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Abstract. Boundary element methods are often employed in the numerical prediction of rail-
way induced vibrations. The evaluation of large models is limited, however, due to the compu-
tational requirements in terms of memory storage and computation time, which impedes to ri-
gorously account for the presence of multiple buildings in an urban area. This paper presents
anovel hierarchical boundary element method for elastodynamics based on halfspace Green’s
functions; meshing of the free surface and the layer interfaces is hence avoided. Numerical
examples are discussed to demonstrate the effectiveness of the methodology, indicating that
the model size can be increased with an order of magnitude, which allows to perform large
scale boundary element computations. A synthetic case study of an urban environment is
finally introduced to investigate the influence of the trough—soil coupling of closely spaced
buildings on the wavefield in the soil and the structural response.

Keywords: Boundary element method/—matrices, elastodynamics, halfspace Green’s func-
tions, railway induced vibrations.

1. INTRODUCTION

The numerical prediction of vibrations in buildings due to railway traffic is a problem
of dynamic soil-structure interaction (SSI) where wave propagation in the soil couples the
source (track/tunnel) and the receivers (surrounding buildings). In the past decades, several
numerical models have been developed [1, 20]. Analytical or finite element (FE) models are
used for the track/tunnel and coupled to a boundary element (BE) model for the soil to ac-
count for dynamic SSI. In order to avoid the meshing of the free surface and the soil layer
interfaces, the use of Green’s functions for a horizontally layered halfspace in the BE for-
mulation is preferred. Innovative numerical techniques have been developed to avoid a full
three—dimensional (3D) model of the structure. For structures exhibiting a regular geometry
such as railways, a significant reduction in computation time can be obtained. If longitudi-
nally invariant structures are dealt with, a Fourier transform of the longitudinal coordinate is
appropriate, while the Floguet transform can be applied if periodic structures are considered.



Although the aforementioned innovative numerical techagjenhance the applicabi-
lity of the numerical models, the evaluation of large modgi remains a challenge from a
computational point of view, due to CPU and memory limitaioThis is largely attributed to
the fact that dense, fully populated unsymmetric matricesedrom the BE formulation. As
a result, the state—of—the—art numerical models only altotake the through—soil coupling
of very few structures into account, and are unable to rigelsomodel dense urban areas
characterized by many closely spaced structures.

The aim of this paper is therefore to develop a numerical inetiech allows to pre-
dict railway induced vibrations in an urban environmentctsa model should be based on a
fast BE method in order to reduce the overall complexity.e8a\fast BE methods have been
developed, including the fast multipole method (FMM) [2@B]e panel clustering technique
[17] and methods based on hierarchical matrices [16]. InFk®M, the Green’s functions
are reformulated by using a multipole expansion, and thésgnaven to be very efficient in
case analytical expressions of the Green'’s functions ararat. The application of the FMM
method to elastodynamics is therefore limited to formolagibased on closed form full space
fundamental solutions [9, 15]. For problems involving adiead halfspace, however, a huge
amount of boundary elements should be sacrificed in ordeistoatize the free surface and
the layer interfaces if a BE formulation based on full spacglhmental solutions is employed.
The FMM method is therefore not suited in the context of raivinduced vibrations. Fast
BE methods based on hierarchical matrices in combinatidm gfficient algorithms such as
adaptive cross approximation provide an alternative tklégaroblems in which analytical ex-
pressions of the Green’s functions are not available, aetireethods are in essence algebraic
tools to approximate the BE matrices. This approach haadrbeen applied successfully to
isotropic [8] and anisotropic [21] elastodynamic problems

To the knowledge of the authors, however, no efforts have begde in the literature
to develop and apply a fast BE method for elastodynamicstbasesreen’s functions for a
horizontally layered halfspace. In this paper, such a neebased on hierarchical matrices is
presented and applied for the first time, which eventuallywad to predict railway induced
vibrations in an urban environment. The text is organizetbbsws. Section 2 summarizes
the basic principles of hierarchical BE methods. The nucaéimplementation of the me-
thodology is validated in section 3. The applicability oé thovel approach to the prediction
of railway induced vibrations in an urban environment is lfindlustrated by means of a
synthetic case study in section 4.

2. AHIERARCHICAL BOUNDARY ELEMENT METHOD FOR ELASTODYNAMI  CS
BASED ON GREEN’S FUNCTIONS FOR A HORIZONTALLY LAYERED HALF-
SPACE

In the boundary element method, the boundary integral emuatlating the field
variables to the elastodynamic state on the boundary ofdgh&h is discretized, resulting in
a boundary element system of equations. For unbounded denthe displacemenis(w)
and tractiong (w) at the collocation points are related as follows in the fezgy domain:

~

(T(w) +1) iw) = Ow)i(w) (1)



The system matrice®/(w) and T(w) are in general fully populated unsymmetric matrices,
while I represents a unity matrix, corresponding to the integes ferm in the boundary in-
tegral equation. The latter vanishes for a bounded domadie cbmputation of the system
matricesU(w) andT(w) requires integration over the Green’s functions. The Gsegis-
placementslg(x’, x,w) and traction:ﬂ;fj-ns (x’,x,w) correspond to the fundamental solutions
at a receiver locatiow in a directione; due to a unit time—harmonic point load at a source
locationx’ in a directione;. A quadratic amount of memoryX(N3,r)) is required to store
the system matrice¥l (w) andT(w). Furthermore, solving the set of equations (1) by means
of direct numerical solvers such a¢/—decomposition requires a cubic amount of numerical
operationsQ (N3 ). The application of the classical boundary element methtiterefore
currently limited to problems of an order of magnitudecdf10?) [22].

The use of hierarchical matrices/{—matrices) provides an elegant way to treat fully
populated matrices with almost linear complexity [13]. #&—matrix is a data—sparse rep-
resentation of a certain matrix, consisting of a collectibiblock matrices of various sizes.
The construction of @&#—matrix requires several steps. First, a hierarchicaltetusee is
constructed based on the boundary element mesh. At thetitaves(i.e. level 0), the cluster
consists of the complete BE mesh. Each cluster is recuyspagtitioned into two (more or
less equal) sons. Several techniques are available in tyd@stain a suitable cluster tree
(e.g. nested dissection [12, 14], cardinality balancedtehing [6], ...). In what follows, a
clustering strategy based on principal component ana{iZX#\) will be employed [22]. In
PCA, the eigenvectors of the covariance matrix of a clugefiest calculated. The eigenvec-
tor corresponding to the largest eigenvalue gives the titreof the longest expanse of the
considered cluster. A separation plane orthogonal to theafentioned eigenvector is drawn
through the center of the cluster, dividing it in two (mordess equal) sons. This procedure
can recursively be applied to every son, until the clustergain less or equal elements (or
nodes) than a prescribed numhb¥€g;,. Second, admissible cluster paitX,Y’) are identi-
fied, i.e. cluster subdomains which satisfy a geometric adiility criterion such that the
corresponding fundamental solutions are smooth [4, 22]:

min {diam(X), diam(Y)} < ndist(X,Y) 0<n<l1 (2)

wherediam(X) denotes the maximal expanse of clusiérand dist(X,Y) is the minimal
distance between clusteksandY. The parametey affects the number of admissible blocks
and the quality of the approximation of the admissible pgiis.

For an admissible cluster pdiX, Y), the fundamental solutions are smooth enough
such that the corresponding block BE matri@&s; y(w) € C™*" andU x y)(w) € C™*"
can be approximated by low rank approximatioms.andn denote the number of degrees
of freedom in clusters andY’, respectively. For example, the block matﬁ)gx,y)(w) is
approximated byl x y)(w):

Ty (@) 2 T @) = (Vs ) (Vo) (3)
with U c C™* andV; € C»**, and wherex indicates the complex conju-
Tx,v)(w) Tix,v)(w) -
gate. k is the rank of the representation. Hoim + n) < mn, T xy)(w) is called a low
rank approximation ij?(X’y) (w), as the memory storage can be reduced fi@(mn) to

O(k(m +n)) by storingUT(X @) andVT(X ) instead ofT(x y(w), which is linear in



m andn. The rankk is determined such that the approximatﬁﬁp(,y) (w) is accurate up to a
prescribed relative accuraey

1T x vy (@) — Tixwy (@)|r < || Txyy (@) |r (4)

where|| ¢ ||r indicates the Frobenius norm of the mattix The partially pivoted adaptive
cross approximation (ACA) algorithm [7, 22] is employed tmgpute the low rank approxi-
mation defined in equation (3). The algorithm adaptivelycekdtes some of the rows and
columns of the original block matrix to obtain an approximatfrom few of the original
matrix entries. The algorithm stops if the prescribed aacyr is attained; the stopping cri-
terion defined in equation (4) can however not be employetthesriginal matriX]A?(X,y) (w)
is never generated completely. An intrinsic stopping dote based on the variation of the
Frobenius norm in consecutive approximations is therefisexl. The amount of numerical
operations required in the ACA algorithmd@k?(m +n)) [22]. One of the major advantages
of applying the ACA algorithm to obtain low rank approxinais of the BE block matrices
corresponding to admissible cluster pairs is that it is @ @ligebraic approach, implying that
there is no need for (semi—)analytical expressions of thddmental solutions. In this paper,
Green’s functiongf (x', x, w) andffjns (x',x,w) for a horizontally layered halfspace are em-
ployed. These Green’s functions are numerically computighl thve direct stiffness method
[19] using the MATLAB toolbox EDT 2.2 [25]. For cluster paifX’, Y) not satisfying the ad-
missibility criterion (2), the fundamental solutions shawingular behaviour which does not
allow to construct a low rank approximation of the correging block BE matrices. They
are therefore computed exactly.

The BE matricesT(w) and U(w) can hence be approximated by their hierarchical
representation®’ ,, (w) andU ,, (w), respectively, and the BE set of equations (1) can finally
be replaced by:

(Tor(w) + 1) () = Usr(w)b(w) (5)

In order to solve the set of equations (5), iterative Krylabspace methods are adequate, as
the complexity of matrix—vector multiplications is onty( Npor log Npor) for s#—matrices
[6], and this operation forms the core of iterative solveérsthis paper, all sets of equations
are solved by means of the generalized minimal residual mei@6MRES).

It follows from the discussion above that the useZ6-matrices results in a significant
reduction of memory and CPU requirements and hence allovpetimrm large scale BE
computations.

3. VALIDATION

The hierarchical BE method outlined in section 2 has beeremented in the MAT-
LAB toolbox BEMFUN [11]. In the following subsections, twx@mples are considered to
validate the numerical implementation and to demonstraeetfectiveness of the methodo-
logy. The first example is merely included to validate therectr implementation of7’—
matrix arithmetics and does not involve Green’s functiamrsaf layered halfspace, while the
second example focuses on the application of the novelrstdal BE method, incorporating
the aforementioned Green’s functions.

3.1. Three—dimensional spherical cavity subjected to an ternal pressure

A three—dimensional spherical cavity with radigs = 1m in a full space loaded
by an internal pressure = 1Pa/Hz is investigated in this subsection. The full space is



characterized by a shear wave velodity = 150m/s, a dilatational wave velocity’, =
300m/s and a density = 1800 kg/m®. No material damping is taken into account.

Figure 1. Clusters of (a) level 0, (b) level 1, (c) level 2, lghel 3, (e) level 4, (f) level 5, (g)
level 6 and (h) level 7.

The unit sphere is discretized by means of 3072 eight noddratzral boundary ele-
ments with element collocation (figure 1a). Both the cladsaad hierarchical BE method are
used to calculate the response in a frequency range betwWwéeand100 Hz, where analyti-
cal full space fundamental solutions [18] are employed.tReratter method, a hierarchical
cluster tree is constructed based on the elements’ cestan alement collocation scheme is
used. A minimum number of element§,;,, = 24 is specified, resulting itvg, % = 7 clus-
ter levels (figure 1). Figure 2 shows the hierarchical bldokciure of the matrices dif‘%(w)
andU ,,(w) arising from this hierarchical clustering, where a valu®.6f was attributed to
the parameter in the admissibility criterion (2). A threshokd= 10~3 has been used in the
ACA algorithm to obtain low rank approximations of the blsatorresponding to admissible
cluster pairs, while a tolerance tf~—* was specified in the iterative GRMES solver.

Figure 2. Hierarchical matrix decomposition. The greerckdocorrespond to admissible
cluster pairs and are approximated by means of ACA, whiler¢ldeblocks correspond to
inadmissible cluster pairs and are computed exactly.



Figure 3 shows the real and imaginary part of the radial disgghent at the edge of the
spherical cavity, calculated with the classical and theadn@hical BE method, respectively. A
perfect agreement between the results of both methods cabdseved. These results are

furthermore compared to the analytical solution for thaatdisplacement in the full space,
defined as [18]:

3 .
. L 1+ wy A
Up(r,w) = 107 . )2 exp (—@ <7“_0 - 1) w(]) (6)

1+ in - (sz—é}S

wherew,, = wr/C,, andw, = wry/C,. Equation (6) is evaluated for = 1m. The results
of both numerical methods correspond well with the ana#ytolution in the low frequency
range, while some small deviations can be observed abibie.
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Figure 3. (a) Real and (b) imaginary part of the radial disptaent afr = 1m, 0 = 0,z =
0m} due to a unit harmonic pressure applied at the edge of a spheavity withry = 1 m.
The solution of the hierarchical BE method (grey circlesyasmpared to the solution of the
classical BE method (black crosses) and the analyticatisal(solid line) [18].

The integral representation theorem subsequently alloashpute the radiated wave-
field in the soil from the displacements and tractions on thenblary. Figure 4 shows the real
and imaginary part of the radial displacement at the pdin= 10m, 6 = 0,z = Om}.

It is clearly illustrated that the solutions of the clasti@ad hierarchical BE method are in

good correspondence, and agree with the analytical sal(te. equation (6) evaluated for
r = 10 m).

3.2. Impedance of a massless rigid square surface foundatian a homogeneous half-
space

A massless rigid square surface foundation resting on a genemus halfspace is
considered in this subsection. The foundation side equalsThe underlying halfspace has
a shear wave velocitg, = 150 m/s, a dilatational wave velocity’, = 300m/s, a density
p = 1800kg/m* and a material damping rati, = 3, = 0.020 in both deviatoric and
volumetric deformation. The classical as well as the hamaal BE method are employed to
calculate the vertical soil impedané& (w), defined as:

Kzz(w) = /;djzz ' E?s(ﬁSC(l/)zz)dS (7)
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Figure 4. (a) Real and (b) imaginary part of the radial disptaent afr = 10m,0 = 0, z =
0Om} due to a unit harmonic pressure applied at the edge of a spheavity withry = 1 m.
The solution of the hierarchical BE method (grey circlesyampared to the solution of the
classical BE method (black crosses) and the analyticatisal(solid line) [18].

wheret),, indicates the vertical rigid body mode of the foundation.e Hoil-structure in-
terfaceX is discretized by means of four node quadrilateral boundbegnents with element
collocation. The tractions™ (1i..(¢/..) due to imposed displacemenis_ are obtained by
solving equations (1) and (5), respectively. As a surfacadation is considered, the system
matricesT(w) and T, (w) vanish in these equations. The same values for the parameter
1, Nuin, € and the tolerance in the GMRES solver as specified in suloge8til are used in
the hierarchical BE method. As mentioned in section 2, Gsdenctions for a halfspace are
incorporated in both BE formulations [19, 25].

Figure 5a shows the real and imaginary part of the verticﬁilimedancel%gz(w)
in a frequency range betwe@&Hz and 100 Hz. A BE mesh consisting 030 x 30 equal
sized elements is used to obtain these results. Up to nimeeaks per shear wavelength
As = Cg/f are provided at the upper frequency 10f0 Hz. At high frequencies, the soil
impedancei’®, (w) converges tawpC,S, whereS = 5 x 5m? is the area of the foundation
[24]. A perfect match between the classical and hierartBEamethod can be observed.
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Figure 5. Real (solid line) and imaginary (dashed line) pafg) the vertical soil impedance
f(;z(w) in function of frequency and (b) the vertical soil impedam@(w = 2730 Hz) for an
increasing number of degrees of freedom. The solution ohikearchical BE method (grey
lines) is compared to the solution of the classical BE meftatk crosses).



In order to demonstrate the effectiveness of the hieraatld& method, the vertical
soil impedancef(gz(w) is reconsidered at a particular frequency30fz, for an increasing
number of boundary elements. As an element collocationmsehe applied, the number
of degrees of freedom equals three times the number of elsmdihe real and imaginary
part off(;z(w = 2730 Hz) are shown in figure 5b. The results of both the hierarchicdl an
classical BE method converge to a constant valiie = (0.41 + 2.6i) x 10° N/m due to
the mesh refinement, and are in good correspondence withataeh The application of
the classical BE method is, however, limited to a model siz¢€3200 degrees of freedom.
The storage of the complex floating point entriesﬂt{tu) in double precision requires in that
case2 x N3op X 8bytes = 27.8 GB of RAM memory, being the limit of the machine on
which the actual calculations have been performed. Figamoépares the memory required
to store the BE matrice&l(w) andU - (w) on a double logarithmic plot, in which the slope
of the curve indicates the power of the number of degreeseefiivm to which the memory
is proportional to. As expected, a quadratic tréddV3 ;) is retrieved for the classical BE
method. For the hierarchical BE method, however, the memayirement is of the order
O(Npor logi’o Npor), allowing to extend the model size up to 399675 degrees efltrm
with only 28 GB of RAM memory available. In comparisog380 GB of RAM would be
required in order to handle such a model with the classicainBfhod. Figure 6b shows
the CPU time required to calculafé®, (w = 2730 Hz), including both the time to assemble
to matricesU(w) or U, (w) and to solve the set of equations (1) or (5), respectively. Fo
relatively small models®(10?)), the classical BE method turns out to be a little faster]evhi
from a moderate model size on, the hierarchical approacbrbes faster.
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Figure 6. (a) RAM memory and (b) total CPU time required foriatreasing number of
degrees of freedom with the classical (black lines) andigr@lchical (grey lines) BE method.

The contribution of the assembly time and the solution timthe total CPU time is further
investigated in figure 7. For the classical BE method, theragdy time shows a quadratic
trend. The solution time of the direct solver, however, @ases in a cubic way. The time
required to solve the set of equations (1) will therefore ohate the total solution time of the
classical BE method for large models. Figure 7 also illusgaon the other hand, that the
contribution of the solution time is negligible comparedhe assembly time for the hierar-
chical BE method. No effort has therefore been made to irwratp a preconditioner in the
iterative GMRES solver, such as a#f—LU preconditioner proposed in [5], as speeding up
of the iterative solver will not result in a significant redioa of the total CPU time required
in the hierarchical BE method.
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Figure 7. CPU time required to assemble the matrldés) or U . (w) (dashed lines) and to
solve the set of equations (1) or (5) (dotted lines) with tlagsical (black) and the hierarchical
(grey) BE method.

The example discussed in this subsection illustrates bigahierarchical BE method
combined with Green’s functions for a horizontally layeredfspace is very efficient, very
fast and sufficiently accurate. The proposed approach msradgeous with respect to existing
fast BE methods for elastodynamics involving a layereddpa€e, such as the FMM [9, 15],
as these formulations are based on full space Green’s éuns;tand hence need to sacrifice a
considerable amount of boundary elements to the modelfitigecfree surface and the layer
interfaces. This consequently poses a restriction on #eedfithe actual problem which can
be treated. Furthermore, the hierarchical BE method doesa®al any modification to tackle
visco—elastodynamic problems (as illustrated in this gXaim while a damping dependent
modification of the selection rule for the multipole trurioat parameter is required in the
FMM [15].

4. CASE STUDY

The examples put forward in the previous section validagepitoposed hierarchical
BE method, and this eventually allows to predict railwayuoed vibrations in an urban en-
vironment. In this section, a synthetic case is therefdm@duced to investigate the influence
of the trough—soil coupling of closely spaced buildings.

4.1. Model description

The synthetic case study consists of a set of 12 identicabnmgdbuildings resting
on a homogeneous halfspace (figure 8a). Each masonry litdia dimension$2m x
6m x 8m and has stories, each subdivided into 4 rooms. The intendrexterior walls
have a thickness, = 0.10m, and consist of clay brick masonry. The floors are concrete
slabs with a thicknesg = 0.20 m. All floors are simply supported, corresponding to hinged
joints at the slab edges. The structure is founded on a censt®p foundation with a width
we = 0.60m and a thicknesg = 0.20m [10]. The buildings are modelled with the finite
element method. The strip foundation, the walls and the $lame modelled by means of
shell elements, using isotropic properties for the fouindaand the floors and orthotropic
properties for the masonry walls. The lintels above the dwat the windows are modelled
by means of beam elements [10].



(b)
Figure 8. (a) Finite element and (b) boundary element mestedfet of 12 masonry buildings.

The front edge of the first set of three buildings is locatedat6 m, with a separation
distance of2 m in the y—direction between the buildings. A gap ®fn in the z—direction
exists between this set and the following set of three hugjsli Six additional buildings are
furthermore included behind this second set, in a samerpattethe previous six buildings.

The homogeneous halfspace is characterized by a shear ei@aityC; = 200 m/s,

a dilatational wave velocitg, = 400 m/s, a densityp = 1800 kg/m?* and a material damping
ratio 5 = 5, = 0.025 in both deviatoric and volumetric deformation. An incidevavefield
is generated by a unit vertical point load acting on the serfaf the halfspace at the origin of
the coordinate system.

4.2. Coupled FE-BE model

A coupled FE-BE methodology formulated in the frequency dimmvhich accounts
for dynamic SSI is employed to calculate the response of tiidibgs to the incident wave-
field. If N structures are considered, a weak variational formuladiotine equilibrium of
structurej (j = 1,...,N) and a subdomain formulation [2, 3] results in the followirg sf
coupled FE-BE equations:

N
[K; +iwC; — w’M;] iy (w) + Y K (w)iy(w) =f(w)  for j=1..N (8)
k=1

i;(w) collects the nodal degrees of freedom of structyrevhile K;, C; and M; are the
stiffness, damping and mass matrix of this structure. Ralyldamping is assumed for the
damping matrixC; [10]. K3,(w) are the dynamic stiffness matrices of the soil, which rep-

resent the through—soil coupling of structureand & for j # k. The force vecto@j(w)
denotes the dynamic soil-structure interaction forceqatsbil-structure interface; due
to the incident wave field. A Craig-Bampton substructuriaghinique is furthermore used,
decomposing each structufento the foundation and the superstructure, and an aptepri
modal decomposition is introduced [10].

The hierarchical BE method outlined in section 2 is emplageelaluate the dynamic
soil stiffness matriceKjk(w) and the force vectoﬁé_,s(w) arising from the incident wave field.
The finite elements of the foundations are coupled to a carifay boundary element mesh for
the surrounding soil (figure 8b), and a nodal collocatioreseé is used to facilitate the FE—
BE coupling. As a nodal collection scheme is used, the helareal clustering is based on the



nodes rather than on the elements’ center. The same valuégefparameters, V.., € and
the tolerance in the GMRES solver as specified in subsectibarg used in the hierarchical
BE method (wheréV,,,;, indicates in this case a minimum number of nodes).

It must also be stressed that a full 3D calculation is peréapwithout introducing
any additional assumptions concerning the lay—out of thiglings (i.e. no periodicity con-
siderations are taken into account).

4.3. Results

First, the response of the set of 12 buildings to an incidesntefiteld generated by
a unit vertical harmonic point load a0 Hz is considered. At this frequency, the Rayleigh
wavelength in the soil equals; = Cr/f = 18.6 m. The incident wave field, characterized
by cylindrical wave fronts, is shown in figure 9a. Figure 9lbwh the wave field in the soil
in case the presence of all 12 buildings is simultaneougbrtanto account. As the Rayleigh
wavelength is larger than the dimensions of the strip fotinda, the wave field remains
nearly cylindrically.
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Figure 9. Real part of the vertical soil displacement figlcat 10 Hz (a) without and (b) with
accounting for the presence of the buildings.

The influence of the through—soil coupling on the structtesponse is illustrated in figure 10.

Figure 10. Real part of the vertical structural displacenfiefd @, at 10 Hz (a) without and
(b) with accounting for the through—soil coupling of thersunding buildings.

Figure 10a shows the vertical response of all buildingsasedhe presence of the surrounding
buildings is neglected for each building. This is obtaingdsblving the set of equations (8)
N times, in which the solil stiffness matricﬁ(s;k(w) are not considered fgr# k. Figure 10b
illustrates the structural response in case the presenak b2 buildings is simultaneously



taken into account. A visual comparison of figures 10a andid@icates that the structural
response is qualitatively similar, especially for the &éhbaildings closest to the source of the
incident wavefield. The response of the buildings furthesyafwom the source turns out to be
more affected by the presence of the surrounding buildings.

The influence of the through—soil coupling on the structueaponse is investigated
in more detail for one particular building, which is indiedtin red on figure 8b. Figure 11
compares the modulus and the phase of the vertical disptdem along the front wall—
foundation edge AB. The response is not symmetrical due @émntin—symmetrical layout
of the individual masonry buildings (i.e. the presence &f door and windows). While the
variation of the displacements along the edge is similaoih lcases, the amplitude is almost
halved if the through—soil coupling is accounted for. Thidicates that the buildings closer to
the source shield the considered building from the incidevefield. Furthermore, an almost
constant phase shift af35 rad is introduced along the edge AB, as the Rayleigh wave fronts
are slightly shifted due the the presence of the buildingsil&ly, figure 12 compares the
modulus and the phase of the vertical displacenigralong the side wall-foundation edge
AC. The variation of the displacements along the edge islainm both cases; an amplitude
reduction by a factor of 2 and a phase shifi &f5 rad can be observed here as well.
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Figure 11. (a) Modulus and (b) phase of the vertical disptesrgz. along the front wall—
foundation edge AB at0 Hz with (black lines) and without (grey lines) accounting foet
through—soil coupling of the surrounding buildings.

x10"

o 0\
2\/—\; -15

L1, [rad]

1 -20

0 ‘ : : : ‘ -25 ‘ : : : ‘

40 42 44 46 48 50 52 20 42 44 46 48 50 52
(a) x [m] (b) x [m]

Figure 12. (a) Modulus and (b) phase of the vertical disptea# ¢, along the side wall-
foundation edge AC at0 Hz with (black lines) and without (grey lines) accounting foet
through—soil coupling of the surrounding buildings.



Second, the response of the set of 12 buildings to an incidawnefield generated by
a unit vertical harmonic point load &0 Hz is considered. A50 Hz, the Rayleigh wavelength
in the soil equals\r = Cr/f = 3.7m. The incident wave field, characterized by cylindrical
wave fronts, is shown in figure 13a. The dynamic interactietwieen the buildings and the
halfspace alters the wave field significantly (figure 13bjhasvavelength in the soil becomes
of the same order of magnitude as the dimensions of the swipdations.

(@)

Figure 13. Real part of the vertical soil displacement figlét 50 Hz (a) without and (b) with
accounting for the presence of the buildings.

The influence of the through—soil coupling on the structtesponse is illustrated in figure 14.

Figure 14. Real part of the vertical structural displacenfiefd <, at 50 Hz (a) without and
(b) with accounting for the through—soil coupling of thersunding buildings.

Figure 14a shows the vertical response of all buildingsasedhe presence of the surrounding
buildings is neglected for each building, while figure 14bstrates the structural response in
case the presence of all 12 buildings is simultaneouslyntake account. As in figure 9, the
response of the three buildings closest to the source ohthdant wavefield remains almost
unaffected. A visual comparison of the other buildings, beer, suggests that the response is
considerably altered by the presence of the surroundiridibgs.

The influence of the through—soil coupling on the structueaponse is investigated
in more detail for the same particular building as discussefdre. Figure 15 compares the
modulus and the phase of the vertical displacenigratlong the front wall-foundation edge
AB. The amplitude is reduced by more than a factor of 2, andraal@ost constant phase
shift of 3.3rad is induced. Figure 16 compares the modulus and the phase ofettical
displacement.. along the side wall-foundation edge AC. Not only can an atngd reduc-
tion with respect to the case where the through—soil cogplirthe surrounding buildings is



neglected be observed, but the variation of vertical dsglzents along this edge also differs
significantly. A phase shift df.3 rad is introduced as well.
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Figure 15. (a) Modulus and (b) phase of the vertical disptes® . along the front wall—
foundation edge AB at0 Hz with (black lines) and without (grey lines) accounting foet
through—soil coupling of the surrounding buildings.
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Figure 16. (a) Modulus and (b) phase of the vertical disptear® v, along the side wall—
foundation edge AC &i0 Hz with (black lines) and without (grey lines) accounting foet
through—soil coupling of the surrounding buildings.

Although only a limited number of results have been disctigs¢his subsection, the
presented synthetic case study nevertheless indicatdbé¢haave propagation in the soil and
the structural response is considerably affected in annudo&ironment. At low frequen-
cies, this predominantly results in a shielding effectudg the amplitudes of the displace-
ments, without altering the wavefield itself drasticallyt iigher frequencies, however, the
wavelength in the soil becomes comparable to the foundalilmensions, and the dynamic
interaction between the buildings and the halfspace atersiavefield significantly.

5. CONCLUSIONS

In this paper, a hierarchical BE method based on Green'siimgfor a horizontally
layered halfspace is presented. The numerical implementaas been validated, and it has
been demonstrated that the proposed methodology is vetieefii very fast and sufficiently



accurate, which allows to perform large scale BE computatinvolving a layered halfspace.
The applicability of the novel methodology has been illatgd by means of a synthetic case
study of an urban environment, indicating that the throwgii-coupling of closely spaced
buildings can significantly alter the wave propagation i $bil and the structural response.
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