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Abstract. The finite element method (FEM) has become one of the most important and useful
engineering tools for engineers and scientists in the last three decades. Finite element method
is considered very powerful and efficient tool in solving partial differential equations. Seeking
for exact solution of some engineering applications, such as fluid flow problems, is still a
challenging task to overcome. Based on this, finite element method can be used to model such
problems and it is possible to obtain solution near to the exact one. In the present study, FEM
is employed to discretize the governing equations for a viscous incompressible fluid flow
around a circular cylinder inside a 2D channel. The fluid flow is described by the Navier—
Stokes equations. There are many methods to tackle these equations. However, minding
computational speed the choice is for a simple method called Chorin’s projection method for
discretizing the Navier-Stokes equations. Results are presented for two different meshes and
is shown that the elements density have some significant influence in the results. Also, there is
an apparent effect on Cd and CI calculation on the cylinder.
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1. INTRODUCTION

Finite element method as a numerical technique is widely used in problems that require
solution of system of partial differential equations. The core of this method treat a complex
region defining a continuum, as a discretized region in simple geometric shapes called finite
elements. The governing equations, material properties and auxiliaries’ relations are evaluated
over these elements and written in terms of unknown values at element vertexes. An assembly
process in a correct way is done considering the loading and constraints which results in a set
of equations. In order to obtain a solution, the set of these equations are solved yielding the
approximate behaviour of the continuum region. Cook [1] and Thompson [2] discuss the
concepts of FEM for solution of partial differential equations present in several important
areas of engineering as such as, Fluid Mechanics, Solid Mechanic and Electromagnetic Field.
Details about fluid mechanics and heat transfer problems and their solution can be found in

3].
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In this paper, a two-dimensional channel with &udar cylinder submitted to a viscous
incompressible unsteady flow is solved using timdielement method through the Chorin
projection method [4][5]. The 2D channel domaindiscretized to a large number of
triangular elements in order to assure the accuddcthe solution. The influence of the
number of elements inside the domain on the acgucdacdhe numerical solution is also
investigated. Numerical experiments are done bgystg different meshes sizes. From these
experiments are observed very important results) sg the accuracy of the drag coefficient
as well as the lift coefficient on the cylinder gestry.

In the present problem, a fluid flows through a @éamrepresented by a 2D channel with a
circular cylinder. The channel has the followinghénsions: 0.41m high and 0.22m long. The
cylinder center is located at (0.2m, 0.2m) from lgfe hand side and has 0.1m of diameter.
The fluid flow enters from the left with a uniform velocity u,
u@y)=u(22,y)=041%(4u_ vy (041-y)0), 0<y<041. It flows around a circular
cylinder and the outlet is the right side of thendan. The upper and the bottom side are
considered as solid walls. No-slip boundary condgi are imposed at these boundaries. As
the fluid flows through the domain, the velocity thie fluid changes abruptly due to the
presence of the circular cylinder. So, the mainl goacapture this flow as time progress.
Using the mean value of the inflow velocity,,, = 0.3ms*and the diameter of the cylinder
L=0.1mas characteristic quantities of the flow, its Rags number iRe=2Q The density of
the fluid is considered as beipg 1.0kgm®. As discussed by Schéafer and Turek [6], due to
the non-convex domai2, it is unlikely that ¢, p are regular enough such that standard
error estimates for higher-order finite elementditizations hold.

2. GOVERNING EQUATION OF TWO DIMENSIONAL CHANNEL FLOW

The governing Navier-Stokes equations that govdra two-dimensional channel
problem, in general, can be obtained from the failhg relations

L.J+(U.D)U+Dp—VAu: f, inQxl (a)

Ou =0, inQxl (b)
u=g, inQxIl (c) Q)
m.u - pn=0, inQxl (d)
u=u,, inQxl (e

Where vis the viscosity,y =10°ms*, Q is the channelu and p are the velocity and
pressure respectively, ahd given body force. It is assumed that bound&yof the channel
domainQ is divided into two part§D andI'N associated with the no-slip and the do-nothing
boundary conditions eq(1.c) and eq(1glls a given function where describe the velocity on
I'D. GenerallyQ is a channel andD denotes either the rigid walls of the channel, withO0,
or the inflow region, withy the inflow velocity profile, whilel'N denotes the outlet with the
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boundary conditiorv n -~~u- pn = 0. The velocity at tim& = 0 is given by the initial
conditionu, andl = (0;T] is the time interval with final tim@.

3.0 NUMERICAL SCHEME BASED IN CHORIN'S PROJECTION M ETHOD

Following the idea described by Chorin in [4][5]ettnomentum equation (1.a) is
discretized and is called operator splitting indiosing the approximation given by forward
Euler method. Applying this, the time stepping sokes obtained as follow

ntl _ |n

u™ "
%Huf,j Oy’ +0p", —vAu”, = 1" (2)

Where Atis the time stepn is the discrete time iterative level. Adding andtsacting an
intermediary tentative velocity in the discrete time derivative, it is possibleteri

u™-u +u . —u
= (U D) + Op!) - = £ (3)
At ’ ' ’ ' ’
This expression is satisfied only if
ui*,' _uir?' _ n n n n
T——(umﬂ)uiyj +VAY', + £ 4)
and also
u™t-u"
i,] 1, ] :—D n 5
o HR 5)

holding simultaneously.

The physical reason for the splitting is that wiitle decoupling of the diffusion and
convection of the velocity, the pressure act tocomsd the incompressibility constraint. So,
considering thaji'jfl, Is possible calculateni*’j from eq(4) separately without having to worry
about the pressure. In order to determine the pressne takes divergence of eq(5). Once
done this it is possible write

u™-u )
0 27 —-_1(Op"
A (Cp’))
(6)
Done this and since one seek ﬁhu{f}l =0, the eq(6.0) gives

u

-0.—L =-Ap". 7
At o (7)

From this the pressurep,'jj+1 can be determined from a Poisson type equation. In

general eq(7) is frequently referred to asRnessure Poisson EquatidRPE). Once is given
u{ij it is possible to solve eq(7) in order to get aspuge p; which makes the next velocity

u"* divergence free. Sincg; is computed from the tentative velocity, , it is not the actual
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pressure, but at best a first order approximation in tifiee actual computation in”’j+l is
done by making usage of eq(7), but now in the erghrm
Uir?}rl = ui*,j —AtAp, (8)

Thus, with this last calculation the Chorin projest method is established. One
simple way to enforce boundary conditions t@; and p; is to set the Dirichlet, or no-slip,
velocity boundary conditions given by eq(1.d) a)n] and a von Neumann boundary
condition nAp", =0 on the pressure. At the outflow, the do-nothingirimtary condition
given by eq(l.e) is imposed term by term by enfagcnu’, =0 and p” =0. This
generally means thami'?jﬂwill not satisfy the velocity boundary conditions a precisely
sense. The zero Neumann boundary condition for pilessure, which is in some way
unphysical and leads to a poor quality of bgh and ui'jjﬂnear the boundary, is overlooked
by the simplicity of implementation of the projexti method and has made it very popular
and hard to be replaced [7]. These boundary camditior the pressure have been a great

challenge with a long history see e.g. [8] and [9].

3.1. Fully Discrete Method Appling Finite Elements

In order to write a fully discrete method it is de® adopt a discretization method, so
the finite elements is applied to the Chorin Prioggc method. To establish a variational
formulation of the Navier-Stokes equations we n@eidtroduce two function spac®sandQ
for the velocity u and pressurep, respectively: V, :TVD[Hl(Q)]d :v|aQ:ZT and
Q ={q OL%(Q): @) = O}, the pressure spa€gis the subset of?functions, which have zero
mean.H' =H'(Q )is the Hilbert space.

Let further, to approximate the velocity and pressietV, and Q, be two spaces of
piecewise polynomials oMe (mesh}hat approximate¥ and Q in some sense to be made
precise. ConsideN, as the usual space of piecewise linears with thefunaction basis
{8} on a mestMe of Q. Also consider{X, ] be a set of scalar basis functions @y. An
appreciated goodness with the operator splittingh# it allows one to use equal order
polynomial spaces for both the velocity and pressurhis suitably circumvents the
cumbersomenf-sup condition as discussed by Tobiska and VerfurtH.[E®@en though with
this holding, spurious pressure modes may stilupdahe time stepAt is much smaller than
the mesh sizénused to discretiz. Based on the fact which is adopted the same dpace
andp, this brings great simplicity when implementing flollowing relations

np

U = Z(fJJ)J¢J

=l

n
Vi

n
]

(& ).8, (9)

~n

plrjj = Z(w )29,

J=

T
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It is imposed the same representationtfor n

Observing the eq(4) it is possible to see thaedodiples into one equation far and
one forv . Proceeding with finite element discretization amaking usage of matrix notation
these equations can be written as

ME =ME —AHC" +VA)E +h,

* (10)
ME =ME -A(C" +UA)E +h,

WhereM is the so called mass matri,the stiffness matrix, an€" =C(u" ig the
convection matrix with convection field" . Note thatC", depends on the current velocity
component and must be reassembled at each time $tep load vectorsh, contain
contributions of a previously defined body fofc&he eq(5) well known as PPE is a standard
Poisson equation and rewriting in matrix form gl

- n

w =-(B&, +B,&) /At (11)

WhereA again is the stiffness matrifg are convection matrices with corresponding
convection fields [J10] for u and [Q1] for v, the two velocity components. It is needed adjust
this equation for boundary condition&€ 0 on I'" ) to give a unique solution. Using the last
relation is possible rewrite eq(8.0) in discretarfas

MEM =ME, -MB, @

- n

£”+1 f —AB, w

(12)

The size of the time step is bounded by the adomifathe first order forward Euler
scheme in the time approximation. In order to gu@®numerical stability it is necessary that
the time step is of magnitud€u for convection dominated flow with <uh, andh2h for
diffusion dominated flow withy > uh.

4. FLOW ANALYSIS

Some numerical experiments are carried out using thfferent unstructured
triangular meshes. CASE #1: number of nodes =138&nber of triangles=2445, non-
uniform triangles. CASE #2: number of nodes=104%8nber of triangles=20155, uniform
triangles. These unstructured triangular mesheg whtained by making use distmesh2d
by Persson and Strang [11]. The uniform mesh hekpsnatrixes of finite element to be well-
conditioned. In another words, this means thatttia@gles should not present internal high
skew angles. In order to evaluate the accuracyhefpresent method the usual benchmark
parameters are the drag coefficiedtat the cylinder, the lift coefficiertl and are given by
the following relations as stated by Schafer andeKy6], John and Matthies [12] and an
approximation first published for the unsteady NaBtokes equations in John [13], which is
given as follow
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2

cd(t) = Fin i (pvOugn, = p(t)n,)dS -
2
0=~ J (pvugh, +p(t)n, )dS

Where, n= (nx,ny)T is the normal vector on the cylinder S directedo{dt
ts= (ny,—nx)T the tangential vector andgthe tangential velocity on S. These two integrals
have to be computed only in one layer of mesh estiend the cylinder S.

For CASE#1 is shown whole mesh domain and tleeilar cylinder where the yellow
color highlight it. See figure 1 bellow
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Figure 1. Mesh for CASE#1

In the figure 2 is shown the velocity flow field.
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Figure 2. Velocity flow field
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Thecp on the circular cylinder is shown in the figure 3.

Pressure coefficient
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Cylinder nodes

Figure 3. Pressure coefficient on the upper aneétawlinder surface

The drag and lift coefficient after 415 time steosmverged to a steady state solution
as shown in figure 4 and 5 as follow.

FEM 2D Unstructured - Attack ang=0
257

Drag Coefficient

0.5H

0

0 100 200 300 400 500 600 700 800 900
Iteration

Figure 4. Drag coefficient convergence for CASE#1
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FEM 2D Unstructured - Attack ang=0
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Figure 5. Liftefficient convergence for CASE#1

For CASE#2 the mesh is highly dense as comparedtasCASE#1. See figure 6, as
follow
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Figure 6. Mesh for CASE#2 highly dense close theutr cylinder

As can be seen the triangles are more uniform adhahe mesh doesn’'t appear to be
symmetrical. The drag and lift coefficient after54ime steps converged to a steady state
solution as shown in figure 7 and 8 as follow.
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Figure 7. Drag coefficient convergence for CASE#2
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Figure 8. Lift coefent convergence for CASE#2
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Figure 9. Pressure coefficient on the upper anetawlinder surface

As there are for this case, more nodes aroundyfireder, thecp is more smooth.

The present results as compared with several autfsee table 1 below) show a
reasonable accordance. As discussed by FrochteHamtichs [14] the most difficult
comparison with the benchmark value for severdeddht algorithms is the lift coefficient.
The drag coefficient and the pressure are easieongpute presenting closer results. In the
present work all cases were simulated with timep sté At = 0001 for CASE#1 and
At = 001 for CASE#2. It is small enough to take 254,14s 884d,13s respectively in a dual
core simplecpucomputer.

Tabela 1. Comparison of drag coefficieat

Re | Present Work Sucker and | Park et al. | Yeet al. Tritton Linnick
Brauer [15] | [16] [17] [18] et al. [19]
20 | CASE # 1:2.06| 2.08 2.01 2.03 2.02 2.06
CASE #2: 2.91
Acknowledgements
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6. CONCLUSIONS

In this paper, a channel with a circular cylindegwo-dimensional viscous
incompressible unsteady flow problem is analysedguthe finite element method by means
Chorin’s projection method. The fluid flow is exgsed by partial differential equations, the
Navier-Stokes with appropriate boundary conditiorise flow field of that fluid is then used
to solve the Poisson pressure equation. The 2D woofizhe problem is discretized to a large
number of triangular-node elements to assure tharacy of the solution. The influence of
the regularity and number of nodes inside the donwai accuracy of the drag and lift
coefficient is also investigated. Analyses are doyetudying both drag coefficients for two
different meshes. Results showed that drag coeffisi are influenced considerably by
changing the mesh.
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