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Abstract. Failure of fibre-reinforced composite materials is usually preceded by the devel-

opment of a network of cracks running through plies (matrix cracks) and between plies (de-

lamination). Matrix cracks and delamination often interact with each other to form complex 

crack paths. A novel numerical method is developed to model all plies of the laminate by one 

element. Matrix cracks, delamination and matrix crack tips at the interface can all be explic-

itly represented within such an element to achieve high accuracy modelling of the mechanism 

of interaction. A 2D element formulated based on this method has demonstrated good per-

formance on the delamination/matrix crack interaction problem in a cross-ply composite 

laminate. 
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1. INTRODUCTION 

The failure of composite materials is known for its complexity in nature. Unlike other 

materials in engineering practice such as metal or concrete, the ultimate failure of composites 

is usually preceded by a high count of matrix cracks in plies and delamination between plies. 

Recent experiments in the literature [1] have shown that during in-plane loading situations, 

matrix cracks can induce widespread delamination which destroys the structural integrity of 

the laminate much earlier than the fibre-breaking of the 0-plies. In such cases, the matrix 

crack/delamination interaction is critical for the failure of the laminate. The work by van der 

Meer et al. [2] has used a phantom node method to explicitly represent matrix cracks which is 

shown to be important for accurate predictions on the matrix crack/delamination interaction. 

Fang et al. [3] have shown that the representation of matrix crack tips at the interface is also 

important for the prediction of the stress concentration at the intersection of matrix cracks and 

the interface (Figure 1). They then explicitly included the matrix crack tips in the interface by 

forming an augmented cohesive element based on the augmented finite element method pro-

posed in [4] such that it can break into two parts with respect to the locations of matrix crack 

tips at the upper and lower plies.  

In this work, a novel numerical method is developed from an extension of the phantom 
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node method to model multiple cracks within one element. Section 2.1 will give a review of 

the phantom node method with an emphasis on the modelling of cohesive cracks. Section 2.2 

will investigate the relation between the standard FEM and the phantom node method. Section 

2.3 will propose the theory of the extended phantom node method based on the conclusion 

from section 2.2. Section 3 will show that an element based on this new method is capable of 

modelling all the plies and interfaces of a laminate inside one element such that the informa-

tion of their failure status is shared among them. Matrix cracks, interfaces and the matrix 

crack tips at the interfaces are all explicitly represented within the element to achieve a high 

accuracy in the modelling of matrix crack/delamination interaction.  

 

Figure 1. Stress field predictions at the interface: (a) without representing the matrix crack tip; 

(b) with the matrix crack tip explicitly represented [3]. 

2. THEORY 

2.1 Phantom node method 

The phantom node method was first proposed by Hansbo and Hansbo [5] and is later 

implemented and developed in [4, 6, 7]. In the phantom node method, a material domain with 

a potential internal discontinuity can be modelled by one element with two pair of nodes, 

namely real nodes and ghost nodes. When the stresses of the element reach the material 

strength, a discontinuity is modelled by forming two superposing elements with the help of 

ghost nodes (Figure 2). Each of the two elements contains only part of the material domain. 

Since all the nodes of the elements are at the outer material boundaries, the location of the 

discontinuity does not need to be known during meshing. When modelling a strong disconti-

nuity (stress-free crack) inside an element, the phantom node method has been proven to be 

equivalent to the eXtended Finite Element Method (XFEM) with only the Heaviside enrich-

ment function [6]. Both methods essentially use extra Degrees Of Freedom (DOFs) to interpo-

late the new crack surfaces. The difference between the two is that the phantom node method 

keeps the nodal DOFs as displacement DOFs and stores the extra DOFs needed as the dis-



 

 

placement DOFs of the ghost nodes, while XFEM keeps the number of nodes constant and 

stores the extra DOFs needed as enriched DOFs at each node. The advantage of the former is 

that it is easier to be implemented in existing FEM programmes because each node has only 

the standard displacement DOFs and only the standard FEM shape functions are needed to 

interpolate them. 

 

Figure 2. Phantom node method 

 

Currently the phantom node method has only been used to model one crack inside an 

element. Although some concept of modelling multiple cracks has been presented in [4], the 

detailed formulation and implementation remain absent in the literature. In particular, the cur-

rent phantom node method has difficulties in modelling multiple cohesive cracks within one 

element. When modelling one cohesive crack, the phantom node method breaks the original 

element into two parts with the help of phantom nodes and modifies the equilibrium equation 

of the new material domain to include the energy contributions of the cohesive tractions on 

the new material boundaries [4, 6, 7]. In the absence of body forces, the equilibrium equation 

before the initiation of the cohesive crack is: 

 
 S

TT sV dd tuσε                                                      (1)  

where σ is the internal stress and t is the external force. δε is the virtual strain and δu is the 

virtual displacement. When a cohesive crack develops at the surface SC and breaks the mate-

rial domain into ΩA and ΩB  respectively, the single equilibrium equation becomes a system of 

equations: 
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where t
c
 is the cohesive stress and w and δv are respectively the real and virtual displacement 



 

 

jumps across the crack surface. The two equations are coupled and they need to be rearranged 

and combined into one linear system before they can be used in a FEM program. When an-

other cohesive crack is to be modelled, the equilibrium equation will need to be modified 

again to include the new cohesive force contributions. This would require considerable work 

to rearrange and combine the coupled equilibrium equations into one linear system. This work 

may be tedious especially when more cohesive cracks need to be modelled and they may not 

appear in a fixed sequence.  

A novel method is needed to model multiple cohesive cracks in a more efficient way. 

The phantom node method is investigated and compared with the standard FEM in the next 

section and a new method is proposed to extend the current phantom node method to effi-

ciently model multiple cohesive cracks within one element. 

2.2 Equivalence of FEM and phantom node method 

In this section, a detailed comparison between the solution procedures of the FEM and 

the phantom node method is investigated and it is found that the displacement solutions by the 

two methods are exactly the same under certain easily-satisfied conditions. Let’s take the 

elements in Figure 2 as an example, we shall prove that the displacement solutions over ΩA by 

the standard finite element Elm A and phantom node element Elm A’ are exactly the same.  

Firstly, we have the discretized equilibrium equation by standard FEM is 

    FUK                                                              (3) 

where 
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and [N] is the shape function matrix: 
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and Nj s are the standard FEM shape functions defined on ΩA. [B] is the deformation matrix: 
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                         (6) 

The nodal displacement vector [U] is solved from (3) and the displacement solution on 

ΩA by Elm A is obtained as: 



 

 

    UNu                                                               (7) 

The solution procedure for Elm A’ is exactly the same as that of the Elm A. The only 

difference is that in Elm A’ the displacement is interpolated with the shape functions having a 

support on Ω instead of on ΩA. Only the part of the shape functions restricted on ΩA is used: 
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where
iN s are standard FEM shape functions defined on the domain Ω. We can get the discre-

tized equilibrium equation for Elm A’: 

    FUK                                                           (10) 
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[K’] is symmetric positive definite, therefore the nodal solution {U’} exists and it is 

unique. The critical question here is whether the displacement solutions over the material do-

main ΩA by these two methods are the same, i.e. whether (7) and (8) are equivalent to each 

other. An important property of the standard FEM shape functions is that they form a basis for 

polynomials of the same order over their domain. Since Nj form a basis of polynomials of the 

same order over ΩA, and
iN   are well defined over ΩA and of the same order as Nj , we have the 

following relation: 
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Similarly, 
iN   form a basis of polynomials of the same order over Ω which contains ΩA, 

therefore 
AiN 

 | form a basis of polynomials of the same order over ΩA. A similar equation as 

(13) can be written: 
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Therefore there is an invertible map T between 
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If we substitute the position vector of node j on both sides of (13), we will get: 

  i
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Therefore, 
i

ja is the interpolation of the shape function of Elm A’ node I at the position 

of Elm A node j. 

Substitute (15) into (10) to (12) we can get 

]][[][][ TNLB T                                                        (18) 
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Because [T] is invertible, we have: 

     FUTK                                                          (21) 

Since [K] is the standard FEM stiffness matrix which is symmetric positive definite, the 

solution of the system [K]{X}={Y} is unique. Therefore we have: 

    UUT                                                             (22) 

Substituting (15) and (22) into (7), we can get: 

         uUNUTNu
A
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Therefore the displacement solutions over the material domain ΩA by the two methods 

are exactly the same when the shape functions used in the two methods are polynomials of the 

same order and they are both defined over ΩA. 

2.3 Extended phantom node method 

Based on the conclusion in section 2.2, we can see that as long as the phantom element 

Elm A’ contains the material domain ΩA, there is no other restriction on the positions of the 

nodes of Elm A’ for it to have the same displacement solution as the standard finite element 

Elm A. The nodes of Elm A’ in theory can be all outside of ΩA and the equations in section 



 

 

2.2 would still hold and Elm A’ would still behave exactly like Elm A (Figure 3). Therefore, a 

complete distinction between numerical domain and material domain can be made. An ele-

ment can have all its nodes as ghost nodes, completely detached from the material domain 

that it interpolates on, and has exactly the same solution as a standard finite element on this 

material domain. 

 
Figure 3. Complete distinction between the numerical domain and the material domain 

 

From this observation, it can be claimed that for any standard FEM mesh, a phantom 

element with multiple pairs of nodes can be constructed such that it behaves exactly like this 

mesh. This can be done by finding the equivalent phantom element of each standard element 

in the FEM mesh and then group them together (Figure 4). The stiffness matrix of the phan-

tom element can be obtained by following the same assembly procedure of the standard FEM 

mesh.  

 
Figure 4. Construction of a phantom element based on a FEM mesh 

 

This discovery greatly facilitates the modelling of cohesive cracks. When modelling one 

cohesive crack inside such a phantom element, the element is broken into three parts with the 

cohesive crack modelled independently by a phantom cohesive element (Figure 5). The cohe-

sive force is represented as an internal force with a direct contribution to the internal energy 

of the phantom element. The equilibrium equations after the initiation of the cohesive crack 

are: 

   

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The equilibrium equation of any of the three parts remains a standard finite element 

equilibrium equation. The stiffness matrix and the force vector of the phantom element after 

introducing the cohesive crack can be easily obtained by the standard finite element assembly 



 

 

procedure for a mesh of three elements. This enables the modelling of multiple cohesive 

cracks inside one element by simply adding more nodes at the initial element corners, without 

the need to modify the equilibrium equation as done in the phantom node method. 

 

 

Figure 5. Modelling of a cohesive crack in a phantom element 

3. APPLICATIONS 

The method in section 2.3 is first employed in the modelling of a single cohesive crack 

inside one element. A standard FEM mesh as shown in Figure 5(a) with ΩA and ΩB modelled 

by two quadrilateral elements and the cohesive crack modelled by a cohesive element is built 

in Abaqus. A phantom element as shown in Figure 5(b) is built in an Abaqus User Element 

(UEL) subroutine. Based on the conclusion in section 2.2, the phantom element should be-

have exactly like the standard FEM mesh. A simple tension loading and a simple shear load-

ing are performed on both the FEM mesh and the UEL phantom element. The stress-

displacement curves by the two methods are compared in Figure 6 and Figure 7. It can be 

seen that the two methods give identical response which supports the conclusion in section 

2.2. 

 

Figure 6. Simple tension loading 

(a) (b) 



 

 

 

Figure 7. Simple shear loading 

 

The method is then further employed on developing a phantom element with multiple 

pairs of ghost nodes to model multiple discontinuities within a cross-ply [90/0] composite 

laminate. The entire laminate is modelled within such an element. Initially, both plies of the 

laminate are intact and they are connected by an interface (Figure 8(a)). Since a cohesive ele-

ment is used to model the interface, this element is capable of capturing the scenario where 

delamination occurs without any matrix crack. 

                                    
      (a) Before 90-ply matrix crack         (b) After 90-ply matrix crack 

Figure 8. Cross-ply phantom element before and after matrix crack initiation (cohesive ele-

ment thickness exaggerated). 

 

The matrix crack/delamination interaction comes into play when the matrix crack oc-

curs in the 90-ply. The stress concentration caused by the matrix crack tip at the interface of-

ten leads to delamination. In order to capture this stress concentration accurately, both the 

matrix crack and the crack tip are explicitly represented. When matrix crack occurs in the 90-

ply, the 90-ply element will break into two linear elements and one cohesive element with the 

help of extra ghost nodes. The original cohesive element at the interface will also break into 

two parts with respect to the position of the matrix crack tip (Figure 8(b)). 

The phantom element is written in an Abaqus UEL subroutine. Post-processing is per-

formed by a Matlab program. In order to verify the performance of the phantom element, a 

standard FEM mesh as shown in Figure 9(a) is built in Abaqus and the results of the two 

methods are compared. The FEM model here is very detailed for the scale of a laminate since 

the delamination, matrix crack and matrix crack tip are all explicitly represented. A simple 

tensile loading with symmetric boundary condition on the surface of the 0-ply is applied to 

both the Abaqus model and the phantom element (Figure 9).  The material is assumed to be 

typical glass-epoxy composite. The predictions of matrix crack and delamination by the two 

0-ply 

90-ply 

Cohesive 

elements 



 

 

methods are compared in Figure 10. For the phantom element, failure information is available 

only at the integration points of the cohesive elements. A red dot appears when there is failure. 

Both the deformation and the failure sequence predictions by the two methods are in good 

agreement with each other. Both methods predicted that initial failure occurs only in the 90-

ply with no delamination during the initial stage of loading. As the load increases, the stress 

concentration caused by the matrix crack tip at the interface eventually leads to the propaga-

tion of delamination at the interface and a ‘T’ shaped crack forms (Figure 10(b)). The predic-

tions of the laminate stress-strain curve are compared in Figure 11. The two curves follow 

closely with each other. The slight change of slope due to the 90-ply failure can be observed. 

  

 

                   
(a)                                           (b) 

Figure 9. (a): Abaqus mesh: 3 quadrilateral elements and 3 cohesive elements (interface is 

represented by two cohesive elements); (b): UEL phantom element 

 

                 
              Abaqus                     UEL                                     Abaqus                     UEL 

(a) Initial stage                                                           (b) Final stage 

Figure 10. Comparison of failure predictions between Abaqus standard FEM model and UEL 

phantom element. Red colour indicates failure. Only the failure status at the integration points 

is displayed in the phantom element. 
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Figure 11. Stress-strain curves 

 

It can be seen that the phantom element established based on the extended phantom 

node method is able to model the development of multiple cohesive cracks and it has the de-

gree of accuracy as that of a detailed FEM mesh. In the extended phantom node method, the 

locations of all cracks do not need to be known before analysis. They can be modelled by ac-

tivating extra numerical nodes during analysis when a failure criterion is met. The extended 

phantom node method can be easily extended to model more plies and more cracks with the 

help of extra ghost nodes. 

4. CONCLUSION 

A novel numerical method (the extended phantom node method) is proposed based on 

the theory of the phantom node method. The extended phantom node method greatly facili-

tates the modelling of multiple cohesive cracks inside one element. A phantom element based 

on this method is formulated to model the matrix crack/delamination interaction in a cross-ply 

laminate. The whole laminate is modelled in the element, with the delamination, matrix crack 

and matrix crack tip all explicitly represented. Good performance is observed on both the 

failure pattern and the stress-strain curve predictions by the phantom element. 
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