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Abstract. The objective of the present work is an numerical analysis of flutter elements of
a typical airfoil using a classical method with direct eigenvalue method for the undamped
case (forced oscillation). The dynamic coupling of the airfoil structure into two-dimensional
aerodynamic flow was simulated with ultra-low Reynolds number so that the aeroelastic mo-
tion of the airfoil in the flow could have simulated in the time domain. The intention was
to determine the flutter elements in the small wings (like a Micro air vehicle), using a two-
dimensional aerodynamic code based on Virtual Boundary Method, suitably coupled to the
airfoil structural characteristics. The symmetric NACA 0012 airfoil was choosed to simulate
the time history of flow parameters. The airfoil was considered as a rigid section, supported
by translational and rotational springs, so that only heave and pitch degrees of freedom are
permitted at the point of support. The pitching and heaving movements where simulated sep-
arately. The effects of forced oscillation were analyzed an attack angfefof heaving, and
vertical oscillation of+0.1 of chord length; pitching oft2° with frequency (sinusoidaly;,

of 1Hz, 2Hz, 5Hz and 10Hz. The effects of the reduced frequency (k), amplitude of forced
oscillation (h) and the maximum non-dimensional flapping velocity (kh) on the thrust genera-
tion were analyzed. The pressure coefficient CP, lift L, lift coefficient CL, drag coefficient CD
and pitching moment M about the support point were computed. The results obtained were
compared and agree with the literature ones.

Keywords: computer simulation, flutter, Virtual Boundary Method, fluid-structure interac-
tion.

1. INTRODUCTION

The problem of calculating the response of a system subject to an external excita-
tion (forced oscillation), since the mathematical model and of the structure properties (natural
frequencies, damping factors and natural modes of vibration) from the input and output in-
formation, in general is a difficult problem to be solved and form part of the class of inverse
problems. Among the methods that treat these problems, the analysis modal methods are char-
acterized by direct calculation of the modal parameters of the structure and, computationally,
these parameters can be determined directly from the simulation results, in the time domain



or frequency domain. In the study of aerodynamics, aertielaffects are the interactions
results of the distributed dynamic fluid loads and inerséluctural efforts and elastic reac-
tions that can induce rupture behavior of the structurduding flutter. The phenomenon of
flutter is usually observed in the wings and control surfaesshese types of structures are
subject to large distributed dynamic fluid loads producenfthe dynamic deviations of a
elastic structure in the undeformed state [1]. The strattlynamic behavior of an aerolastic

model can be described by their modal parameters consipiniee hypotheses:
a) linearity of the dynamic behavior: the response of thecttire to a combination

of forces applied simultaneously is equivalent to the sumesponses of each force acting

individually;
b) Invariance in time: the physical parameters of the stimgcare constant;
c) Observability: the relationship between input/outp@asurement contains suffi-

cient information to determine the dynamic behavior of thesded.

The dynamic system to be studied, shown in the model in Figofsists of a air-
foil profile NACA Series 0012 subject to forced movement oftieal oscillation (plunging)
and torsional (pitching). The study of this three-dimenalgohenomenon reduced to a bi-
dimensional aerodynamic flow is justified by considering pdtiietical wing of infinite ex-
tent such that the properties of the wing remain the sameyiadoitrary section located along
the length, where is the the length of airfoil chord z., is the position of pressure center,
Tem 1S the position of mass cental) is the position of the center of the twist axis (pivot)
andh anda denote the plunge and pitch displacements, respectivélg.ifitegration of the
distributed dynamic fluid loads are plunging,(positive upward) and pitching momenf{
(positive clockwise - nose up) acting at the torsional paintThe moment of inertia of the
section around the axis of torsion, piv@t is given by/,. The rigidities of the lift and tor-
sional springs are indicated &y, andk, and the structural damping coefficients ajeand
Ca, if the damping was considered.

Figure 1. Dynamic model with two degrees of freedom, [1].

the pitch angle isr anda, is the effective attack angle. Basically flutter is definedlyitical
velocity V' and a critical frequency;, whereV is the velocity flow non-disturbed that focuses
on the structure and, is the natural frequency of vibration (harmonic oscillagsimple) of

a given structure immersed in a flow under certain conditaiqdunging. The solution of the
vibration leads to a complex eigenvalue problem where tvavatteristic numbers determine
the velocity and frequency. Few studies for this range ofries number are found in the



literature, for example, [2] analyzes oscillation withgaramplitudes or, in case of flutter, [3]
for Reynolds numbers aboué?.

2. FORMULATION AND NUMERICAL METHOD

The distributed dynamic fluid loads are distributed throtighanalysis of movements
of pitch and elevation separately and, when coupled, theffestthe kinematic angle of attack
or effectivea.(t) = a, — . As [3], to a small Strouhal numbef{ < 0.25), the contri-
bution of the plunge motion to the kinematic attack anglenml$ and it follows the form
of a sinusoidal function. The figure Fig.2 show the plunge pitch movements. We used

a) ) b)
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Figure 2. Plunge).1¢, and pitch4-2°, movements.

the immersed boundaries methodology [4], particularlyvineial boundary method [5] for
modeling fluid-structure interaction in a domain discretizy two meshes: one fixed mesh
to represent the two-dimensional flow field (Eulerian) ané amesh of points to represent
the immersed boundary (Lagrangian) that is independentlaad not need to align with the
mesh Eulerian, which enables simulation of flow over compgjeametries [6] and/or local
refinement of the flow.

2.1. Governing equations

The flow is modeled by Navier-Stokes equations with forcergn, mesh discretiza-
tion in Cartesian and computational fluid-structure int&oan in the model proposed by [4].
Consider a flow of homogeneous and viscous fluid in a two-dgioerl rectangular domain
Q = [0, L] x [0, L] with an immersed boundary represented by a closed durdescribed by
X(s,t), with0 < s < L, and withX(0,¢) = X(Ls, t), whereL, is the length of the curvg.
The governing equations are given by:

p(%—?—ku-Vu)—kVp:,uAu—i—f, (@H)
V-u=0, (2
0
0~ X((;’t) — U(X(s,8),8) = /Qu(x,t)é(x — X(s,1))dx , @3)
Ly
U(X,t)—=Us com |z|—00, e f(x,t)= / F(s,1)0%(x — X(s,t))ds 4)
0

In the equations Eq. (1) to Eq. (&),= (z, y) is the position vectom(x, t) = (u(x,t),v(x,t))
is the field of fluid velocityp(x, t) is the pressure field angx, ¢) is the specific mass. The



force acting on the flow (relative tdx = dxdy) is f(x,t) = (fi(x,1), f2(x,t)), while the
force exerted on the immersed boundary (compareds}as F(s,t) = (Fi(s,t), F(s,t)).
The equation Eq. (1) are the Navier-Stokes equations fanmperessible flow and Eq. (2) is
the continuity equation. The equations Eq. (3) and Eq. (@e®ent the interaction between
the flow and the immersed boundary. The Dirac delta functiciné equations is a function
composed of two other delta functiord8(x) = §(z)d(y). One "feedback” function ensures
that the flow velocity is zero in the points defining the imneerboundary with the condition
no-slip and can be expressed as

F(X(s),t) = a/o (U(X(s),t) = V(X(s),t))dt + B(U(X(s),t) = V(X(s),t)) (5)

f(x,t) = /Q F(X(s),1)6%(x — X(s))dx, (6)

where the constants negatiweand 5 will be chosen with large enough magnitude to adjust
the fluid velocity and the velocity near of the interface id@rto obtain the expected physical
behavior of the flow§?(x — x,) is the Dirac delta function given by equation Eq. (X).s)

are the lagrangian points arranged on the immersed bourld@Xy(s), ¢) is the Lagrangian
force density (nonzero only at points of the immersed boondandf(x, ¢) is the Eulerian
force.

2.2. Numerical Method

The fluid variables are defined in the Eulerian mésh« N with x = (z;,y;) =
(th,jh)fori,j =0,1,..., N—1,whereh = Az = Ay = % is the length of each mesh range.
It used the set @/ Lagrangian pointX = (X, Yy) with £ = 0,1,..., M — 1 to discretize
the immersed boundary, with initial spacing between paihts= % The forcing term is
defined at these points. We used an explicit scheme, wherferite exerted on the border
is calculated at the beginning of each step in time, with = ¢, + At and the numerical
solution is given by:

1. The force field is calculated in points Lagrangian to thgahconditions. The force
F"(s) is calculated using&" (s) in the immersed boundary and then the foF¢€s) is
used to determing’(x) with the following equations:

F'(s) = S"(X") e f(x) = > F"(s)7(x — X"(s))As ™)
where the delta function is given by(x) = d,,(x)d,(y) and discretized by
(8ih<3—¥+ 1+%—%>, [ < h,
0, 2h < |r|.

\



2. The update of the velocity field*™!(x) is performed by a Runge-Kutta time integration

(4* order):
1 oV OV, 3 OV ta
V"t = V" At Vo' tz = y» At V3"t =vV™ 4+ At
’ TRl V2 *3 ot + ot
1 AVAL OV,"ta av nty OV gntl
n+1 _ n A 2 1 2 3
VI = VI At ( ot T ot |

9)
whereV is a generic vector; the spatial variables (coupling presand velocity) are
solved using the projection method and the convective dtvies are solved using the
scheme of high order ("up-wind”) VONOS,[7].

3. The velocityu™*! is interpolated in the points of the immersed boundary aechtw
position is updated using™!(s):

Un+1 Z un+1 _ Xn(s))h2 e Xn+1(8) _ Xn(s) + AtUn-i-l(s) , (10)

whereX"!(s) was calculated using the finite differences centered ofeéhersd order.

2.3. Modal analisys

For the airfoil section of mass and moment of inertia about the center of mdss,
the kinetic energy]’, and the potential energy, of system are given by:

1 [dh da\? 1 do 1 1
T=-m|— —zem— T | — P = —kph® + k.o, 11
2m<dt o dt) *3 (dt) ¢ g it F G hal (11)

The Lagrangian is given by

1 [dh da\? 1 1 1
L=T— ?=3 Tem I — =kph® — Zkoa? 12
<dt+ dt> T3 g tht T glad (12)

The plungef, and pitch,, movements are are obtained through Lagrange equation:

d 0L oL d oL oL
Bl _ = 7 T 13
dt o~ dh M 9% " da (13)

which leads to the following equation of motion for the aikfo
m —mx 0%h kp O h L
cm a 2
e B GG )
t
coml, = I, +maz? . Taking

— m —MTem _ kh 0 . h . L
ol A T S S (O E

(15)
whereM is the mass matriXK is the stiffness matrixJ is the displacement vector afitis
the vector of forces, then the equation of motion can be teemras:

[(M] { & J+[K] {U}={F}, (16)



The stiffness matrix is diagonal because the foothold idhatcenter of flexion, where the
plunge and pitch are statically decoupled. The lift and grm®@dynamic moment in the pivot,
per unit of length, are given by the expressions:

1 1 oCr,
L= §puc2>ocCL = Epugoc%

1 1 aCr, 1
ae € M= §pugocCLxcp = EpugOCQ%ael = CMipuEOCQ a7)

where(C’, e C), are the lift and moment coefficients respectively.

The equations of the motion (equations Eq.(14) to Eqg.(1&yewesolved by classical
method with direct approximation of eigenvalue to the cdsendamped system, ie, this sim-
plified approach can give a first estimate of the vibrationthmnere aerodynamic expressions
are used to approach aerodynamic loads unstable, withoarfgarating damping conditions.
The equation Eq.(14), with forces given by equation Eq,(leéjuces to:

m —ma o°h k, O h 1 oCy, o
cm o2 [ 2 JE—
AT B F P S O X

and the time-dependent displacement vector expressa{diﬁé)y} = { o } eM we obtain

Qg
m —MTem 9 kn, O 1 aCL |0 —1 ho [0
H —MT e, I, ] AT+ { 0 kg } + QpOOUOOC Oa | 0 —z o 10
(19)
which in matrix notation produces
h
[ J+[a e [m {2 -0 @0
_1 oCL B i i i
onde[ A | = LpuncH { 0 —ao, } is the aerodynamic matrix.

The nontrivial solution of the equation Eq.(19) impliestthat [[ K |+ [ A [+ A2 [ M |] =
0 which carries to three possibilities for the stability oétbystem:

o for flow with subcritical velocity, with absence of dampirmpth eigenvalue§—\?) are
real and positive and therefore the valuesXéare real and negative, ie the parameter
A = 4w is purely imaginary. The two different corresponding valuwd A purely
imaginary return frequencies of the two circular modal res in radians/second. The
system vibrates constantly with harmonic motion simpleanheof the two resulting
branches from the vibration modes (vibration free) natural

e after of critical velocity(u,, > V'), the parametera occur like complex conjugates
A = A\, £1i); in which one has positive real paxt > 0 and the oscillations are unstable
in the appropriate modal branch, characterized by inceeasamplitude over time.
Whenu,, =V, flutter boundary), = 0, it has simply harmonic motion simple.

¢ the instability of the type of divergence is indicated by divion in which the imaginary
part of A disappears); = w = 0.



Accord [8], for small anglesa(,,, ~ z.), then, the summarized form, the equations
of motion for the typical section are given by:

oh 9% _
{ m8t2 + MTepm o2 + Khh L7 (21)

0%h ol
MTemSz + 155 + Kaa = M,

where f;, is the natural frequency of translation uncoupléd,is the natural frequency of
torsion. The movements of translatibrand the torsiorv are taken as harmonics and there
is a delay between them due to aerodynamic loads. For hacrdamped motion and using a
linear approximation to the relationship between the agrathic forces and the variables of
movement, the stability of the system is given by

K, +mM\? — L, MTem A2 — Lg,

Mz N — My Ko+ IN — M, |~ (22)
The values\ have the form
. Voo
A= (CHiwa = (CHih== (23)

wherewy, is the frequency of damped oscillation afiés the damping ratio. So, for a given
reduced frequency, its possible to extract the eigenvalues, the damping ta#ind the ve-
locity flow corresponding:... The reduced frequency is specified in aerodynamic sinmuiati
with forced oscillation fork = “4, wherec is the characteristic length (chord of section in
the two-dimensional case).

3. RESULTS

For calculation of the eigenvaluasvere simulated cases of lifting and pitching, inde-
pendently, with the parameters and characteristics shovable Tab.1. The total force on the
airfoil is a combination of viscous forces and of pressurbe Ppressure at each point of the
airfoil is found from theC'» and the viscous forces are given by the derivative of thecatal
velocity with respect to norma%. Since the pressure and viscous forces are known in each
point, they are numerically integrated to find the composi@hthe total force and moment
M of the airfoil.

We used a rectangular Cartesian grid with nonuniform gtiel x 250 with Ax,,,;, =
0.01, AY,;in, = 0.01, Azper = 0.35 and AY,,.. = 0.35 in a domain6 x 3 dimensionless
units, [9]. The geometric center of the profile of NACAOO1&ail was positioned at the point
of coordinatesl.5 in directionx and1.5 in directiony, Fig.3 a) and b). The determination
of the flutter depends on the structure elements of the systieoh as mass and moment of
inertia. Taking as reference the data presented for [1Q]bacause it is a similar analysis,
but for proximity between models treated, we will use tharealshown in the table Tab.(1)
and some parameters were chosen so that the frequencylfiatyplange is2H > and0.5H =z
for pitching, such thaf;, and f,, produce oscillations with the velocity reduced of the iaggr
Due to the limited availability of experimental results asichulation results in the literature
for Re = 1000, was used, as reference, values taken from thie @fd11] by to present
frequency {.16 H z) near to the studied in this work.



Besides the dimensioless parameters, took up the chasdstandard of scale,,
as the characteristic velocity arﬁ@gﬁ as pressure characteristic. The characteristic time is
given by“”%, the characteristic velocity™ = “=¢f and normalization of dimensionless
equations provides the mass and moment of ineftiaaid I) and low frequenciesff, and
f.). In practice, the values of, and f,, are chosen such that the airfoil undergo oscillations
with velocity reduced of interest and and/ are tuned so that the loads will be higher (when
reduced) or smaller (when increased) on the airfoil.

a b) 1.8 1.8 1.9 1.95 x 2
Figure 3. a)Positioning of the profile in the mesh, b) Refineinod the mesh at the trailing
edge.
Table 1. Properties of the airfoil used in the simulations
Profile of airfoil NACA0012 (simetric), Chord = 0.06m, ¢* = 1,
Position of the pivotzo = 0.5¢ = 0.03m,
Geometry| Aerodynamic center oh/4 of the chord, distance from the axis elastic to
aerodynamic centen,b = %2 = (.25
Distance from the center of mass0.4429¢ = 0.02657m
Distance from axix elastic to center of mass, = 0.00343m
Flow Reynolds numbeize = 1000 ; us, = 0.017m/s
Pitching | Atack angle mediuma, = 0°; Amplitude of atack angley, = 4°
Plunging | ho = 0; Pitching amplitudeh = 0.1¢
Mass,m = 0.01567kg, Moment of inertia with respect to the axis
of rotation, /L2 = 0.2102, I, = 2.493 x 10~%kgm?
Inertia Moment of inertia witch respect to mass cenfef, = I, — mz?

I = 2.306 x 1079, if m uniformly distributed,] = ”1“;2, them,

I =4.701 x 10~%kgm?, asl,,, < I, them the airfoil mass is
concentrated around the central portion of the airfoll.

To determine the flutter parameters, simulations were padd to extract the values
of aerodynamic forces. Figures Fig.3(a), Fig.3(c), Fig)3nd Fig.3(g) show the values of
C', for pitching and the development of sinusoid over time fa thtationa. Figures Fig.
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Figure 4. Results for determining the frequency reducedtohimg of +-2°, plunging of0.1¢
and frequencies df.5H z,0.75Hz, 1Hz and2H z.

3(b), Fig.3(d), Fig.3(f) and Fig.3(h) show the values4f for plunging and development of
the sinusoid over time to the displacemént



We can see from the figures Fig.a) to Fig.h) that the phaserdiite between the angle
of forced oscillation and’'; response increases with increasing frequency.

The Table(2) shows the maximum values obtained for the tift pitching moment
and lift and plunging moment. For frequencieSH z, 0.75H z, 1 Hz and2 H = was measured
the reduced frequencies to be used in the calculation ohealges. The results for the eigen-

Table 2. Simulation results - lift, moment and delay

Frequency Lift and Moment phase difference
Hz | Reduced L, M, Ly, M;, L, Ly, M, M,
0.5 | 2.356 | 0.0476| 0.00510| 0.0306| 0.0312| 3.9° | 9.9° | 8.3° | 5.2°
0.75| 3.534 | 0.3687| 0.0466 | 0.145 | 0.182 | 12.1° | 35.7° | 17.1° | 7.5°
1.0 | 4.712 |1.1056| 0.0262 | 0.6159| 0.562 | 34.1° | 56.6° | 38.2° | 18.6°
20| 9.425 |3.0172| 0.7576 | 1.96 | 1.69 | 73.8° | 74.1° | 62.3° | 37.7°

values) are shown in Table(3). The values obtained for the eigeegdlishow that the flow

Table 3. Results of simulations - eigenvalues

Frequency 05bHz | 0.75Hz | 1H=z 2H~z [11] 7,16Hz
real part\, 0 0 0 0 0
imaginary park; | £0.518| +£0.425| +0.342| +0.248| —0.66 a0.25

velocity is subcritical, ie, the eigenvalues have only imagy parts. We also can see that
there is a tendency to decrease the magnitude of the eigesvydhat is, higher frequencies
can lead to critical velocity of flutter and shown to be cotesisas compared to those obtained
by [11].

4. CONCLUSION

The present analysis with a simetric airfoil in a 2D flow (slatad by the Virtual
Boundary Method) indicates that it is possible to simulatttél parameters for ultralow
Reynolds number, using classical eigenvalue approactsliegct integration methods in
aerodynamic codes (solving Navier Stokes equations). €neqnance of an airfoil section
NACA 0012 series subjected to forced oscillation (movenwntfting and pitching inde-
pendently) in a flow with very low Reynolds number (Re = 100@swvstudied using a two-
dimensional DNS simulation and showed that increasing fudlation frequency increases
the relationship lift-drag and has provided a standard ifloration prediction with frequency
that dependents of parameters for preliminary deternunatf the flutter phenomenon. Also,
modeling using modal analysis and immersed boundaries fiexgiee for preliminary study
of the phenomenon of flutter.
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