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Abstract. The finite element method (FEM) has become one of the most important and useful 
engineering tools for engineers and scientists in the last three decades. Finite element method 
is considered very powerful and efficient tool in solving partial differential equations. Seeking 
for exact solution of some engineering applications, such as fluid flow problems, is still a 
challenging task to overcome. Based on this, finite element method can be used to model such 
problems and it is possible to obtain solution near to the exact one. In the present study, FEM 
is employed to discretize the governing equations for a viscous incompressible fluid flow 
around a circular cylinder inside a 2D channel. The fluid flow is described by the Navier–
Stokes equations. There are many methods to tackle these equations. However, minding 
computational speed the choice is for a simple method called Chorin’s projection method for 
discretizing the Navier-Stokes equations. Results are presented for two different meshes and 
is shown that the elements density have some significant influence in the results. Also, there is 
an apparent effect on Cd and Cl calculation on the cylinder.  
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1. INTRODUCTION 

Finite element method as a numerical technique is widely used in problems that require 
solution of system of partial differential equations. The core of this method treat a complex 
region defining a continuum, as a discretized region in simple geometric shapes called finite 
elements. The governing equations, material properties and auxiliaries’ relations are evaluated 
over these elements and written in terms of unknown values at element vertexes. An assembly 
process in a correct way is done considering the loading and constraints which results in a set 
of equations. In order to obtain a solution, the set of these equations are solved yielding the 
approximate behaviour of the continuum region. Cook [1] and Thompson [2] discuss the 
concepts of FEM for solution of partial differential equations present in several important 
areas of engineering as such as, Fluid Mechanics, Solid Mechanic and Electromagnetic Field. 
Details about fluid mechanics and heat transfer problems and their solution can be found in 
[3].   
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In this paper, a two-dimensional channel with a circular cylinder submitted to a viscous 
incompressible unsteady flow is solved using the finite element method through the Chorin 
projection method [4][5]. The 2D channel domain is discretized to a large number of 
triangular elements in order to assure the accuracy of the solution. The influence of the 
number of elements inside the domain on the accuracy of the numerical solution is also 
investigated. Numerical experiments are done by studying different meshes sizes. From these 
experiments are observed very important results, such as the accuracy of the drag coefficient 
as well as the lift coefficient on the cylinder geometry. 

In the present problem, a fluid flows through a domain represented by a 2D channel with a 
circular cylinder. The channel has the following dimensions: 0.41m high and 0.22m long. The 
cylinder center is located at (0.2m, 0.2m) from the left hand side and has 0.1m of diameter. 
The fluid flow enters from the left with a uniform velocity u, 

41.00   ),0),41.0(4(41.0),2.2(),0( max
2 ≤≤−== − yyyuyuyu . It flows around a circular 

cylinder and the outlet is the right side of the domain. The upper and the bottom side are 
considered as solid walls. No-slip boundary conditions are imposed at these boundaries. As 
the fluid flows through the domain, the velocity of the fluid changes abruptly due to the 
presence of the circular cylinder. So, the main goal is capture this flow as time progress. 
Using the mean value of the inflow velocity 1

max 3.0 −= msu and the diameter of the cylinder 
L=0.1m as characteristic quantities of the flow, its Reynolds number is Re=20. The density of 
the fluid is considered as being 30.1 −= kgmρ . As discussed by Schäfer and Turek [6], due to 
the non-convex domain Ω , it is unlikely that (u, p) are regular enough such that standard 
error estimates for higher-order finite element discretizations hold.  
 

2. GOVERNING EQUATION OF TWO DIMENSIONAL CHANNEL FLOW 

The governing Navier-Stokes equations that govern the two-dimensional channel 
problem, in general, can be obtained from the following relations 
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Where ν is the viscosity, 1310 −−= msν , Ω  is the channel. u and p are the velocity and 
pressure respectively, and f a given body force. It is assumed that boundary ∂Ω of the channel 
domain Ω is divided into two parts ΓD and ΓN associated with the no-slip and the do-nothing 
boundary conditions eq(1.c) and eq(1.d). g is a given function where describe the velocity on 
ΓD. Generally, Ω is a channel and ΓD denotes either the rigid walls of the channel, with g = 0, 
or the inflow region, with g the inflow velocity profile, while ΓN denotes the outlet with the 



 

  

boundary condition ν n ·∇u− pn = 0. The velocity at time t = 0 is given by the initial 
condition 0u  and I = (0;T] is the time interval with final time T. 
 

3.0 NUMERICAL SCHEME BASED IN CHORIN’S PROJECTION M ETHOD 

Following the idea described by Chorin in [4][5] the momentum equation (1.a) is 
discretized and is called operator splitting in time using the approximation given by forward 
Euler method. Applying this, the time stepping scheme is obtained as follow 
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Where t∆ is the time step. n is the discrete time iterative level. Adding and subtracting an 
intermediary tentative velocity *u in the discrete time derivative, it is possible write 
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This expression is satisfied only if 
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and also 
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holding simultaneously. 
The physical reason for the splitting is that with the decoupling of the diffusion and 

convection of the velocity, the pressure act to enforce the incompressibility constraint. So, 
considering that 1

,
+n
jiu , is possible calculate *, jiu  from eq(4) separately without having to worry 

about the pressure. In order to determine the pressure one takes divergence of eq(5). Once 
done this it is possible write 
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Done this and since one seek for 0. 1
, =∇ +n
jiu , the eq(6.0) gives 
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From this the pressure 1
,
+n
jip  can be determined from a Poisson type equation. In 

general eq(7) is frequently referred to as the Pressure Poisson Equation (PPE). Once is given 
*
, jiu it is possible to solve eq(7) in order to get a pressure n

jip ,  which makes the next velocity 
1

,
+n
jiu divergence free. Since n jip ,  is computed from the tentative velocity *

, jiu , it is not the actual 



 

  

pressure p, but at best a first order approximation in time. The actual computation of 1
,
+n
jiu  is 

done by making usage of eq(7), but now in the explicit form  
                                                          n

jiji
n

ji ptuu ,
*
,

1
, ∆∆−=+                                                         (8) 

Thus, with this last calculation the Chorin projection method is established. One 
simple way to enforce boundary conditions for *

, jiu  and n
jip ,  is to set the Dirichlet, or no-slip, 

velocity boundary conditions given by eq(1.d) on *
, jiu , and a von Neumann boundary 

condition 0. , =∆ n
jipn  on the pressure. At the outflow, the do-nothing boundary condition 

given by eq(1.e) is imposed term by term by enforcing 0. , =∇ n
jiun  and 0, =n

jip . This 
generally means that 1

,
+n
jiu will not satisfy the velocity boundary conditions in a precisely 

sense. The zero Neumann boundary condition for the pressure, which is in some way 
unphysical and leads to a poor quality of both n

jip ,  and 1
,
+n
jiu near the boundary, is overlooked 

by the simplicity of implementation of the projection method and has made it very popular 
and hard to be replaced [7]. These boundary conditions for the pressure have been a great 
challenge with a long history see e.g. [8] and [9].  
 

3.1. Fully Discrete Method Appling Finite Elements 

In order to write a fully discrete method it is need to adopt a discretization method, so 
the finite elements is applied to the Chorin Projection method. To establish a variational 
formulation of the Navier-Stokes equations we need to introduce two function spaces V and Q 
for the velocity u and pressure p, respectively: [ ]{ }gvHvV

d

g =Ω∈= Ω∂|:)(1  and 
{ }0)1,(:)(2 =Ω∈= qLqQ , the pressure space Q is the subset of 2L functions, which have zero 

mean. )(11 Ω= HH  is the Hilbert space. 
Let further, to approximate the velocity and pressure, let hV  and hQ  be two spaces of 

piecewise polynomials on Me (mesh) that approximates V and Q in some sense to be made 
precise. Consider hV as the usual space of piecewise linears with the hat function basis 
{ }np

ii 1=ϕ on a mesh Me of Ω. Also consider { }mp

ii 1=Χ be a set of scalar basis functions for hQ . An 
appreciated goodness with the operator splitting is that it allows one to use equal order 
polynomial spaces for both the velocity and pressure. This suitably circumvents the 
cumbersome inf-sup condition as discussed by Tobiska and Verfürth [10]. Even though with 
this holding, spurious pressure modes may still occur if the time step t∆  is much smaller than 
the mesh size hused to discretize Ω. Based on the fact which is adopted the same space for u 
and p, this brings great simplicity when implementing the following relations 
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It is imposed the same representation for *u . 
Observing the eq(4) it is possible to see that it decouples into one equation for 

n

u
*

and 
one for 

n

v
*

. Proceeding with finite element discretization and making usage of matrix notation 
these equations can be written as 
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Where M is the so called mass matrix, A the stiffness matrix, and )( nn uCC = is the 
convection matrix with convection field nu  . Note that nC , depends on the current velocity 
component and must be reassembled at each time step. The load vectors b, contain 
contributions of a previously defined body force f. The eq(5) well known as PPE is a standard 
Poisson equation and rewriting  in matrix form yields 
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Where A again is the stiffness matrix. B are convection matrices with corresponding 
convection fields [1;0] for u and [0;1] for v, the two velocity components. It is needed adjust 
this equation for boundary conditions ( 0

~

=ω  on nΓ  ) to give a unique solution. Using the last 
relation is possible rewrite eq(8.0) in discrete form as  
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The size of the time step is bounded by the adoption of the first order forward Euler 
scheme in the time approximation. In order to guarantee numerical stability it is necessary that 
the time step is of magnitude h/u for convection dominated flow with ν <uh, and h²/ν for 
diffusion dominated flow with ν ≥ uh. 

 
4. FLOW ANALYSIS 

Some numerical experiments are carried out using two different unstructured 
triangular meshes. CASE #1: number of nodes =1338, number of triangles=2445, non-
uniform triangles. CASE #2: number of nodes=10459, number of triangles=20155, uniform 
triangles. These unstructured triangular meshes were obtained by making use of distmesh2d 
by Persson and Strang [11]. The uniform mesh helps the matrixes of finite element to be well-
conditioned. In another words, this means that the triangles should not present internal high 
skew angles. In order to evaluate the accuracy of the present method the usual benchmark 
parameters are the drag coefficient cd at the cylinder, the lift coefficient cl and are given by 
the following relations as stated by Schäfer and Turek [6], John and Matthies [12] and an 
approximation first published for the unsteady Navier-Stokes equations in John [13], which is 
given as follow 
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Where, T
yx nnn ),(= is the normal vector on the cylinder S directed intoΩ , 

T
xy nnts ),( −= the tangential vector and tsu the tangential velocity on S. These two integrals 

have to be computed only in one layer of mesh cells around the cylinder S.    
 For CASE#1  is shown whole mesh domain and the circular cylinder where the yellow 
color highlight it. See figure 1 bellow 

                                  

Figure 1. Mesh for CASE#1 

In the figure 2 is shown the velocity flow field.     
                             

                             

                                                         Figure 2. Velocity flow field   

 

 



 

  

       

The cp  on the circular cylinder is shown in the figure 3. 

                               

Figure 3. Pressure coefficient on the upper and lower cylinder surface 

The drag and lift coefficient after 415 time steps converged to a steady state solution 
as shown in figure 4 and 5 as follow. 

                                    

Figure 4. Drag coefficient convergence for CASE#1 

 

 

 

 

 

 

 

 



 

  

                               

                                   Figure 5. Lift coefficient convergence for CASE#1 

For CASE#2 the mesh is highly dense as compared as with CASE#1. See figure 6, as 
follow 

                         

Figure 6. Mesh for CASE#2 highly dense close the circular cylinder 

As can be seen the triangles are more uniform although the mesh doesn’t appear to be 
symmetrical. The drag and lift coefficient after 415 time steps converged to a steady state 
solution as shown in figure 7 and 8 as follow. 
 

 

 



 

  

                                    

Figure 7. Drag coefficient convergence for CASE#2 

 

                                

                               Figure 8. Lift coefficient convergence for CASE#2 

 

 



 

  

                   

Figure 9. Pressure coefficient on the upper and lower cylinder surface 

As there are for this case, more nodes around the cylinder, the cp is more smooth. 
 

The present results as compared with several authors (see table 1 below) show a 
reasonable accordance. As discussed by Frochte and Heinrichs [14] the most difficult 
comparison with the benchmark value for several different algorithms is the lift coefficient. 
The drag coefficient and the pressure are easier to compute presenting closer results. In the 
present work all cases were simulated with time step of 001.0=∆t  for CASE#1 and 

01.0=∆t  for CASE#2. It is small enough to take 254,14s and 554,13s respectively in a dual 
core simple cpu computer. 

 
Tabela 1. Comparison of drag coefficient cd 

Re Present Work Sucker and 

Brauer [15] 

Park et al. 

[16] 

Ye et al. 

 [17] 

Tritton 

[18] 

Linnick 

et al. [19] 

20 CASE # 1: 2.06 

CASE #2: 2.91 

2.08 2.01 2.03 2.02 2.06 
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6. CONCLUSIONS 

 

In this paper, a channel with a circular cylinder, two-dimensional viscous 
incompressible unsteady flow problem is analysed using the finite element method by means  
Chorin´s projection method. The fluid flow is expressed by partial differential equations, the 
Navier-Stokes with appropriate boundary conditions. The flow field of that fluid is then used 
to solve the Poisson pressure equation. The 2D domain of the problem is discretized to a large 
number of triangular-node elements to assure the accuracy of the solution. The influence of 
the regularity and number of nodes inside the domain on accuracy of the drag and lift 
coefficient is also investigated. Analyses are done by studying both drag coefficients for two 
different meshes. Results showed that drag coefficients are influenced considerably by 
changing the mesh.  
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