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Abstract. The objective of the present work is an numerical analysis of flutter elements of
a typical airfoil using a classical method with direct eigenvalue method for the undamped
case (forced oscillation). The dynamic coupling of the airfoil structure into two-dimensional
aerodynamic flow was simulated with ultra-low Reynolds number so that the aeroelastic mo-
tion of the airfoil in the flow could have simulated in the time domain. The intention was
to determine the flutter elements in the small wings (like a Micro air vehicle), using a two-
dimensional aerodynamic code based on Virtual Boundary Method, suitably coupled to the
airfoil structural characteristics. The symmetric NACA 0012 airfoil was choosed to simulate
the time history of flow parameters. The airfoil was considered as a rigid section, supported
by translational and rotational springs, so that only heave and pitch degrees of freedom are
permitted at the point of support. The pitching and heaving movements where simulated sep-
arately. The effects of forced oscillation were analyzed an attack angle of0o for heaving, and
vertical oscillation of±0.1 of chord length; pitching of±2o with frequency (sinusoidal),f

s
,

of 1Hz, 2Hz, 5Hz and 10Hz. The effects of the reduced frequency (k), amplitude of forced
oscillation (h) and the maximum non-dimensional flapping velocity (kh) on the thrust genera-
tion were analyzed. The pressure coefficient CP, lift L, lift coefficient CL, drag coefficient CD
and pitching moment M about the support point were computed. The results obtained were
compared and agree with the literature ones.

Keywords: computer simulation, flutter, Virtual Boundary Method, fluid-structure interac-
tion.

1. INTRODUCTION

The problem of calculating the response of a system subject to an external excita-
tion (forced oscillation), since the mathematical model and of the structure properties (natural
frequencies, damping factors and natural modes of vibration) from the input and output in-
formation, in general is a difficult problem to be solved and form part of the class of inverse
problems. Among the methods that treat these problems, the analysis modal methods are char-
acterized by direct calculation of the modal parameters of the structure and, computationally,
these parameters can be determined directly from the simulation results, in the time domain
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or frequency domain. In the study of aerodynamics, aeroelastic effects are the interactions
results of the distributed dynamic fluid loads and inertial,structural efforts and elastic reac-
tions that can induce rupture behavior of the structure, including flutter. The phenomenon of
flutter is usually observed in the wings and control surfaces, as these types of structures are
subject to large distributed dynamic fluid loads produced from the dynamic deviations of a
elastic structure in the undeformed state [1]. The structural dynamic behavior of an aerolastic
model can be described by their modal parameters considering three hypotheses:

a) linearity of the dynamic behavior: the response of the structure to a combination
of forces applied simultaneously is equivalent to the sum ofresponses of each force acting
individually;

b) Invariance in time: the physical parameters of the structure are constant;
c) Observability: the relationship between input/output measurement contains suffi-

cient information to determine the dynamic behavior of the model.
The dynamic system to be studied, shown in the model in Fig. 1,consists of a air-

foil profile NACA Series 0012 subject to forced movement of vertical oscillation (plunging)
and torsional (pitching). The study of this three-dimensional phenomenon reduced to a bi-
dimensional aerodynamic flow is justified by considering a hypothetical wing of infinite ex-
tent such that the properties of the wing remain the same in any arbitrary section located along
the length, wherec is the the length of airfoil chord ,xcp is the position of pressure center,
xcm is the position of mass center,O is the position of the center of the twist axis (pivot)
andh andα denote the plunge and pitch displacements, respectively. The integration of the
distributed dynamic fluid loads are plunging,L (positive upward) and pitching momentM
(positive clockwise - nose up) acting at the torsional pointO. The moment of inertia of the
section around the axis of torsion, pivotO, is given byIα. The rigidities of the lift and tor-
sional springs are indicated bykh andkα and the structural damping coefficients arech and
cα, if the damping was considered.

Figure 1. Dynamic model with two degrees of freedom, [1].

the pitch angle isα andαe is the effective attack angle. Basically flutter is defined bya critical
velocityV and a critical frequencyωf , whereV is the velocity flow non-disturbed that focuses
on the structure andωf is the natural frequency of vibration (harmonic oscillations simple) of
a given structure immersed in a flow under certain conditionsof plunging. The solution of the
vibration leads to a complex eigenvalue problem where two characteristic numbers determine
the velocity and frequency. Few studies for this range of Reynolds number are found in the



literature, for example, [2] analyzes oscillation with large amplitudes or, in case of flutter, [3]
for Reynolds numbers above103.

2. FORMULATION AND NUMERICAL METHOD

The distributed dynamic fluid loads are distributed throughthe analysis of movements
of pitch and elevation separately and, when coupled, these define the kinematic angle of attack
or effectiveαe(t) = αα − αh. As [3], to a small Strouhal number (St ≤ 0.25), the contri-
bution of the plunge motion to the kinematic attack angle is small and it follows the form
of a sinusoidal function. The figure Fig.2 show the plunge andpitch movements. We used

a) b)

Figure 2. Plunge,0.1c, and pitch,±2o, movements.

the immersed boundaries methodology [4], particularly thevirtual boundary method [5] for
modeling fluid-structure interaction in a domain discretized by two meshes: one fixed mesh
to represent the two-dimensional flow field (Eulerian) and one mesh of points to represent
the immersed boundary (Lagrangian) that is independent anddoes not need to align with the
mesh Eulerian, which enables simulation of flow over complexgeometries [6] and/or local
refinement of the flow.

2.1. Governing equations

The flow is modeled by Navier-Stokes equations with forcing term, mesh discretiza-
tion in Cartesian and computational fluid-structure interaction in the model proposed by [4].
Consider a flow of homogeneous and viscous fluid in a two-dimensional rectangular domain
Ω = [0, L]× [0, L] with an immersed boundary represented by a closed curveΓ, described by
X(s, t), with 0 ≤ s ≤ Lb and withX(0, t) = X(Lb, t), whereLb is the length of the curveΓ.
The governing equations are given by:

ρ

(

∂u

∂t
+ u · ∇u

)

+∇p = µ∆u+ f , (1)

∇ · u = 0 , (2)

0 ≈
∂X(s, t)

∂t
= u(X(s, t), t) =

∫

Ω

u(x, t)δ(x − X(s, t))dx , (3)

u(x, t)→u∞ com |x|→∞, e f(x, t) =

∫ Lb

0

F(s, t)δ2(x−X(s, t))ds (4)

In the equations Eq. (1) to Eq. (4),x = (x, y) is the position vector,u(x, t) = (u(x, t), v(x, t))
is the field of fluid velocity,p(x, t) is the pressure field andρ(x, t) is the specific mass. The



force acting on the flow (relative todx = dxdy) is f(x, t) = (f1(x, t), f2(x, t)), while the
force exerted on the immersed boundary (compared tods) is F(s, t) = (F1(s, t), F2(s, t)).
The equation Eq. (1) are the Navier-Stokes equations for incompressible flow and Eq. (2) is
the continuity equation. The equations Eq. (3) and Eq. (4) represent the interaction between
the flow and the immersed boundary. The Dirac delta function in the equations is a function
composed of two other delta functions,δ2(x) = δ(x)δ(y). One ”feedback” function ensures
that the flow velocity is zero in the points defining the immersed boundary with the condition
no-slip and can be expressed as

F(X(s), t) = α

∫ t

0

(U(X(s), t) −V(X(s), t))dt + β(U(X(s), t) −V(X(s), t)) (5)

f(x, t) =

∫

Ω

F(X(s), t)δ2(x−X(s))dx, (6)

where the constants negativeα andβ will be chosen with large enough magnitude to adjust
the fluid velocity and the velocity near of the interface in order to obtain the expected physical
behavior of the flow,δ2(x − xs) is the Dirac delta function given by equation Eq. (8),X(s)

are the lagrangian points arranged on the immersed boundary, F(X(s), t) is the Lagrangian
force density (nonzero only at points of the immersed boundary) andf(x, t) is the Eulerian
force.

2.2. Numerical Method

The fluid variables are defined in the Eulerian meshN × N with x = (xi, yj) =

(ih, jh) for i, j = 0, 1, ..., N−1, whereh = ∆x = ∆y = L
N

is the length of each mesh range.
It used the set oM Lagrangian pointsX = (Xk, Yk) with k = 0, 1, ...,M − 1 to discretize
the immersed boundary, with initial spacing between points∆s = Lb

M
. The forcing term is

defined at these points. We used an explicit scheme, where theforce exerted on the border
is calculated at the beginning of each step in time, withtn+1 = tn + ∆t and the numerical
solution is given by:

1. The force field is calculated in points Lagrangian to the initial conditions. The force
F

n(s) is calculated usingXn(s) in the immersed boundary and then the forceF
n(s) is

used to determinefn(x) with the following equations:

F
n(s) = S

n(Xn) e f
n(x) =

∑

s

F
n(s)δ2h(x−X

n(s))∆s (7)

where the delta function is given byδ2h(x) = δh(x)δh(y) and discretized by

δh(r) =
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2. The update of the velocity fieldun+1(x) is performed by a Runge-Kutta time integration
(4a order):
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(9)

whereV is a generic vector; the spatial variables (coupling pressure and velocity) are
solved using the projection method and the convective derivatives are solved using the
scheme of high order (”up-wind”) VONOS,[7].

3. The velocityun+1 is interpolated in the points of the immersed boundary and the new
position is updated usingXn+1(s):

U
n+1(s) =

∑

x

u
n+1(x)δ2h(x−X

n(s))h2 e X
n+1(s) = X

n(s) + ∆tUn+1(s) , (10)

whereXn+1(s) was calculated using the finite differences centered of the second order.

2.3. Modal analisys

For the airfoil section of massm and moment of inertia about the center of mass,Icm,
the kinetic energy,T , and the potential energy,P , of system are given by:

T =
1

2
m

(

dh

dt
− xcm

dα

dt

)2

+
1

2
Icm

(

dα

dt

)

e P =
1

2
khh

2 +
1

2
kαα

2. (11)

The Lagrangian is given by

L = T − P =
1

2
m

(

dh

dt
+ xcm

dα

dt

)2

+
1

2
Icm −

1

2
khh

2 −
1

2
kαα

2 (12)

The plunge,h, and pitch,α, movements are are obtained through Lagrange equation:

d

dt

∂L

∂ dh
dt

−
∂L

∂h
= L e

d

dt

∂L

∂ dα
dt

−
∂L

∂α
= M (13)

which leads to the following equation of motion for the airfoil

[

m −mxcm

−mxcm Iα

]{

∂2h
∂t2
∂2α
∂t2

}

+

[

kh 0
0 kα

]{

h
α

}

=

{

L
M

}

(14)

comIα = Icm +mx2
cm. Taking

M =

[

m −mxcm

−mxcm Iα

]

, K =

[

kh 0
0 kα

]

, U =

{

h
α

}

e F =

{

L
M

}

,

(15)
whereM is the mass matrix,K is the stiffness matrix,U is the displacement vector andF is
the vector of forces, then the equation of motion can be rewritten as:

[

M
] {

∂2U

∂t2

}

+
[

K
] {

U
}

=
{

F
}

, (16)



The stiffness matrix is diagonal because the foothold is at the center of flexion, where the
plunge and pitch are statically decoupled. The lift and the aerodynamic moment in the pivot,
per unit of length, are given by the expressions:

L =
1

2
ρu2

∞
cCL =

1

2
ρu2

∞
c
∂CL

∂α
αe e M =

1

2
ρu2

∞
cCLxcp =

1

2
ρu2

∞
c2
∂CL

∂α
αel = CM

1

2
ρu2

∞
c2 (17)

whereCL eCM are the lift and moment coefficients respectively.
The equations of the motion (equations Eq.(14) to Eq.(16)) were resolved by classical

method with direct approximation of eigenvalue to the case of undamped system, ie, this sim-
plified approach can give a first estimate of the vibration limit where aerodynamic expressions
are used to approach aerodynamic loads unstable, without incorporating damping conditions.
The equation Eq.(14), with forces given by equation Eq.(17), reduces to:

[

m −mxcm

−mxcm Iα

]{

∂2h
∂t2
∂2α
∂t2

}

+

[

kh 0
0 kα

]{

h
α

}

=
1

2
ρ∞u2

∞
c
∂CL

∂α

{

α
xcpα

}

(18)

and the time-dependent displacement vector expressed by

{

h
α

}

=

{

h0

α0

}

eλt we obtain

[[

m −mxcm

−mxcm Iα

]

λ2 +

[

kh 0
0 kα

]

+
1

2
ρ∞u∞c

∂CL

∂α

[

0 −1
0 −xcp

]]{

h0

α0

}

=

{

0
0

}

(19)
which in matrix notation produces

[[

K
]

+
[

A
]

+ λ2
[

M
]]

{

h0

α0

}

= 0 (20)

onde
[

A
]

= 1

2
ρ∞u∞c∂CL

∂α

[

0 −1
0 −xcp

]

is the aerodynamic matrix.

The nontrivial solution of the equation Eq.(19) implies thatDet
[[

K
]

+
[

A
]

+ λ2
[

M
]]

=

0 which carries to three possibilities for the stability of the system:

• for flow with subcritical velocity, with absence of damping,both eigenvalues(−λ2) are
real and positive and therefore the values forλ2 are real and negative, ie the parameter
λ = ±iω is purely imaginary. The two different corresponding values of λ purely
imaginary return frequencies of the two circular modal branches in radians/second. The
system vibrates constantly with harmonic motion simple in each of the two resulting
branches from the vibration modes (vibration free) natural.

• after of critical velocity(u∞ > V ), the parametersλ occur like complex conjugates
λ = λr± iλi in which one has positive real partλr > 0 and the oscillations are unstable
in the appropriate modal branch, characterized by increases in amplitude over time.
Whenu∞ = V , flutter boundary,λr = 0, it has simply harmonic motion simple.

• the instability of the type of divergence is indicated by condition in which the imaginary
part ofλ disappears,λi = ω = 0.



Accord [8], for small angles (xαm ≈ xcm), then, the summarized form, the equations
of motion for the typical section are given by:

{

m∂2h
∂t2

+mxcm
∂2α
∂α2 +Khh = L ,

mxcm
∂2h
∂t2

+ I ∂2α
∂t2

+Kαα = M ,
(21)

wherefh is the natural frequency of translation uncoupled,fα is the natural frequency of
torsion. The movements of translationh and the torsionα are taken as harmonics and there
is a delay between them due to aerodynamic loads. For harmonic damped motion and using a
linear approximation to the relationship between the aerodynamic forces and the variables of
movement, the stability of the system is given by

∣

∣

∣

∣

Kh +mλ2 − Lh mxcmλ
2 − Lα

mxcmλ
2 −Mh Kα + Iλ2 −Mα

∣

∣

∣

∣

= 0. (22)

The valuesλ have the form

λ = (ζ + i)ωd = (ζ + i)k
V∞

c
(23)

whereωd is the frequency of damped oscillation andζ is the damping ratio. So, for a given
reduced frequencyk, its possible to extract the eigenvalues, the damping ratioζ and the ve-
locity flow correspondingu∞. The reduced frequency is specified in aerodynamic simulation
with forced oscillation fork = ωd

u∞

, wherec is the characteristic length (chord of section in
the two-dimensional case).

3. RESULTS

For calculation of the eigenvaluesλ were simulated cases of lifting and pitching, inde-
pendently, with the parameters and characteristics shown in table Tab.1. The total force on the
airfoil is a combination of viscous forces and of pressure. The pressure at each point of the
airfoil is found from theCP and the viscous forces are given by the derivative of the tangential
velocity with respect to normal,∂u

∂n
. Since the pressure and viscous forces are known in each

point, they are numerically integrated to find the components of the total force and moment
M of the airfoil.

We used a rectangular Cartesian grid with nonuniform grid216 × 250 with ∆xmin =

0.01, ∆Ymin = 0.01, ∆xmax = 0.35 and∆Ymax = 0.35 in a domain6 × 3 dimensionless
units, [9]. The geometric center of the profile of NACA0012 airfoil was positioned at the point
of coordinates1.5 in directionx and1.5 in directiony, Fig.3 a) and b). The determination
of the flutter depends on the structure elements of the system, such as mass and moment of
inertia. Taking as reference the data presented for [10], not because it is a similar analysis,
but for proximity between models treated, we will use the values shown in the table Tab.(1)
and some parameters were chosen so that the frequency natural for plunge is2Hz and0.5Hz

for pitching, such thatfh andfα produce oscillations with the velocity reduced of the interest.
Due to the limited availability of experimental results andsimulation results in the literature
for Re = 1000, was used, as reference, values taken from the work of [11] by to present
frequency (7.16Hz) near to the studied in this work.



Besides the dimensioless parameters, took up the chordc as standard of scale,u∞

as the characteristic velocity andρu
2
∞

2
as pressure characteristic. The characteristic time is

given by tu infty

c
, the characteristic velocityV ∗ = u∞c

π
f and normalization of dimensionless

equations provides the mass and moment of inertia (M̄ and Ī) and low frequencies (̄fh and
f̄α). In practice, the values offh andfα are chosen such that the airfoil undergo oscillations
with velocity reduced of interest andM andI are tuned so that the loads will be higher (when
reduced) or smaller (when increased) on the airfoil.

a) x

y

0 1 2

1

1.5

2

2.5

b)

Figure 3. a)Positioning of the profile in the mesh, b) Refinement of the mesh at the trailing
edge.

Table 1. Properties of the airfoil used in the simulations

Profile of airfoil NACA0012 (simetric), Chordc = 0.06m, c∗ = 1,
Position of the pivot,xO = 0.5c = 0.03m,

Geometry Aerodynamic center on1/4 of the chord, distance from the axis elastic to
aerodynamic centerahb =

ahb
c

= 0.25
Distance from the center of mass= 0.4429c = 0.02657m
Distance from axix elastic to center of massxcm = 0.00343m

Flow Reynolds number,Re = 1000 ; u∞ = 0.017m/s

Pitching Atack angle mediumα0 = 0o; Amplitude of atack angle,αA = 4o

Plunging h0 = 0; Pitching amplitude,h = 0.1c

Mass,m = 0.01567kg, Moment of inertia with respect to the axis

of rotation,
√

Iα
mc2

= 0.2102, Iα = 2.493× 10−6kgm2

Inertia Moment of inertia witch respect to mass center,Icm = Iα −mx2
cm

Icm = 2.306× 10−6, if m uniformly distributed,I = mc2

12
, them,

I = 4.701× 10−6kgm2, asIcm < I, them the airfoil mass is
concentrated around the central portion of the airfoil.

To determine the flutter parameters, simulations were performed to extract the values
of aerodynamic forces. Figures Fig.3(a), Fig.3(c), Fig.3(e) and Fig.3(g) show the values of
CL for pitching and the development of sinusoid over time for the rotationα. Figures Fig.
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Figure 4. Results for determining the frequency reduced to pitching of±2o, plunging of0.1c
and frequencies of0.5Hz, 0.75Hz, 1Hz and2Hz.

3(b), Fig.3(d), Fig.3(f) and Fig.3(h) show the values ofCL for plunging and development of
the sinusoid over time to the displacementh.



We can see from the figures Fig.a) to Fig.h) that the phase difference between the angle
of forced oscillation andCL response increases with increasing frequency.

The Table(2) shows the maximum values obtained for the lift and pitching moment
and lift and plunging moment. For frequencies0.5Hz, 0.75Hz, 1Hz and2Hz was measured
the reduced frequencies to be used in the calculation of eigenvalues. The results for the eigen-

Table 2. Simulation results - lift, moment and delay

Frequency Lift and Moment phase difference
Hz Reduced Lα Mα Lh Mh Lα Lh Mα Mh

0.5 2.356 0.0476 0.00510 0.0306 0.0312 3.9o 9.9o 8.3o 5.2o

0.75 3.534 0.3687 0.0466 0.145 0.182 12.1o 35.7o 17.1o 7.5o

1.0 4.712 1.1056 0.0262 0.6159 0.562 34.1o 56.6o 38.2o 18.6o

2.0 9.425 3.0172 0.7576 1.96 1.69 73.8o 74.1o 62.3o 37.7o

valuesλ are shown in Table(3). The values obtained for the eigenvaluesλ show that the flow

Table 3. Results of simulations - eigenvalues

Frequency 0.5Hz 0.75Hz 1Hz 2Hz [11] 7, 16Hz
real partλr 0 0 0 0 0

imaginary partλi ±0.518 ±0.425 ±0.342 ±0.248 −0.66 a0.25

velocity is subcritical, ie, the eigenvalues have only imaginary parts. We also can see that
there is a tendency to decrease the magnitude of the eigenvalues, that is, higher frequencies
can lead to critical velocity of flutter and shown to be consistent as compared to those obtained
by [11].

4. CONCLUSION

The present analysis with a simetric airfoil in a 2D flow (simulated by the Virtual
Boundary Method) indicates that it is possible to simulate flutter parameters for ultralow
Reynolds number, using classical eigenvalue approaches and direct integration methods in
aerodynamic codes (solving Navier Stokes equations). The performance of an airfoil section
NACA 0012 series subjected to forced oscillation (movementof lifting and pitching inde-
pendently) in a flow with very low Reynolds number (Re = 1000) was studied using a two-
dimensional DNS simulation and showed that increasing the oscillation frequency increases
the relationship lift-drag and has provided a standard for vibration prediction with frequency
that dependents of parameters for preliminary determination of the flutter phenomenon. Also,
modeling using modal analysis and immersed boundaries was effective for preliminary study
of the phenomenon of flutter.
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uniforme”. 29th Iberian Latin American Congress on Computational Methods in En-
gineering, 2008.

[10] Kurtulus D. F., David L., Farcy A., Alemdaroglu N., “Aerodynamic characteristics of
flapping motion in hover”.Experiments in Fluids, 44, 23-36, 2008.

[11] Mukherjee S., Manjuprasad M., Sharma N. K., Rana D., Oncar A. K., “The domain simu-
lation of airfoil flutter in the subsonic regime using fluid structure couplinh through panel
method”.National Aerospace Laboratories, Bangalore, India, STTD0825, 2008.


