Blucher Mechanical Engineering Proceedings
May 2014, vol. 1, num. 1
www.proceedings.blucher.com.br/evento/10wccm

E
i

’]D World Congress on
Computational Mechanics

B-13 July 20112 » Sao Poulo + Bros

NUMERICAL ASPECTSOF THE RADIAL INTEGRATION METHOD IN
BOUNDARY ELEMENT FORMULATION FOR STABILITY ANALYSISOF THIN
PERFORATED PLATESOF LAMINATED COMPOSITES

P. C. M. Doval, E. L. Albuquerqué, P. Sollerd

! Department of Mechanical and Material, Federal Institute of M&arfloval@fem.unicamp.br)
2 Faculty of Technology, University of Brdi&, Campus Universitrio Darcy Ribeiro

3 Department of Computational Mechanics, State University of Campinas

Abstract. The radial integration method is a suitable technique to transform domain integrals
into boundary integrals. It is quite appropriated for anisotropic materials because it is a pure
numerical technique that does not require the computation of approximation functions as in
dual reciprocity boundary element method. However, a special attention must be paid on
the numerical integration because it has strong influence on the accuracy and computational
cost of the method. This paper presents an analysis of performance of the radial integration
method, considering accuracy and computational cost, when it is used in stability analysis
of thin perforated plates of laminated composite plates by the boundary element formulation.
The accuracy of the proposed formulation is assessed by comparison with results from the
literature.
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1. INTRODUCTION

This paper presents an analysis of performance of the radial integration method, con-
sidering accuracy and computational cost, when it is used in stability analysis of perforated
thin plates of laminated composite by the boundary element formulation. The classical plate
bending and the plane elasticity formulations [1] are used and the domain integrals due to
non-uniform body forces are transformed into boundary integrals using the radial integration
method. The presented formulation does not require neither domain discretization nor com-
putation of particular solutions.

The formulation of the boundary element method for anisotropic plane elasticity was
developed by [2] to problems of fracture mechanics and elasto-static and extended to other
problems in the research of [3]. The formulation of boundary elements for the classical theory
of anisotropic plates was developed by [4, 5], and extended to other problems in the work of



[6]. The formulation for stability analysis of thin perfaeal plates of laminated composite was
developed by [7]. The last work has used the radial integmatiethod for the transformation
of domain integrals that remain in the formulation into bdary integrals. The computational
cost of this formulation was high however, especially foisatropic formulation.

The main contribution of this paper is to examine the sentitof the radial inte-
gration method in relation to the number of integration p®ifor the formulation of thin
perforated plates of laminated composite. As quoted initbature, in [8] and [9], the radial
integration method demand few integration points to obsasolution close to the analytical
solution. In these two studies, good results are obtainddten integration points. However,
this was not carried out for stability analysis of thin peated plates of laminated composite.
The main focus of this paper is to assess the number of integraoints that are needed to
obtain results with good accuracy.

2. GOVERNING EQUATIONS

Basically, the classic problem of buckling is a geometricalbnlinear problem de-
scribed by a set of three differential equations which canrmoupled and linearized in the
case of elastic critical loads. In the absence of body foregsations that describe the buck-
ling of plates are given by:

Diyus 1111 + 4D1sus 1112 + 2(D12 + Des)us 1122 + 4Dtz 1200 + Daotis 9200 = Nijus i, (2)

wherei, j, k = 1, 2; u; is the displacement in directions andx,, us stands for the displace-
ment in the normal direction of the plate surfadg; are the in-plane stress componetibs
D15, Dgg, D12, D1, and Dog are the anisotropic thin plate stiffness constants.

2.1. Boundary integral equations

The determination of in-plane stress resultants in the domedhe first step in the so-
lution of plate buckling. The in-plane boundary integraliation for displacements, obtained
by applying the reciprocity and Green theorems in equatipnig given by [10]:

e (Q) + /F £5.(Q. Pug(P)dT'(P) = /F W (Qs PYtu(P)AT(P), 3)

wheret; = N;;n; is the traction in the boundary of the plate in the plane- z,, andn; is the
normal at the boundary poing is the field point,() is the source point; and asterisks denote
fundamental solutions. The anisotropic plane elastieitydmental solutions can be found,
for example, in [11]. The constaay; is introduced in order to take into account the possibility
that the point) can be placed in the domain, on the boundary, or outside thmaitho

The in-plane stress resultants at a poing () are written as:



Vi (Q) + / 5 (Q. Puy(P / Di(@Q, PYta(P)AT(P), ()

where D;;,; and S;;,; are linear combinations of the plane-elasticity fundarakesolutions.
Due to stress concentrations in the geometry, stress aessiire non-uniform over the do-
main.

The plate buckling equations are derived from the plate ingnequations. Critical
load factors are introduced into the equations as mulapba factors of body forces or trans-
verse loads. Critical buckling loads are loads at which plateldenly undergo considerable
deflections in the transverse direction due to loads applitite plane of the plate. The rela-
tion between the applied load and critical loads are givethbycritical load facton\ by the
following equation:

whereN;; are critical stress resultants that are obtained wherrarivads are applied.
The integral equation for the plate buckling formulatiobtaned by applying reci-
procity and Green theorems at equation (2), is given by:
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where |s the derivative in the direction of the outward veataihat is normal to the bound-
ary I'; mn eV, are, respectively, the normal bending moment and the Koffldguivalent
shear force on the boundaly R, is the thin-plate reaction of corners;  is the transverse
displacement of corners; is the critical load factor; the constaft is introduced in order to
take into account the possibility that the pofptcan be placed in the domain, on the bound-
ary, or outside the domain. As in the previous equation, &riak denotes a fundamental
solution. Fundamental solutions for anisotropic thin g@éatan be found, for example, in [5].

A second integral equation is necessary in order to obtanthin plate buckling
boundary element formulation. This equation is obtainedhgyderivative of equation (6)
in respect to the normal direction at the source p@InThis equation is given by:
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where% is the derivative with respect to the direction of the outivagctorm that is normal
to the boundary” at the source poin®.

As it can be seen in equations (6) and (7), domain integréde ar the formulation
owing to the contribution of in-plane stresses to the outlahe direction. In order to trans-
form these integrals into boundary integrals, considet éhbody forceb is approximated
over the domain as a sum 6f products between approximation functiofys and unknown
coefficientsy,,, that is:

M
b(P) =Y A fm: ®)

Equation (8) can be written in a matrix form, consideringkadundary and domain
source points, as:

b =Fy 9)

Thus,~ can be computed as:

v =F"'b. (10)

Body forces of integral equations (6) and (7) depend on digphents. So, using
equation (10) and following the procedure presented by, [@i@main integrals that come
from these body forces can be transformed into boundargriale

As it can be seen in equations (6) and (7), the body force & tes domain inte-
grals is given by:

So, it's need to computé/;; in each integration points. However, we have only the
values ofNV;; at nodes and internal points. Valuesf in integration points is computed by:

Ni({El,Ig) = f(T‘)F_lNZ‘j. (12)

The implementaion of the buckling formulation is quite danito shells. Details on
the implementation of the radial integration method forishere given by [13].

2.2. Approximation function

The approximation function used in this work is:

fon = 1% 1og(r), (13)

The function (13) is known as thin plate splines, wheis the distance between the
centre of the radial basis function and integration poitithas been shown in some works
from literature that this approximation function can giweellent results for many different
formulations (see [14] and [15]).



2.3. Eigenvalue problem

After the discretization of equations (6) and (7) into boawrydelements and colloca-
tion of the source points in all boundary nodes, a linearesyss generated. It is worth notice
that the only loads considered in the linear buckling equistiare that related to the in-plane
stressV;; and tractions; that are multiplied by the critical load factar Furthermore, all the
known values ofv, Ow/on, M,, V,,, w., R.; (boundary conditions) are set to zero. Dividing
the boundary intd’; eI’ (Figure 4), this linear system can be written as:

Py g — 2

Ty Vi = Mp=0

Figure 1. Domain with constrained and free degrees of freedo

Hi:x Hio W1 | G111 Gz Vi -\ Mi:x M2 W1 (14)

Hz; Ha» W2 Ga1 G2 V, Mz Moo wy |’
wherel’; stands for the part of the boundary where displacementsaatians are zero and
', stands for the part of the boundary where bending momentrantians are zero. Indices
1 and?2 stand for boundarieE; andI';, respectively. Matricesl, G, andM are influence

matrices of the boundary element method due to integrals@frequations (6) and (7).
Asw; = 0 andV, = 0, equation (14) can be written as:

Hiowy — G111V = AMiawo,
Hzowy — G21 Vi = AMaaws (15)

or,

Hw, = \Mwo, (16)

where,H e M, are given by:

H = Hy - G21GijHya,

~

M = My — GG M. a7)
The matrix equation (16) can be rewritten as an eigen vectdrigm

Awy = %Wz, (18)



where,

A=H'M. (19)

Provided thatA is non-symmetric, eigenvalues and eigenvectors of equéti®) can
be found using standard numerical procedures for non syriameatrices.

3. NUMERICAL RESULTS

In order to assess the accuracy of the proposed formulatajs work it is con-
sidered a square thin plate of laminated composite with arggoiole, under uniformly uni-
axial compression and the critical load parameter is coathbabnsidering all edges simply-
supported, shown in figures 2 and 3. The geometry and mafedpkrties of the plate are:
ratio between length and thickness: of the square plate ig/h = 100; ratio between the
edge length of the plate and the edge length of the halg¢tis= 5; elastic moduliF;, = 181
GPaandE,; = 10.3 GPa and Poisson ratio;» = 0.28, and shear modulus,, = 7.17 G Pa.

The numerical results are presented in terms of the dimelesi critical load param-
eter K. which is given by:

N,.a?
D22

where,N,,. is the critical load and is the edge length of the square plate.

It's used three meshes with quadratic discontinuous bayrelaments: mesh 1 has
12 elements of equal length at the external boundary andel@egits of equal length at the
hole and 48 uniformly distributed internal points; mesh 2 B8 elements of equal length at
the external boundary and 12 elements of equal length abileeand 48 uniformly distributed
internal points; mesh 3 has 28 elements of equal length aéxtexnal boundary and 12
elements of equal length at the hole and 48 uniformly distat internal points.
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Figure 2. Geometric configuration Figure 3. Boundary element model (mesh 1)

The results for a square composite laminate plate with duze are shown in Table 1
using the radial integration method in boundary elememnidation. The solution presented
by [7] to this problem igk,, = 112.30.



Table 1. Critical load parametéf,.,. for a perforated square plate of composite laminated

Mesh Number of integration points

4 8 12 16 20 24 26 30
1 25.89| 116.85| 144.66| 134.59| 125.11| 118.25| 118.25| 118.25
2 |61.43]100.28| 113.58| 110.22| 114.66| 114.66| 114.66| 114.66
3 |67.88] 96.08 | 101.55| 107.18| 112.02| 112.20| 112.20| 112.20

4. DISCUSSION OF THE RESULTS

As can be seen in figure 4, the resultas &ofr converge to the solution presented by
[7] with mesh refinement. Comparing the results obtained i€Ta, column corresponding
to 24 integration points, for all three meshes, we notice differences are always smaller
than 6 %.
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Figure 4. Comparison of the valués:r and the number of integration points

5. CONCLUSIONS

This paper presented an analysis of performance of thel iatkgration method, con-
sidering accuracy and computational cost, when it is use@ddoundary element formulation
for the instability analysis of composite laminate platéhwon-uniform stress field. Domain
integrals are transformed into boundary integrals by th&tantegration method.

This result makes this method very suitable for the treatroéthese types of prob-
lems, since the computational cost is not high and the fattwie do not need to calculate
particular solutions makes the radial integration methdehatageous, because of the easy
implementation, when compared with the dual reciprocityristary element method.

It was shown that very good results can be obtained with Zgmation points for all
meshes.
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