∈ Cm×n

can be approximated by low rank approximations.m andn denote the number of degrees
of freedom in clustersX andY , respectively. For example, the block matrixT̂(X,Y )(ω) is
approximated bỹT(X,Y )(ω):

T̂(X,Y )(ω) ≃ T̃(X,Y )(ω) =
(

U
T̂(X,Y )(ω)

)(

V
T̂(X,Y )(ω)

)⋆

(3)

with U
T̂(X,Y )(ω)

∈ Cm×k andV
T̂(X,Y )(ω)

∈ Cn×k, and where⋆ indicates the complex conju-

gate. k is the rank of the representation. Fork(m + n) < mn, T̃(X,Y )(ω) is called a low
rank approximation of̂T(X,Y )(ω), as the memory storage can be reduced fromO(mn) to
O(k(m + n)) by storingU

T̂(X,Y )(ω)
andV

T̂(X,Y )(ω)
instead ofT̂(X,Y )(ω), which is linear in



m andn. The rankk is determined such that the approximationT̃(X,Y )(ω) is accurate up to a
prescribed relative accuracyε:

||T̂(X,Y )(ω)− T̃(X,Y )(ω)||F ≤ ε||T̂(X,Y )(ω)||F (4)

where|| ⋄ ||F indicates the Frobenius norm of the matrix⋄. The partially pivoted adaptive
cross approximation (ACA) algorithm [7, 22] is employed to compute the low rank approxi-
mation defined in equation (3). The algorithm adaptively calculates some of the rows and
columns of the original block matrix to obtain an approximation from few of the original
matrix entries. The algorithm stops if the prescribed accuracyε is attained; the stopping cri-
terion defined in equation (4) can however not be employed, asthe original matrixT̂(X,Y )(ω)
is never generated completely. An intrinsic stopping criterion based on the variation of the
Frobenius norm in consecutive approximations is thereforeused. The amount of numerical
operations required in the ACA algorithm isO(k2(m+n)) [22]. One of the major advantages
of applying the ACA algorithm to obtain low rank approximations of the BE block matrices
corresponding to admissible cluster pairs is that it is a pure algebraic approach, implying that
there is no need for (semi–)analytical expressions of the fundamental solutions. In this paper,
Green’s functionŝuG

ij(x
′,x, ω) andt̂Gns

ij (x′,x, ω) for a horizontally layered halfspace are em-
ployed. These Green’s functions are numerically computed with the direct stiffness method
[19] using the MATLAB toolbox EDT 2.2 [25]. For cluster pairs(X, Y ) not satisfying the ad-
missibility criterion (2), the fundamental solutions showa singular behaviour which does not
allow to construct a low rank approximation of the corresponding block BE matrices. They
are therefore computed exactly.

The BE matriceŝT(ω) and Û(ω) can hence be approximated by their hierarchical
representationŝTH (ω) andÛH (ω), respectively, and the BE set of equations (1) can finally
be replaced by:

(

T̂H (ω) + I

)

û(ω) = ÛH (ω)t̂(ω) (5)

In order to solve the set of equations (5), iterative Krylov subspace methods are adequate, as
the complexity of matrix–vector multiplications is onlyO(NDOF logNDOF) for H –matrices
[6], and this operation forms the core of iterative solvers.In this paper, all sets of equations
are solved by means of the generalized minimal residual method (GMRES).

It follows from the discussion above that the use ofH –matrices results in a significant
reduction of memory and CPU requirements and hence allows toperform large scale BE
computations.

3. VALIDATION

The hierarchical BE method outlined in section 2 has been implemented in the MAT-
LAB toolbox BEMFUN [11]. In the following subsections, two examples are considered to
validate the numerical implementation and to demonstrate the effectiveness of the methodo-
logy. The first example is merely included to validate the correct implementation ofH –
matrix arithmetics and does not involve Green’s functions for a layered halfspace, while the
second example focuses on the application of the novel hierarchical BE method, incorporating
the aforementioned Green’s functions.

3.1. Three–dimensional spherical cavity subjected to an internal pressure

A three–dimensional spherical cavity with radiusr0 = 1m in a full space loaded
by an internal pressurep = 1Pa/Hz is investigated in this subsection. The full space is



characterized by a shear wave velocityCs = 150m/s, a dilatational wave velocityCp =
300m/s and a densityρ = 1800 kg/m3. No material damping is taken into account.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Clusters of (a) level 0, (b) level 1, (c) level 2, (d)level 3, (e) level 4, (f) level 5, (g)
level 6 and (h) level 7.

The unit sphere is discretized by means of 3072 eight node quadrilateral boundary ele-
ments with element collocation (figure 1a). Both the classical and hierarchical BE method are
used to calculate the response in a frequency range between0Hz and100Hz, where analyti-
cal full space fundamental solutions [18] are employed. Forthe latter method, a hierarchical
cluster tree is constructed based on the elements’ center, as an element collocation scheme is
used. A minimum number of elementsNmin = 24 is specified, resulting inlog2

3072
24

= 7 clus-
ter levels (figure 1). Figure 2 shows the hierarchical block structure of the matrices of̂TH (ω)
andÛH (ω) arising from this hierarchical clustering, where a value of0.95 was attributed to
the parameterη in the admissibility criterion (2). A thresholdε = 10−3 has been used in the
ACA algorithm to obtain low rank approximations of the blocks corresponding to admissible
cluster pairs, while a tolerance of10−4 was specified in the iterative GRMES solver.

Figure 2. Hierarchical matrix decomposition. The green blocks correspond to admissible
cluster pairs and are approximated by means of ACA, while thered blocks correspond to
inadmissible cluster pairs and are computed exactly.



Figure 3 shows the real and imaginary part of the radial displacement at the edge of the
spherical cavity, calculated with the classical and the hierarchical BE method, respectively. A
perfect agreement between the results of both methods can beobserved. These results are
furthermore compared to the analytical solution for the radial displacement in the full space,
defined as [18]:

ûr(r, ω) =
r30

4ρC2
s r

2

1 + iωp

1 + iω0 −
(

ω0
Cp

2Cs

)2 exp

(

−i

(

r

r0
− 1

)

ω0

)

(6)

whereωp = ωr/Cp andω0 = ωr0/Cp. Equation (6) is evaluated forr = 1m. The results
of both numerical methods correspond well with the analytical solution in the low frequency
range, while some small deviations can be observed above40Hz.
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Figure 3. (a) Real and (b) imaginary part of the radial displacement at{r = 1m, θ = 0, z =
0m} due to a unit harmonic pressure applied at the edge of a spherical cavity withr0 = 1m.
The solution of the hierarchical BE method (grey circles) iscompared to the solution of the
classical BE method (black crosses) and the analytical solution (solid line) [18].

The integral representation theorem subsequently allows to compute the radiated wave-
field in the soil from the displacements and tractions on the boundary. Figure 4 shows the real
and imaginary part of the radial displacement at the point{r = 10m, θ = 0, z = 0m}.
It is clearly illustrated that the solutions of the classical and hierarchical BE method are in
good correspondence, and agree with the analytical solution (i.e. equation (6) evaluated for
r = 10m).

3.2. Impedance of a massless rigid square surface foundation on a homogeneous half-
space

A massless rigid square surface foundation resting on a homogeneous halfspace is
considered in this subsection. The foundation side equals5m. The underlying halfspace has
a shear wave velocityCs = 150m/s, a dilatational wave velocityCp = 300m/s, a density
ρ = 1800 kg/m3 and a material damping ratioβs = βp = 0.020 in both deviatoric and
volumetric deformation. The classical as well as the hierarchical BE method are employed to
calculate the vertical soil impedancêKs

zz(ω), defined as:

K̂s
zz(ω) =

∫

Σ

ψzz · t̂
ns
s (ûsc(ψzz)dS (7)
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Figure 4. (a) Real and (b) imaginary part of the radial displacement at{r = 10m, θ = 0, z =
0m} due to a unit harmonic pressure applied at the edge of a spherical cavity withr0 = 1m.
The solution of the hierarchical BE method (grey circles) iscompared to the solution of the
classical BE method (black crosses) and the analytical solution (solid line) [18].

whereψzz indicates the vertical rigid body mode of the foundation. The soil–structure in-
terfaceΣ is discretized by means of four node quadrilateral boundaryelements with element
collocation. The tractionŝtns

s (ûsc(ψzz) due to imposed displacementsψzz are obtained by
solving equations (1) and (5), respectively. As a surface foundation is considered, the system
matricesT̂(ω) and T̂H (ω) vanish in these equations. The same values for the parameters
η, Nmin, ε and the tolerance in the GMRES solver as specified in subsection 3.1 are used in
the hierarchical BE method. As mentioned in section 2, Green’s functions for a halfspace are
incorporated in both BE formulations [19, 25].

Figure 5a shows the real and imaginary part of the vertical soil impedanceK̂s
zz(ω)

in a frequency range between0Hz and 100Hz. A BE mesh consisting of30 × 30 equal
sized elements is used to obtain these results. Up to nine elements per shear wavelength
λs = Cs/f are provided at the upper frequency of100Hz. At high frequencies, the soil
impedanceK̂s

zz(ω) converges toiωρCsS, whereS = 5 × 5m2 is the area of the foundation
[24]. A perfect match between the classical and hierarchical BE method can be observed.
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Figure 5. Real (solid line) and imaginary (dashed line) partof (a) the vertical soil impedance
K̂s

zz(ω) in function of frequency and (b) the vertical soil impedanceK̂s
zz(ω = 2π30Hz) for an

increasing number of degrees of freedom. The solution of thehierarchical BE method (grey
lines) is compared to the solution of the classical BE method(black crosses).



In order to demonstrate the effectiveness of the hierarchical BE method, the vertical
soil impedanceK̂s

zz(ω) is reconsidered at a particular frequency of30Hz, for an increasing
number of boundary elements. As an element collocation scheme is applied, the number
of degrees of freedom equals three times the number of elements. The real and imaginary
part of K̂s

zz(ω = 2π30Hz) are shown in figure 5b. The results of both the hierarchical and
classical BE method converge to a constant valueK̂s

zz = (0.41 + 2.6i) × 109N/m due to
the mesh refinement, and are in good correspondence with eachother. The application of
the classical BE method is, however, limited to a model size of 43200 degrees of freedom.
The storage of the complex floating point entries ofÛ(ω) in double precision requires in that
case2 × N2

DOF × 8 bytes = 27.8GB of RAM memory, being the limit of the machine on
which the actual calculations have been performed. Figure 6a compares the memory required
to store the BE matriceŝU(ω) andÛH (ω) on a double logarithmic plot, in which the slope
of the curve indicates the power of the number of degrees of freedom to which the memory
is proportional to. As expected, a quadratic trendO(N2

DOF) is retrieved for the classical BE
method. For the hierarchical BE method, however, the memoryrequirement is of the order
O(NDOF log

3
10NDOF), allowing to extend the model size up to 399675 degrees of freedom

with only 28GB of RAM memory available. In comparison,2380GB of RAM would be
required in order to handle such a model with the classical BEmethod. Figure 6b shows
the CPU time required to calculatêKs

zz(ω = 2π30Hz), including both the time to assemble
to matricesÛ(ω) or ÛH (ω) and to solve the set of equations (1) or (5), respectively. For
relatively small models (O(103)), the classical BE method turns out to be a little faster, while
from a moderate model size on, the hierarchical approach becomes faster.
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Figure 6. (a) RAM memory and (b) total CPU time required for anincreasing number of
degrees of freedom with the classical (black lines) and the hierarchical (grey lines) BE method.

The contribution of the assembly time and the solution time to the total CPU time is further
investigated in figure 7. For the classical BE method, the assembly time shows a quadratic
trend. The solution time of the direct solver, however, increases in a cubic way. The time
required to solve the set of equations (1) will therefore dominate the total solution time of the
classical BE method for large models. Figure 7 also illustrates, on the other hand, that the
contribution of the solution time is negligible compared tothe assembly time for the hierar-
chical BE method. No effort has therefore been made to incorporate a preconditioner in the
iterative GMRES solver, such as anH –LU preconditioner proposed in [5], as speeding up
of the iterative solver will not result in a significant reduction of the total CPU time required
in the hierarchical BE method.
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Figure 7. CPU time required to assemble the matricesÛ(ω) or ÛH (ω) (dashed lines) and to
solve the set of equations (1) or (5) (dotted lines) with the classical (black) and the hierarchical
(grey) BE method.

The example discussed in this subsection illustrates that the hierarchical BE method
combined with Green’s functions for a horizontally layeredhalfspace is very efficient, very
fast and sufficiently accurate. The proposed approach is advantageous with respect to existing
fast BE methods for elastodynamics involving a layered halfspace, such as the FMM [9, 15],
as these formulations are based on full space Green’s functions, and hence need to sacrifice a
considerable amount of boundary elements to the modelling of the free surface and the layer
interfaces. This consequently poses a restriction on the size of the actual problem which can
be treated. Furthermore, the hierarchical BE method does not need any modification to tackle
visco–elastodynamic problems (as illustrated in this example), while a damping dependent
modification of the selection rule for the multipole truncation parameter is required in the
FMM [15].

4. CASE STUDY

The examples put forward in the previous section validate the proposed hierarchical
BE method, and this eventually allows to predict railway induced vibrations in an urban en-
vironment. In this section, a synthetic case is therefore introduced to investigate the influence
of the trough–soil coupling of closely spaced buildings.

4.1. Model description

The synthetic case study consists of a set of 12 identical masonry buildings resting
on a homogeneous halfspace (figure 8a). Each masonry building has dimensions12m ×
6m × 8m and has stories, each subdivided into 4 rooms. The interior and exterior walls
have a thicknesstw = 0.10m, and consist of clay brick masonry. The floors are concrete
slabs with a thicknesstfl = 0.20m. All floors are simply supported, corresponding to hinged
joints at the slab edges. The structure is founded on a concrete strip foundation with a width
wf = 0.60m and a thicknesstf = 0.20m [10]. The buildings are modelled with the finite
element method. The strip foundation, the walls and the floors are modelled by means of
shell elements, using isotropic properties for the foundation and the floors and orthotropic
properties for the masonry walls. The lintels above the doorand the windows are modelled
by means of beam elements [10].
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Figure 8. (a) Finite element and (b) boundary element mesh ofthe set of 12 masonry buildings.

The front edge of the first set of three buildings is located atx = 6m, with a separation
distance of2m in the y–direction between the buildings. A gap of8m in the x–direction
exists between this set and the following set of three buildings. Six additional buildings are
furthermore included behind this second set, in a same pattern as the previous six buildings.

The homogeneous halfspace is characterized by a shear wave velocityCs = 200m/s,
a dilatational wave velocityCp = 400m/s, a densityρ = 1800 kg/m3 and a material damping
ratioβs = βp = 0.025 in both deviatoric and volumetric deformation. An incidentwavefield
is generated by a unit vertical point load acting on the surface of the halfspace at the origin of
the coordinate system.

4.2. Coupled FE–BE model

A coupled FE–BE methodology formulated in the frequency domain which accounts
for dynamic SSI is employed to calculate the response of the buildings to the incident wave-
field. If N structures are considered, a weak variational formulationof the equilibrium of
structurej (j = 1, . . . ,N) and a subdomain formulation [2, 3] results in the following set of
coupled FE–BE equations:

[

Kj + iωCj − ω2
Mj

]

ûj(ω) +

N
∑

k=1

K̂
s
jk(ω)ûk(ω) = f̂

s

j(ω) for j = 1 . . .N (8)

ûj(ω) collects the nodal degrees of freedom of structurej, while Kj , Cj andMj are the
stiffness, damping and mass matrix of this structure. Rayleigh damping is assumed for the
damping matrixCj [10]. K̂

s
jk(ω) are the dynamic stiffness matrices of the soil, which rep-

resent the through–soil coupling of structuresj andk for j 6= k. The force vector̂f
s

j(ω)
denotes the dynamic soil–structure interaction forces at the soil–structure interfaceΣj due
to the incident wave field. A Craig-Bampton substructuring technique is furthermore used,
decomposing each structurej into the foundation and the superstructure, and an appropriate
modal decomposition is introduced [10].

The hierarchical BE method outlined in section 2 is employedto evaluate the dynamic
soil stiffness matriceŝKs

jk(ω) and the force vectorŝf
s

j(ω) arising from the incident wave field.
The finite elements of the foundations are coupled to a conforming boundary element mesh for
the surrounding soil (figure 8b), and a nodal collocation scheme is used to facilitate the FE–
BE coupling. As a nodal collection scheme is used, the hierarchical clustering is based on the



nodes rather than on the elements’ center. The same values for the parametersη, Nmin, ε and
the tolerance in the GMRES solver as specified in subsection 3.1 are used in the hierarchical
BE method (whereNmin indicates in this case a minimum number of nodes).

It must also be stressed that a full 3D calculation is performed, without introducing
any additional assumptions concerning the lay–out of the buildings (i.e. no periodicity con-
siderations are taken into account).

4.3. Results

First, the response of the set of 12 buildings to an incident wavefield generated by
a unit vertical harmonic point load at10Hz is considered. At this frequency, the Rayleigh
wavelength in the soil equalsλR = CR/f = 18.6m. The incident wave field, characterized
by cylindrical wave fronts, is shown in figure 9a. Figure 9b shows the wave field in the soil
in case the presence of all 12 buildings is simultaneously taken into account. As the Rayleigh
wavelength is larger than the dimensions of the strip foundations, the wave field remains
nearly cylindrically.

(a) (b)

Figure 9. Real part of the vertical soil displacement fieldûz at10Hz (a) without and (b) with
accounting for the presence of the buildings.

The influence of the through–soil coupling on the structuralresponse is illustrated in figure 10.

(a) (b)

Figure 10. Real part of the vertical structural displacement field ûz at 10Hz (a) without and
(b) with accounting for the through–soil coupling of the surrounding buildings.

Figure 10a shows the vertical response of all buildings, in case the presence of the surrounding
buildings is neglected for each building. This is obtained by solving the set of equations (8)
N times, in which the soil stiffness matriceŝKs

jk(ω) are not considered forj 6= k. Figure 10b
illustrates the structural response in case the presence ofall 12 buildings is simultaneously



taken into account. A visual comparison of figures 10a and 10bindicates that the structural
response is qualitatively similar, especially for the three buildings closest to the source of the
incident wavefield. The response of the buildings further away from the source turns out to be
more affected by the presence of the surrounding buildings.

The influence of the through–soil coupling on the structuralresponse is investigated
in more detail for one particular building, which is indicated in red on figure 8b. Figure 11
compares the modulus and the phase of the vertical displacement ûz along the front wall–
foundation edge AB. The response is not symmetrical due to the non–symmetrical layout
of the individual masonry buildings (i.e. the presence of the door and windows). While the
variation of the displacements along the edge is similar in both cases, the amplitude is almost
halved if the through–soil coupling is accounted for. This indicates that the buildings closer to
the source shield the considered building from the incidentwavefield. Furthermore, an almost
constant phase shift of1.35 rad is introduced along the edge AB, as the Rayleigh wave fronts
are slightly shifted due the the presence of the buildings. Similarly, figure 12 compares the
modulus and the phase of the vertical displacementûz along the side wall–foundation edge
AC. The variation of the displacements along the edge is similar in both cases; an amplitude
reduction by a factor of 2 and a phase shift of1.35 rad can be observed here as well.
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Figure 11. (a) Modulus and (b) phase of the vertical displacementûz along the front wall–
foundation edge AB at10Hz with (black lines) and without (grey lines) accounting for the
through–soil coupling of the surrounding buildings.
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Figure 12. (a) Modulus and (b) phase of the vertical displacement ûz along the side wall–
foundation edge AC at10Hz with (black lines) and without (grey lines) accounting for the
through–soil coupling of the surrounding buildings.



Second, the response of the set of 12 buildings to an incidentwavefield generated by
a unit vertical harmonic point load at50Hz is considered. At50Hz, the Rayleigh wavelength
in the soil equalsλR = CR/f = 3.7m. The incident wave field, characterized by cylindrical
wave fronts, is shown in figure 13a. The dynamic interaction between the buildings and the
halfspace alters the wave field significantly (figure 13b), asthe wavelength in the soil becomes
of the same order of magnitude as the dimensions of the strip foundations.

(a) (b)

Figure 13. Real part of the vertical soil displacement fieldûz at50Hz (a) without and (b) with
accounting for the presence of the buildings.

The influence of the through–soil coupling on the structuralresponse is illustrated in figure 14.

(a) (b)

Figure 14. Real part of the vertical structural displacement field ûz at 50Hz (a) without and
(b) with accounting for the through–soil coupling of the surrounding buildings.

Figure 14a shows the vertical response of all buildings, in case the presence of the surrounding
buildings is neglected for each building, while figure 14b illustrates the structural response in
case the presence of all 12 buildings is simultaneously taken into account. As in figure 9, the
response of the three buildings closest to the source of the incident wavefield remains almost
unaffected. A visual comparison of the other buildings, however, suggests that the response is
considerably altered by the presence of the surrounding buildings.

The influence of the through–soil coupling on the structuralresponse is investigated
in more detail for the same particular building as discussedbefore. Figure 15 compares the
modulus and the phase of the vertical displacementûz along the front wall–foundation edge
AB. The amplitude is reduced by more than a factor of 2, and an an almost constant phase
shift of 3.3 rad is induced. Figure 16 compares the modulus and the phase of the vertical
displacement̂uz along the side wall–foundation edge AC. Not only can an amplitude reduc-
tion with respect to the case where the through–soil coupling of the surrounding buildings is



neglected be observed, but the variation of vertical displacements along this edge also differs
significantly. A phase shift of3.3 rad is introduced as well.
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Figure 15. (a) Modulus and (b) phase of the vertical displacementûz along the front wall–
foundation edge AB at50Hz with (black lines) and without (grey lines) accounting for the
through–soil coupling of the surrounding buildings.
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Figure 16. (a) Modulus and (b) phase of the vertical displacement ûz along the side wall–
foundation edge AC at50Hz with (black lines) and without (grey lines) accounting for the
through–soil coupling of the surrounding buildings.

Although only a limited number of results have been discussed in this subsection, the
presented synthetic case study nevertheless indicates that the wave propagation in the soil and
the structural response is considerably affected in an urban environment. At low frequen-
cies, this predominantly results in a shielding effect, reducing the amplitudes of the displace-
ments, without altering the wavefield itself drastically. At higher frequencies, however, the
wavelength in the soil becomes comparable to the foundationdimensions, and the dynamic
interaction between the buildings and the halfspace altersthe wavefield significantly.

5. CONCLUSIONS

In this paper, a hierarchical BE method based on Green’s functions for a horizontally
layered halfspace is presented. The numerical implementation has been validated, and it has
been demonstrated that the proposed methodology is very efficient, very fast and sufficiently



accurate, which allows to perform large scale BE computations involving a layered halfspace.
The applicability of the novel methodology has been illustrated by means of a synthetic case
study of an urban environment, indicating that the through–soil coupling of closely spaced
buildings can significantly alter the wave propagation in the soil and the structural response.
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