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Abstract. The radial integration method is a suitable technique to transform domain integrals
into boundary integrals. It is quite appropriated for anisotropic materials because it is a pure
numerical technique that does not require the computation of approximation functions as in
dual reciprocity boundary element method. However, a special attention must be paid on
the numerical integration because it has strong influence on the accuracy and computational
cost of the method. This paper presents an analysis of performance of the radial integration
method, considering accuracy and computational cost, when it is used in stability analysis
of thin perforated plates of laminated composite plates by the boundary element formulation.
The accuracy of the proposed formulation is assessed by comparison with results from the
literature.
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1. INTRODUCTION

This paper presents an analysis of performance of the radial integration method, con-
sidering accuracy and computational cost, when it is used in stability analysis of perforated
thin plates of laminated composite by the boundary element formulation. The classical plate
bending and the plane elasticity formulations [1] are used and the domain integrals due to
non-uniform body forces are transformed into boundary integrals using the radial integration
method. The presented formulation does not require neither domain discretization nor com-
putation of particular solutions.

The formulation of the boundary element method for anisotropic plane elasticity was
developed by [2] to problems of fracture mechanics and elasto-static and extended to other
problems in the research of [3]. The formulation of boundary elements for the classical theory
of anisotropic plates was developed by [4, 5], and extended to other problems in the work of
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[6]. The formulation for stability analysis of thin perforated plates of laminated composite was
developed by [7]. The last work has used the radial integration method for the transformation
of domain integrals that remain in the formulation into boundary integrals. The computational
cost of this formulation was high however, especially for anisotropic formulation.

The main contribution of this paper is to examine the sensitivity of the radial inte-
gration method in relation to the number of integration points for the formulation of thin
perforated plates of laminated composite. As quoted in the literature, in [8] and [9], the radial
integration method demand few integration points to obtaina solution close to the analytical
solution. In these two studies, good results are obtained with ten integration points. However,
this was not carried out for stability analysis of thin perforated plates of laminated composite.
The main focus of this paper is to assess the number of integration points that are needed to
obtain results with good accuracy.

2. GOVERNING EQUATIONS

Basically, the classic problem of buckling is a geometrically nonlinear problem de-
scribed by a set of three differential equations which can beuncoupled and linearized in the
case of elastic critical loads. In the absence of body forces, equations that describe the buck-
ling of plates are given by:

Nij,j = 0, (1)

D11u3,1111 + 4D16u3,1112 + 2(D12 +D66)u3,1122 + 4D26u3,1222 +D22u3,2222 = Niju3,ij , (2)

wherei, j, k = 1, 2; uk is the displacement in directionsx1 andx2, u3 stands for the displace-
ment in the normal direction of the plate surface;Nij are the in-plane stress components,D11,
D22, D66, D12, D16, andD26 are the anisotropic thin plate stiffness constants.

2.1. Boundary integral equations

The determination of in-plane stress resultants in the domain is the first step in the so-
lution of plate buckling. The in-plane boundary integral equation for displacements, obtained
by applying the reciprocity and Green theorems in equation (1), is given by [10]:

cijuj(Q) +

∫

Γ

t∗ik(Q,P )uk(P )dΓ(P ) =

∫

Γ

u∗

ik(Q,P )tk(P )dΓ(P ), (3)

whereti = Nijnj is the traction in the boundary of the plate in the planex1−x2, andnj is the
normal at the boundary point;P is the field point;Q is the source point; and asterisks denote
fundamental solutions. The anisotropic plane elasticity fundamental solutions can be found,
for example, in [11]. The constantcij is introduced in order to take into account the possibility
that the pointQ can be placed in the domain, on the boundary, or outside the domain.

The in-plane stress resultants at a pointQ ∈ Ω are written as:



cikNkj(Q) +

∫

Γ

S∗

ikj(Q,P )uk(P )dΓ(P ) =

∫

Γ

D∗

ijk(Q,P )tk(P )dΓ(P ), (4)

whereDikj andSikj are linear combinations of the plane-elasticity fundamental solutions.
Due to stress concentrations in the geometry, stress resultants are non-uniform over the do-
main.

The plate buckling equations are derived from the plate bending equations. Critical
load factors are introduced into the equations as multiplication factors of body forces or trans-
verse loads. Critical buckling loads are loads at which plates suddenly undergo considerable
deflections in the transverse direction due to loads appliedin the plane of the plate. The rela-
tion between the applied load and critical loads are given bythe critical load factorλ by the
following equation:

N c
ij = λNij (5)

whereN c
ij are critical stress resultants that are obtained when critical loads are applied.

The integral equation for the plate buckling formulation, obtained by applying reci-
procity and Green theorems at equation (2), is given by:

Ku3(Q) +

∫

Γ

[

V ∗

n (Q,P )w(P )−m∗

n(Q,P )
∂w(P )

∂n

]

dΓ(P ) +
Nc
∑

i=1

R∗

ci
(Q,P )u3ci(P )

=
Nc
∑

i=1

Rci(P )u∗

3ci
(Q,P ) +

∫

Γ

[

Vn(P )u∗

3(Q,P )−mn(P )
∂u∗

3

∂n
(Q,P )

]

dΓ(P )

+λ

[
∫

Ω

u3Niju
∗

3,ij dΩ +

∫

Γ

(

tiu
∗

3u3,i − tiu3u
∗

3,i

)

dΓ

]

, (6)

where∂()
∂n

is the derivative in the direction of the outward vectorn that is normal to the bound-
ary Γ; mn e Vn are, respectively, the normal bending moment and the Kirchhoff equivalent
shear force on the boundaryΓ; Rc is the thin-plate reaction of corners;u∗

3ci
is the transverse

displacement of corners;λ is the critical load factor; the constantK is introduced in order to
take into account the possibility that the pointQ can be placed in the domain, on the bound-
ary, or outside the domain. As in the previous equation, an asterisk denotes a fundamental
solution. Fundamental solutions for anisotropic thin plates can be found, for example, in [5].

A second integral equation is necessary in order to obtain the thin plate buckling
boundary element formulation. This equation is obtained bythe derivative of equation (6)
in respect to the normal direction at the source pointQ. This equation is given by:

K ∂u3

∂m
(Q) +

∫

Γ

[

∂V ∗

n

∂m
(Q,P )w(P )− ∂M∗

n

∂m
(Q,P )∂u3(P )

∂n

]

dΓ(P ) +
∑Nc

i=1

∂R∗

ci

∂m
(Q,P )u3ci(P )

=
∑Nc

i=1 Rci(P )
∂u∗

3ci

∂m
(Q,P ) +

∫

Γ

[

Vn(P )
∂u∗

3
(Q,P )

∂m
−mn(P )

∂2u∗

3

∂n∂m
(Q,P )

]

dΓ(P )

+λ
[

∫

Ω
u3Nij

∂u∗

3,ij

∂m
dΩ +

∫

Γ

(

tiu
∗

3
∂u3,i

∂m
− tiu3

∂u∗

3,i

∂m

)

dΓ
]

, (7)



where∂()
∂m

is the derivative with respect to the direction of the outward vectorm that is normal
to the boundaryΓ at the source pointQ.

As it can be seen in equations (6) and (7), domain integrals arise in the formulation
owing to the contribution of in-plane stresses to the out of plane direction. In order to trans-
form these integrals into boundary integrals, consider that a body forceb is approximated
over the domain as a sum ofM products between approximation functionsfm and unknown
coefficientsγm, that is:

b(P ) ∼=

M
∑

m=1

γmfm. (8)

Equation (8) can be written in a matrix form, considering allboundary and domain
source points, as:

b = Fγ (9)

Thus,γ can be computed as:

γ = F
−1

b. (10)

Body forces of integral equations (6) and (7) depend on displacements. So, using
equation (10) and following the procedure presented by [12], domain integrals that come
from these body forces can be transformed into boundary integrals.

As it can be seen in equations (6) and (7), the body force that generates domain inte-
grals is given by:

b = Niju3. (11)

So, it’s need to computeNij in each integration points. However, we have only the
values ofNij at nodes and internal points. Values ofNij in integration points is computed by:

Ni(x1, x2) = f(r)F−1Nij. (12)

The implementaion of the buckling formulation is quite similar to shells. Details on
the implementation of the radial integration method for shells are given by [13].

2.2. Approximation function

‘
The approximation function used in this work is:

fm = r2 log(r), (13)

The function (13) is known as thin plate splines, wherer is the distance between the
centre of the radial basis function and integration points.It has been shown in some works
from literature that this approximation function can give excellent results for many different
formulations (see [14] and [15]).



2.3. Eigenvalue problem

After the discretization of equations (6) and (7) into boundary elements and colloca-
tion of the source points in all boundary nodes, a linear system is generated. It is worth notice
that the only loads considered in the linear buckling equations are that related to the in-plane
stressNij and tractionsti that are multiplied by the critical load factorλ. Furthermore, all the
known values ofw, ∂w/∂n, Mn, Vn, wci, Rci (boundary conditions) are set to zero. Dividing
the boundary intoΓ1 eΓ2 (Figure 4), this linear system can be written as:

Γ1: u3 =
∂u3

∂n
= 0

Γ2: Vn = Mn=0

Ω

Figure 1. Domain with constrained and free degrees of freedom.

[

H11 H12

H21 H22

]{

w1

w2

}

−

[

G11 G12

G21 G22

]{

V1

V2

}

= λ

[

M11 M12

M21 M22

]{

w1

w2

}

, (14)

whereΓ1 stands for the part of the boundary where displacements and rotations are zero and
Γ2 stands for the part of the boundary where bending moment and tractions are zero. Indices
1 and2 stand for boundariesΓ1 andΓ2, respectively. MatricesH, G, andM are influence
matrices of the boundary element method due to integral terms of equations (6) and (7).

Asw1 = 0 andV2 = 0, equation (14) can be written as:

H12w2 −G11V1 = λM12w2,

H22w2 −G21V1 = λM22w2 (15)

or,

Ĥw2 = λM̂w2, (16)

where,Ĥ eM̂, are given by:

Ĥ = H22 −G21G
−1

11
H12,

M̂ = M22 −G21G
−1

11
M12. (17)

The matrix equation (16) can be rewritten as an eigen vector problem

Aw2 =
1

λ
w2, (18)



where,

A = Ĥ
−1

M̂. (19)

Provided thatA is non-symmetric, eigenvalues and eigenvectors of equation (18) can
be found using standard numerical procedures for non symmetric matrices.

3. NUMERICAL RESULTS

In order to assess the accuracy of the proposed formulation,in this work it is con-
sidered a square thin plate of laminated composite with a square hole, under uniformly uni-
axial compression and the critical load parameter is computed considering all edges simply-
supported, shown in figures 2 and 3. The geometry and materialproperties of the plate are:
ratio between lengtha and thicknessh of the square plate isa/h = 100; ratio between the
edge length of the plate and the edge length of the hole isa/b = 5; elastic moduliE1 = 181

GPa andE2 = 10.3GPa and Poisson ratioν12 = 0.28, and shear modulusG12 = 7.17GPa.
The numerical results are presented in terms of the dimensionless critical load param-

eterKcr which is given by:

Kcr =
Ncra

2

D22

(20)

where,Ncr is the critical load anda is the edge length of the square plate.
It’s used three meshes with quadratic discontinuous boundary elements: mesh 1 has

12 elements of equal length at the external boundary and 12 elements of equal length at the
hole and 48 uniformly distributed internal points; mesh 2 has 20 elements of equal length at
the external boundary and 12 elements of equal length at the hole and 48 uniformly distributed
internal points; mesh 3 has 28 elements of equal length at theexternal boundary and 12
elements of equal length at the hole and 48 uniformly distributed internal points.

Figure 2. Geometric configuration
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Figure 3. Boundary element model (mesh 1)

The results for a square composite laminate plate with square hole are shown in Table 1
using the radial integration method in boundary element formulation. The solution presented
by [7] to this problem isKcr = 112.30.



Table 1. Critical load parameterKcr for a perforated square plate of composite laminated

Mesh Number of integration points
4 8 12 16 20 24 26 30

1 25.89 116.85 144.66 134.59 125.11 118.25 118.25 118.25
2 61.43 100.28 113.58 110.22 114.66 114.66 114.66 114.66
3 67.88 96.08 101.55 107.18 112.02 112.20 112.20 112.20

4. DISCUSSION OF THE RESULTS

As can be seen in figure 4, the resultas forKcr converge to the solution presented by
[7] with mesh refinement. Comparing the results obtained in Table 1, column corresponding
to 24 integration points, for all three meshes, we notice that differences are always smaller
than 6 %.
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Figure 4. Comparison of the valuesKcr and the number of integration points

5. CONCLUSIONS

This paper presented an analysis of performance of the radial integration method, con-
sidering accuracy and computational cost, when it is used ina boundary element formulation
for the instability analysis of composite laminate plates with non-uniform stress field. Domain
integrals are transformed into boundary integrals by the radial integration method.

This result makes this method very suitable for the treatment of these types of prob-
lems, since the computational cost is not high and the fact that we do not need to calculate
particular solutions makes the radial integration method advantageous, because of the easy
implementation, when compared with the dual reciprocity boundary element method.

It was shown that very good results can be obtained with 24 integration points for all
meshes.
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