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Abstract. In this work, Static Light Scattering (SLS) measurements are used to estimate the 
Particle Size Distribution (PSD) of a polymeric particle system incorporating prior informa-
tion obtained from measurements of Scanning Electron Microscopy (SEM). The inverse prob-
lem is solved using a Bayesian approach following two different schemes for the representa-
tion of the PSD. In the first one, the PSD is represented by a parameterized family of distribu-
tions in a fixed-form scheme. In the second one, there is no assumption on the shape of the 
PSD, i.e. a free-form scheme is used. The Metropolis-Hastings algorithm is used to solve the 
inverse problem. The proposed objective is to obtain results from experimental data that are 
more consistent with respect to those obtained with SEM in a previous work, providing trust 
confidence intervals for the solution. 
The application of the Bayesian approach allows one to use, simultaneously, information pro-
vided by two different experimental techniques. The main conclusion of this work is that the 
usage of a Bayesian approach is recommended for cases where only an approximate model is
available and use of reliable additional  information can be  made.

Keywords: Inverse problem, Bayesian estimation, Particle Size Distribution, Light scatter-
ing.

1. INTRODUCTION

Systems of polymeric particles suspended in a fluid appear in diverse industrial appli-
cations. These systems are usually described by their Particle Size Distribution (PSD). There 
are many experimental techniques for estimating the PSD. The optical ones stand out because 
they are non-destructive. One of the most important optical techniques is the so-called Static 
Light Scattering (SLS) which has been widely used in practice [1,2]. The basic process con-
sists on illuminating a sample of particles by a laser light and measuring the intensity of the 
light scattered at different angles. The estimation of the PSD from SLS data requires solving 
an ill-conditioned inverse problem which gives shortly accurate results in some cases. In order 
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to properly solve this type of inverse problems some kind of regularization is needed and sev-
eral methods mostly based on a least-squares approach has been proposed [3, 4, 5]. However 
when noisy data are available and/or modeling inexactitude cannot be neglected, results ob-
tained by this type of methods may be poorly consistent or even unreasonable. In these cases, 
using prior information on a Bayesian approach is an interesting alternative to get more relia-
ble results.        

In the next section, there is an introduction describing the used models for the calcula-
tion of the intensity of scattered light by a given particle system. This is the so-called direct 
problem. Then, the Bayesian approach is presented and studied in the section . At this point, 
the analysis is divided into two schemes according to the representation of the PSD: a fixed-
form scheme when the PSD is assumed to be properly expressed as a log-normal distribution, 
and a free-form scheme. This entire section describes the so-called inverse problem.  The fol-
lowing section includes all remarkable aspects of the implementation. Later, a description of 
studied examples is provided and obtained results are discussed in the final section.

2. DIRECT PROBLEM

Appropriate use of models depends on both experimental setups and characteristics of 
analyzed systems. In this work, concentrated particle systems are studied under the Rayleigh-
Debye-Gans (RDG) regime which considers close values between refractive indexes of par-
ticles and surrounding medium (low contrast condition). Under these assumptions multiple 
scattering effects can be neglected and only interference between particles should be consi-
dered. Several models of different mathematical complexity were developed. In particular,
this paper is interested in the Hard-Sphere (HS) models which represent the particles as impe-
netrable spheres which cannot be overlapped in space. One of these HS models under the Per-
cus-Yevick (PY) approximation corresponds to the Finite Mixture Model (FMM) developed 
by Vrij [6, 7] which is rigorous under this approximation. A summarized expression for the 
FMM can be found in [8].  However, the FMM has also a strongly non-linear dependence on 
the PSD so its practical use in inverse problems has several problems including high error 
propagation and a very time-consuming computational implementation. In order to overcome 
these difficulties some approximations were built from the FMM, including the Local Mono-
disperse Approximation (LMA) introduced in [9]. The LMA supposes a spatial distribution of 
the particles according to their respective sizes and it expresses the scattered light intensity sI
as the integral in eq.(1)
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where )(Rf represents the PSD expressed in terms of the radius R. )Rq,p(S HS , is the so-
called structure factor defined in eqs.(2) to (7), HSp is an effective particle density and q , 
expressed in eq.(8), is the modulus of the scattering vector q ; )Rq(F ,2 is the form factor 
defined in eq.(9) and K  is a global constant.
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3. INVERSE PROBLEM

The main feature of the Bayesian approach is that every variable or parameter involved 
in the model is considered as a random variable so they must be described through their prob-
ability density function (pdf). Then, using the Bayes theorem, it is possible to obtain the so-
called posterior pdf of the model parameters as in eq. (10):
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where πposterior(P) is the posterior pdf of the parameters P of the model, equivalent to the con-
ditional  pdf  of  the  parameters P given  the  experimental  intensity measurements I ; 
πprior(P) is the prior pdf of the parameters P and )/( PI is the conditional pdf of measure-
ments I given the parameters P, also called the likelihood function.  The integral in eq.(10) is 
the pdf of measurements )(  I and it corresponds to a normalization constant. 

In a statistical sense, the Bayesian solution is the set of parameters P that maximizes 
πposterior(P), which is called the Maximum A Posteriori (MAP) solution, which implies that 
there is no need to compute )(  I . However, the estimation of corresponding confidence 
intervals requires solving Bayes theorem. Depending on the number of parameters P, numeri-
cal computation of the integral can be a very time-consuming task. In order to reduce these 
computational costs alternative methods have been proposed, especially Monte Carlo Markov 
Chain (MCMC) techniques [10]. Most used MCMC techniques include Gibbs Sampling (GS) 
[11] and Metropolis-Hastings (MH) algorithm [12, 13]. In this work the MH algorithm has 
been chosen because it has shown its versatility in many applications.  A detailed analysis of 
the MH algorithm can be found in [14].  

The goal of the MH algorithm is to build an adequate Markov chain X which simulates 
a distribution that has a density π(P), defining a density )/( )()1( tt

T PPq  , called candidate gen-
erating density, between a state of the Markov chain at a time t (i.e. a value of the set of pa-
rameters )(tP ) and the next one )1( tP . Then, the MH algorithm is defined by two steps: a first 
step in which a proposed value is drawn from the candidate generating density and a second 
step in which the proposed value *P is accepted as the next iterate in the Markov chain ac-
cording to the probability )/( )(* t

MH PP defined as:
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If uPP t
MH )/( )(* , where u is a random variable of uniform distribution U[0,1], then the 

drawn sample )1( tP is accepted and )1(*  tPP ; if uPP t
MH )/( )(* )1( tP is rejected and 

)(* tPP  . An important aspect of the algorithm is that the acceptance probability given by 
)/( )(* t

MH PP avoids the computation of )(  I . 

Although the MH algorithm has a relatively simple implementation, it needs the fitting 
of several own parameters for the correct performance. In the same way, even when Bayes 
theorem is the keystone of the Bayesian approach, explicit forms of eq.(10) and its specific 
application differ in every developed scheme.  These schemes are explained in what follows.

3.1. Fixed-Form Scheme

In this problem, the PSD can, sometimes, be represented by a log-normal distribution of 
parameters g and 0R as shown in eq.(12):
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Then, the set of parameters P used in eq.(10) is defined as T
HS KpgRP ],,,[ 0 . Some sort of 

regularization of this inverse problem may be simply achieved by parameterizing the PSD. 
All previous information on these parameters expressed in a statistical manner is used in 
πprior(P). When there is no previous information on some parameters, it is said that the pdf of 
these parameters is non-informative and it is equal to a constant. A great simplification occurs 
when a subset of parameters *P with prior information can be modelled as a normal pdf. In 
this case, this pdf is expressed as:
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where  is the determinant of the covariance matrix  , *N is the number of parameters in 
*P and *P is the mean vector in this prior pdf.

In this work, prior information is obtained by Scanning Electron Microscopy (SEM).  SEM 
micrographs bringing information on mean value R and variance  of the PSD and indi-
rectly about parameters g and 0R using eqs.(14) and (15), which are used in eq.(13). Although 
SEM allows estimation of volume fraction of particles , limitations and distortions in that 
estimation are important and the reliability in the results depends on the type of measured 
material [15]
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A similar explicit form for the likelihood function )/( PI can be found when measurements 
can be modeled with a normal distribution.  In this case,
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where M is the number of measurements, W is the inverse of the covariance matrix of the 
measurements and sI are intensities generated by the LMA defined in eq.(1).

3.2. Free-Form Scheme

It is important to notice that the resulting problem displayed in eq.(1) has a linear de-
pendence on )(Rf for a specified value for the parameter HSp .  In this case, when no assump-
tion on the shape of )(Rf is considered, an explicit regularization is needed. This regulariza-
tion is carried out on the prior pdf of eq.(10) where Bayes theorem results
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where πposterior  HSpIf ,/  is the conditional pdf for the PSD given the measurements and the 
parameter HSp , πprior )/( HSpf is the prior pdf for the PSD given the parameter HSp , 

),/( HSpfI is the likelihood function with a similar expression to eq.(16) and the integral
is once again a normalizing factor. In particular it is possible to include regularization, and 
SEM information on the prior pdf, 
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where N is the number of components of the discretized PSD, H is a regularization matrix, 
is an adjustable regularization parameter and πprior *)(P is the prior information from SEM 
that has the form of eq.(13) where TRP ],[* 

Finally, an Iterative Bayesian Method (IBM) using Bayes theorem in the form of 
eq.(17) was proposed. It can be described in the following steps: 

1. Choose a value for parameter HSp . 
2. Compute a value for  using some method such as Generalized Cross Validation 

(GCV), L-Curve (LC) or Principle of Discrepancy (PD)
3. Estimate the PSD, )(Rf , applying MH algorithm in the form of eq.(17)
4. Repeat the first three steps for the whole range of possible values of HSp
5. Select the PSD with the maximum product ),/( HSpfI .πprior )/( HSpf

4. IMPLEMENTATION

Both schemes of the Bayesian approach were implemented on Matlab®. As mentioned 
in last section, a correct performance of the MH algorithm requires a good fitting of its own 
parameters. Such parameters include initial sample, prior information, acceptance ratio, can-
didate generating density, length of the Markov chain and samples considered in this chain. 
Convergence tests have been performed for different initial samples in order to determine if 
differences between obtained chains are significant. In this sense, while the fixed-form esti-
mation had no convergence problems, the free-form scheme showed a high sensitivity to the 
initial sample. Actually, the MH algorithm has no warranty on solving multiple local minima 
problems. An alternative solution is to slightly modify the algorithm by including concepts 
from the Simulated Annealing (SA) algorithm [16]. The idea of the variant applied in this 
work is to create a distribution which exaggerates the probability value of the MAP solution, 
by changing the probability of )/( )(* t

MH PP in eq.(11):
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Then, the idea is to reach this MAP solution and use it as an initial sample with the MH algo-
rithm in its original form.  Prior information is a critical factor in determining the posterior 
pdf. When the state of knowledge is primarily subjective, it is recommended to propose sev-
eral priors and observe their effects on results.   In this work, however prior information is 
well defined and based on alternative SEM experiments. In this context, a few priors from 
SEM measurements  were simulated in a Monte Carlo routine that will be explained in next 
section. Acceptance ratio is the percentage of times a new sample is accepted; so, if a too 
small value is selected, then the chain slowly covers (or even does not cover) the whole dis-
tribution. However, choosing a too large value produces jumps very often.  Best results 
showed that acceptance ratio should be set between 0.23 and 0.33, in agreement with previous 
works [17]. It also must be specified a candidate generating density, typically from a family 
of distributions with tuning parameters such as scale and location. Here the so-called random 
walk was proposed. According to this method, a random variable  with distribution Tq is 
added to the present state to generate next candidate. This parameter updating process is per-
formed at one parameter at a time randomly selected.  Finally, the length of the generated 
chain must be large enough to be a good approximation to the final distribution and first sam-
ples until reach stationary regime should be discarded. Final chains of 200000 samples and 
300000 samples were respectively built for the fixed-form and free-form approaches. Other 
implementation issues were needed in the free-form approach. These include discretization of 
the PSD, selection of the regularization matrix H and a method for computing the regulariza-
tion parameter. The random walk where each candidate is generated changing one parameter 
at a time has a very slow performance and convergence problems if there is a huge number of 
components of the PSD.  It was considered a maximum number of 40 points in the PSD to 
make the problem tractable.  A few regularization matrices were studied. Best results in simu-
lations were obtained for a matrix corresponding to a second derivative order. The computa-
tion of the regularization parameter was an important point to analyze since it has a great in-
fluence in the computed solution. In this work three methods were analyzed: GCV, LC and 
PD.  It has been shown that GCV usually produces data overfitting [18] and hence it may 
have a bad performance on systems were modeling errors are important. LC, on the other 
hand, produces an over-regularization of the solution losing a good part of information pro-
vided by the data. Finally PD seemed to bring an intermediate solution for simulated cases 
and it was then used in the experimental examples. This method however requires an estima-
tion of the noise level. 



5. EXAMPLES

5.1. Simulated Examples

Simulated examples were divided into two groups. In the first, measurements were gen-
erated adding numerical noise to scattered intensity sI obtained from the LMA. The noise

follows a normal distribution with zero mean and standard deviation  of 0.1% and 1% of 

the peak. In the second group, in an attempt to make measurements more realistic, measure-
ments sI were simulated using the FMM. The simulated particle system is described by a log-

normal distribution with parameters 10g and 25.00 R (in a micrometer scale) and two 

volume fractions corresponding to different levels of concentration 001.01  and 

0216.02  . SEM estimations were also simulated, using a Monte Carlo routine. The devel-
oped process consists of a few steps.  First the total population of particles is generated and 
located over a three-dimensional space. A sample of a certain number of particles (typically 
between several tens to few hundreds) is then taken over random positions in space. This 
sampling process is repeated until getting an acceptable number of samples to statistically 
analyze the ensemble. Final results are mean and variance of mean radius R and standard de-
viation  of the PSD (or alternatively 0R and g ). 

5.2. Experimental Examples

Experimental examples were taken from previously reported publications [19, 20]. In 
those works blends of polyisobutilene (PIB) labeled PIB5 and PIB025 in Isobornyl Methacry-
late (IBoMA) were used. The blends contained 50% of PIB025 (50PIB025 and 
50PIB025_replica) and 30% and 50% of PIB5 (30PIB5 and 50PIB5). Refractive indices were 
1.51 for PIB5 and PIB025 and 1.48 for IBoMA. SLS measurements were performed using a 
Flat Cell Light Scattering (FCLS) apparatus which consists of a linear array of photodiodes 
that detects the light scattered by a thin sample illuminated by a 17 mW He-Ne laser with 
random polarization.  SEM micrographs were obtained using a Jeol JSM 6460 LV device. 
From these micrographs, estimations of mean values corresponding to mean radius R and 
standard deviation  of the PSD were obtained. Their respective variances were computed 
from the sample-error.

6. RESULTS

For diluted systems the LMA is an excellent approximation to the FMM, so modeling 
errors are not important and results obtained in simulated examples under these conditions      
(the particle system corresponding to 001.01  ) are practically the same using both models 
to generate measurements.  In this case, using a Bayesian approach with SLS measurements 
achieves a great performance and it can improve previous confidence intervals obtained with 
SEM simulations as much as an equivalent of  a micrograph of over 40000 particles for noise 
of )max(%1.0  I and another of about 8000 particles for )max(%1  I



For concentrated systems, measurements obtained with the LMA model can be quite 
different from those generated with the FMM. In this case, these differences produce distor-
tions in estimations with the LMA model when using FMM data. In this sense, when model-
ing errors cannot be neglected, a modification of the estimated measurement error represented 
in the elements of W in eq.(16) was proposed by adding another term to the normal noise. 
This term corresponds to an error represented by a gaussian process, interpolated over each 
value of measured q, between intensities generated from both models.  This process is similar 
to those proposed by [21, 22] and it improved estimations in simulated examples (the particle 
system corresponding to 0216.02  ) with measurements generated with the FMM. With this 
modification, used in both fixed and free form schemes, prior information has a major influ-
ence on results and loss of precision in estimations is compensated with an improvement in 
accuracy of the mean values. The results for simulated examples are not displayed since the 
emphasis in this work is related to the analysis of experimental examples.

Four experimental samples were studied. The same criterion explained for concentrated 
systems was used as well.  In tables 1 to 4, estimations of mean radius and standard deviation 
of retrieved PSDs for each sample are shown with their respective confidence intervals and 
MAP solutions for Bayesian schemes.  Previous estimations from a least-squares based 
(Levenberg-Marquardt) method reported in [5] are also included.  Results from applying the 
Bayesian methodology are much more consistent with SEM estimations. This is particularly 
outstanding in recovered mean radii where differences between the LMA and the FMM de-
rive in overestimated values when a least-squares approach with no prior information is used.  
Variances estimated following the Bayesian approach are reasonably wider than those ob-
tained by SEM as it can be observed in MAP values. This can be explained by taking into 
account that this technique usually produce underestimates of distributions widths. It can be 
seen in fig. 1 that MAP estimated distributions are consistent with the histograms built from 
SEM micrographs where both Bayesian schemes give similar results. Greater differences cor-
respond to most noisy measurements (samples 50PIB5 and 30PIB5). The data fittings of both 
proposed schemes and previous results are shown in fig.2.  

As main conclusions of this work, a Bayesian methodology was successfully applied to 
combine data from two different experimental techniques. This methodology is specially rec-
ommended when reliable information is available and approximated models are used.



Table 1. Estimations for sample 50PIB25
Method

R
R   

SEM Estimations 0.23±0.026 0.12±0.0496
Least-squares (Levenberg-

Marquardt) Approach
0.3210.011 0.1320.002

Fixed-Form Bayesian 
Approach

Statistics 0.2318±0.0135 0.1210±0.0075
MAP 0.2456 0.1265

Free-Form IBM Approach Statistics 0.2334±0.0092 0.1213±0.0049
MAP 0.2332 0.1213

Table 2. Estimations for sample 50PIB25_replica
Method

R
R   

SEM Estimations 0.19±0.0217 0.091±0.0376
Least-squares (Levenberg-

Marquardt) Approach
0.3330.008 0.122001

Fixed-Form Bayesian 
Approach

Statistics 0.1915±0.0173 0.1055±0.0083
MAP 0.2092 0.1116

Free-Form IBM Approach Statistics 0.1966±0.0061 0.1147±0.0034
MAP 0.1955 0.1147

Table 3. Estimations for sample 50PIB5
Method

R
R   

SEM Estimations 0.31±0.0343 0.11±.0426
Least-squares (Levenberg-

Marquardt) Approach
0.4090.006 0.09410.0033

Fixed-Form Bayesian 
Approach

Statistics 0.3102 ± 0.0158 0.1073 ± 0.0059
MAP 0.3267 0.1109

Free-Form IBM Approach Statistics 0.3274 ± 0.0051 0.1247 ±  0.0065
MAP 0.3275 0.1246

Table 4. Estimations for sample 30PIB5
Method

R
R   

SEM Estimations 0.21±0.0297 0.054±0.0236
Least-squares (Levenberg-

Marquardt) Approach
0.2820.011 0.09520.0020

Fixed-Form Bayesian 
Approach

Statistics 0.2207±0.0132 0.0881±0.0337
MAP 0.2352 0.0933

Free-Form IBM Approach Statistics 0.2291±0.0031 0.0872±0.018
MAP 0.2291 0.0872
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Figure 1. Estimated PSDs obtained with SEM (black bars) and by analysis of SLS data: using 
a least-squares method (red lines), a fixed-form Bayesian approach (green lines) and a free-
form Iterative Bayesian Method (blue lines)  for samples a) 50PIB25,  b) 50PIB25_replica,  

c) 50PIB5  and  d)30PIB5   .
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Figure 2. SLS Data fitting corresponding to the Least-squares approach (red), and MAP solu-
tions from Fixed-form Bayesian approach (green) and Free-form Iterative Bayesian Method 

(blue) for samples a) 50PIB25,  b) 50PIB25_replica,  c) 50PIB5  and  d)30PIB5.
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