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Abstract. The topological derivative measures the sensitivity of a given shape functional
with respect to an infinitesimal singular domain perturbation. According to the literature,
the topological derivative has been fully developed for a wide range of one single physical
phenomenon modeled by partial differential equations. In addition, up to our knowledge, the
topological asymptotic analysis associated to multi-physics problems has so far not been re-
ported in the literature. In this work, we present the topological asymptotic analysis for the
total potential mechanical energy associated to a thermo-mechanical system, when a small
circular inclusion is introduced at an arbitrary point of the domain. In particular, we con-
sider the linear elasticity system (modeled by the Navier equation) coupled with the steady-
state heat conduction problem (modeled by the Laplace equation). The mechanical coupling
term comes out from the thermal stress induced by the temperature field. Since this term is
non-local, we introduce a non-standard adjoint state, which allows to obtain a closed form
for the topological derivative. Finally, we provide a full mathematical justification for the de-
rived formulas and develop precise estimates for the remainders of the topological asymptotic
expansion.

Keywords: Topological derivative, thermo-mechanical system, multi-physic topology opti-
mization, asymptotic analysis.

1. Introduction

The topological derivative measures the sensitivity of a given shape functional with
respect to an infinitesimal singular domain perturbation, such as the insertion of holes, inclu-
sions, source-terms or even cracks ([7]). The topological derivative was rigorously introduced
by [19]. Since then, this concept has proved to be extremely useful in the treatment of a wide
range of problems, for instance, topology optimization ([5, 18]), inverse analysis ([4, 14])
and image processing ([13, 15]), and has became a subject of intensive research. See, for
instance, applications of the topological derivative in the multi-scale constitutive modeling
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Figure 1. The topological derivative concept.

context ([3, 9]), fracture mechanics sensitivity analysis ([10]) and damage evolution model-
ing ([1]). Concerning the theoretical development of the topological asymptotic analysis, the
reader may refer to the papers by [2] and [16], for instance.

In order to introduce these concepts, let us consider a bounded domain Ω ⊂ R2, which
is subject to a non-smooth perturbation confined in a small region ωε(x̂) = x̂ + εω of size
ε, as shown in fig. 1. Here, x̂ is an arbitrary point of Ω and ω is a fixed domain of R2. We
introduce a characteristic function x 7→ χ(x), x ∈ R2, associated to the unperturbed domain,
namely χ = 1Ω. Then, we define a characteristic function associated to the topologically
perturbed domain of the form x 7→ χε(x̂;x), x ∈ R2. In the case of a perforation, for
instance, χε(x̂) = 1Ω − 1ωε(x̂)

and the perforated domain is obtained as Ωε = Ω \ ωε. Then,
we assume that a given shape functional ψ(χε(x̂)), associated to the topologically perturbed
domain, admits the following topological asymptotic expansion

ψ(χε(x̂)) = ψ(χ) + f(ε)DTψ(x̂) + o(f(ε)) , (1)

where ψ(χ) is the shape functional associated to the original (unperturbed) domain, f(ε) is
a positive function such that f(ε) → 0, when ε → 0. The function x̂ 7→ DTψ(x̂) is called
the topological derivative of ψ at x̂. Therefore, this derivative can be seen as a first order
correction of ψ(χ) to approximate ψ(χε(x̂)). In fact, after rearranging (1) we have

ψ(χε(x̂))− ψ(χ)

f(ε)
= DTψ(x̂) +

o(f(ε))

f(ε)
. (2)

The limit passage ε→ 0 in the above expression leads to

DTψ(x̂) = lim
ε→0

ψ(χε(x̂))− ψ(χ)

f(ε)
. (3)

Since we are dealing with singular domain perturbations, the shape functionals ψ(χε(x̂)) and
ψ(χ) are associated to topologically different domains. Therefore, the above limit is not
trivial to be calculated. In particular, we need to perform an asymptotic analysis of the shape
functional ψ(χε(x̂)) with respect to the small parameter ε. In order to calculate the topological
derivative, in this work we will apply the methodology developed in [17]. The method is based
on the following result:

DTψ(x̂) = lim
ε→0

1

f ′(ε)

d

dε
ψ(χε(x̂)) . (4)

The derivative of ψ(χε(x̂)) with respect to ε can be seen as the sensitivity of ψ(χε(x̂)),
in the classical sense [6, 20], to the domain variation produced by an uniform expansion of



the perturbation ωε, namely, ωε+t(x̂) = ωε(x̂) + tω. In fact, we have

d

dε
ψ(χε(x̂)) = lim

t→0

ψ(χε+t(x̂))− ψ(χε(x̂))

t
, (5)

where ψ(χε+t(x̂)) is the shape functional associated to the perturbed domain, whose pertur-
bation is given by ωε+t. Therefore, since ψ(χε+t(x̂)) and ψ(χε(x̂)) are now associated to
topologically identical domains, we can use the concept of shape sensitivity analysis as an in-
termediate step in the topological derivative calculation. We will see later that this procedure
enormously simplifies the analysis.

According to the literature, the topological derivative has been fully developed for a
wide range of one single physical phenomenon modeled by partial differential equations. In
addition, up to our knowledge, the topological asymptotic analysis associated to multi-physics
problems has so far not been reported in the literature. In this work, therefore, we derive the
topological derivative in its closed form for the total potential mechanical energy associated to
a thermo-mechanical semi-coupled system, when a small circular inclusion is introduced at an
arbitrary point of the domain. In particular, we consider the linear elasticity system (modeled
by the Navier equation) coupled with the steady-state heat conduction problem (modeled by
the Laplace equation). The mechanical coupling term comes out from the thermal stress
induced by the temperature field. Since this term is non-local, we introduce a non-standard
adjoint state, which simplifies the analysis allowing to obtain a closed form for the topological
derivative. Finally, we provide a full mathematical justification for the derived formula and
develop precise estimates for the remainders of the topological asymptotic expansion. We note
that this result can be applied in technological research areas such as multi-physic topology
design of structures under mechanical and/or thermal loads.

This paper is organized as follows. Section 2 describes the model associated to a
thermo-mechanical semi-coupled problem. The topological sensitivity analysis is presented
in Section 3, where the main result of this work - the topological derivative in its closed form
for the total potential mechanical energy associated to a thermo-mechanical semi-coupled
system - is derived. The paper ends in Section 4 where concluding remarks are presented.

2. Formulation of the problem

As mentioned in previous section, in this work the topological derivative of the to-
tal potential energy associated to the mechanical problem submitted to thermal stresses is
derived. As topological perturbation we consider a nucleation of a small circular inclusion,
with a contrast in the elastic, thermal and thermal-expansion constitutive properties. Then,
it is needed to formulate the problems associated to the original and topological perturbed
domains.

2.1. Unperturbed problem

Consider an open and bounded domain Ω ∈ R2 representing an elastic solid body
subject to a linear thermomechanical deformation process. Assuming small deformation and



variations of temperatures, the functional that represents the total potential energy of the me-
chanical system is written as:

Jχ(u, θ) :=
1

2

∫
Ω

σ(u) · ∇us −
∫
Ω

Q(θ) · ∇us −
∫
ΓNM

t̄ · u, (6)

where u represents the displacement field and t̄ is a external traction acting on boundary
ΓNM

. The displacement field on the boundary ΓDM
satisfies u|ΓDM

= ū, being ū a prescribed
displacement. Moreover, note that ΓDM

∩ ΓNM
= ∅ and ΓDM

∪ ΓNM
= ∂Ω. The Cauchy

stress tensor σ(u) in (6) is defined as:

σ(u) := C∇us , (7)

where ∇us is used to denote the symmetric part of the gradient of the displacement field u,
i.e.

∇us := 1

2
(∇u+ (∇u)⊤) . (8)

The induced thermal stress tensor Q(θ) in (6) is defined as:

Q(θ) := CBθ , (9)

where θ is the temperature field. In addition, C denotes the four-order elastic tensor and B
denotes the second-order thermo-elastic tensor. In the case of isotropic elastic body, theses
tensors are given by:

C = 2µII + λ(I ⊗ I) and B = αI ⇒ CB = 2α(λ+ µ)I, (10)

with µ and λ denoting the Lame’s coefficients, and α the thermal expansion coefficient. In
terms of the enginnering constant E (Young’s modulus) and ν (Poisson’s ratio) the above
constitutive response can be written as:

C =
E

1− ν2
[(1− ν)II + ν(I ⊗ I)] and CB =

αE

1− ν
I . (11)

In addition, the field u is the solution of the following variational problem: find u ∈
UM , such that ∫

Ω

S(u, θ) · ∇ηs =
∫
ΓNM

t̄ · η ∀η ∈ VM , (12)

with the tensor S(u, θ) representing the total stress, i.e. the contribution of the mechanical
and thermal stresses,

S(u, θ) = σ(u)−Q(θ). (13)

In the variational problem (12), the set UM and the space VM are defined as

UM :=
{
ϕ ∈ H1(Ω;R2) : ϕ = ū on ΓDM

}
and VM :=

{
ϕ ∈ H1(Ω;R2) : ϕ = 0 on ΓDM

}
.

(14)
Finally, the temperature field of the body θ is solution of the following variational

problem: find θ ∈ UT , such that∫
Ω

q(θ) · ∇η =

∫
ΓNT

q̄η ∀η ∈ VT , (15)



where q̄ is a prescribed heat flux on the Neumann boundary ΓNT
. In the Dirichlet boundary

ΓDT
there is a prescribed temperature denoted as θ̄. Then, ΓDT

∩ΓNT
= ∅ and ΓDT

∪ ΓNT
=

∂Ω. The heat flux operator q(θ) is defined as

q(θ) = −K∇θ, (16)

where K is an second order tensor representing the thermal conductivity of the medium. In
the isotropic case, the tensor K can be written as

K = kI, (17)

being k the thermal conductivity coefficient. In the variational problem (15), the set UT and
the space VT are defined as:

UT :=
{
ϕ ∈ H1(Ω) : ϕ = θ̄ on ΓDT

}
and VT :=

{
ϕ ∈ H1(Ω) : ϕ = 0 on ΓDT

}
. (18)

In order to simplify further analysis, we introduce the following auxiliary problem:
find φ ∈ VT , such that: ∫

Ω

q(φ) · ∇η =

∫
Ω

Q(η) · ∇us ∀η ∈ VT . (19)

2.2. Perturbed problem

Considering the introduction of a circular inclusion, denoted as ωε(x̂) := Bε(x̂), with
radius ε and centered at point x̂ in Ω, the total potential energy functional associated to the
perturbed domain mechanical system can be written as:

Jχε(uε, θε) :=
1

2

∫
Ω

σε(uε) · ∇usε −
∫
Ω

Qε(θε) · ∇usε −
∫
ΓNM

t̄ · uε, (20)

where uε and θε denotes, respectively, the displacement and temperature fields, both associ-
ated to the perturbed system. In addition, σε(uε) andQε(θε) are used to denote the mechanical
and the induced thermal stresses tensors associated to the perturbed problem. These tensors
are defined as:

σε(uε) := γMε C∇usε and Qε(θε) := γMε γ
C
ε CBθε, (21)

being γMε and γCε the contrast parameters in the constitutive properties, defined as

γMε :=

{
1 in Ω\Bε

γM in Bε
and γCε :=

{
1 in Ω\Bε

γC in Bε
. (22)

with γM and γC used to denote the values of the contrast. In the perturbed configuration, the
displacement field satisfies the variational problem: find uε ∈ UM

ε , such that∫
Ω

Sε(uε, θε) · ∇ηs =
∫
ΓNM

t̄ · η ∀η ∈ VM
ε (23)

where the total stress operator Sε(uε, θε) associated to the perturbed domain is given by

Sε(uε, θε) = σε(uε)−Qε(θε). (24)



The set UM
ε and the space VM

ε in the variational problem (23) are defined as

UM
ε :=

{
ϕ ∈ UM : JϕK = 0 on ∂Bε

}
and VM

ε :=
{
ϕ ∈ VM : JϕK = 0 on ∂Bε

}
, (25)

where the operator J(·)K is introduced to denote the jump of (·) across the boundary of the
perturbation.

In addition, the thermal equilibrium problem can be written in the variational form as:
find θε ∈ UT

ε , such that ∫
Ω

qε(θε) · ∇η =

∫
ΓNT

q̄η ∀η ∈ VT
ε , (26)

with the thermal flux in the perturbed domain being defined as:

qε(θε) := −γTε K∇θε (27)

where γTε is the parameter that define the contrast between the thermal (constitutive) properties
of the matrix and the inclusion, and is defined by:

γTε :=

{
1 in Ω\Bε

γT in Bε
, (28)

being γT the value of the contrast. In the variational problem (26) the set UT
ε and the space

VT
ε are defined as:

UT
ε :=

{
ϕ ∈ UT : JϕK = 0 on ∂Bε

}
and VT

ε :=
{
ϕ ∈ VT : JϕK = 0 on ∂Bε

}
. (29)

Finally, the auxiliary problem (19), associated to the topologically perturbed domain
is written as: find φε ∈ VT

ε , such that:∫
Ω

qε(φε) · ∇η =

∫
Ω

Qε(η) · ∇us ∀η ∈ VT
ε . (30)

3. Topological Sensitivity Analysis

In order to proceed, it is convenient to introduce an analogy to classical continuum
mechanics [11] where by the shape change velocity field V is identified with the classical
velocity field of a deforming continuum and ε is identified as a time parameter. Since we are
dealing with an uniform expansion of the inclusion Bε, the shape velocity field V satisfies:
V |∂Ω = 0 and V |∂Bε = −n. Then, the shape derivative of the functional (20) can be written
as:

J̇χε(uε, θε) =

(
1

2

∫
Ω

σε(uε) · ∇usε −
∫
Ω

Qε(θε) · ∇usε −
∫
ΓNM

t̄ · uε

)·

=
1

2

(∫
Ω

σε(uε) · ∇usε
)·

−
(∫

Ω

Qε(θε) · ∇usε
)·

−
∫
ΓNM

t̄ · u̇ε , (31)

where each term represents the derivative with respect to the parameter ε. Therefore, we can
state the following propositions:



Proposition 1 Let Jχε(uε, θε) be the functional defined by (20). Then, its derivative with
respect to the small parameter ε is given by

J̇χε(uε, θε) =

∫
Ω

Σε · ∇V −
∫
Ω

Qε(θ̇ε) · ∇ (uε − u)s , (32)

where V is the shape change velocity field defined in Ω that satisfies V |∂Ω = 0 and V |∂Bε =

−n; θ̇ε is the material derivative of the temperature field and Σε is a generalization of the
classical Eshelby momentum-energy tensor [8], given - for this particular case - by

Σε :=
1

2
((Sε(uε, θε)−Qε(θε))·∇usε)I−(∇uε)⊤Sε(uε, θε)+[(qε(θε)·∇φε)I−2qε(θε)⊗s∇φε] ,

(33)
with uε, θε and φε denoting the solutions to (23), (26) and to the auxiliary problem (30).

Proof. By making use of Reynolds’ Transport Theorem [11, 20] we obtain the identities(∫
Ω

σε(uε) · ∇usε
)·

=

∫
Ω

(2σε(uε) · ∇u̇sε − 2σε(uε) · (∇uε∇V )s + (σε(uε) · ∇usε)divV ) ,(34)(∫
Ω

Qε(θε) · ∇usε
)·

=

∫
Ω

(Qε(θε) · ∇u̇sε −Qε(θε) · (∇uε∇V )s + (Qε(θε) · ∇usε)divV

+Qε(θ̇ε) · ∇usε . (35)

Then, by considering the above results in (31), the shape derivative of the functional Jχε(uε, θε)

is given by

J̇χε(uε, θε) =

∫
Ω

(
1

2
((Sε(uε, θε)−Qε(θε)) · ∇usε)I − (∇uε)⊤Sε(uε, θε)

)
· ∇V

−
∫
Ω

Qε(θ̇ε) · ∇usε +
∫
Ω

Sε(uε, θε) · ∇u̇sε −
∫
ΓNM

t̄ · u̇ε . (36)

Since u̇ε ∈ UM
ε , see [20], the terms in u̇ε satisfy the state equation (23), then

J̇χε(uε, θε) =

∫
Ω

(
1

2
((Sε(uε, θε)−Qε(θε)) · ∇usε)I − (∇uε)⊤Sε(uε, θε)

)
· ∇V

−
∫
Ω

Qε(θ̇ε) · ∇usε. (37)

Now, adding the term ±
∫
Ω
Qε(θ̇ε) · ∇us in the above result, the derivative J̇χε(uε, θε) can be

written alternatively as

J̇χε(uε, θε) =

∫
Ω

(
1

2
((Sε(uε, θε)−Qε(θε)) · ∇usε)I − (∇uε)⊤Sε(uε, θε)

)
· ∇V

−
∫
Ω

Qε(θ̇ε) · ∇(uε − u)s −
∫
Ω

Qε(θ̇ε) · ∇us . (38)

On the other hand, the deriative of the state equation (26) with respect to the parameter ε is
given by ∫

Ω

qε(θ̇ε) · ∇η = −
∫
Ω

[(qε(θε) · ∇η)I − 2qε(θε)⊗s ∇η] · ∇V ∀η ∈ VT
ε . (39)



Next, taking η = φε in the above expression, we obtain∫
Ω

qε(θ̇ε) · ∇φε = −
∫
Ω

[(qε(θε) · ∇φε)I − 2qε(θε)⊗s ∇φε] · ∇V, (40)

and tacking η = θ̇ε in the auxiliary problem (30), we obtain∫
Ω

qε(φε) · ∇θ̇ε =
∫
Ω

Qε(θ̇ε) · ∇us . (41)

By using the definition of the heat flux operator (27) and comparing the two last expressions,
the following identity holds∫

Ω

Qε(θ̇ε) · ∇us = −
∫
Ω

[(qε(θε) · ∇φε)I − 2qε(θε)⊗s ∇φε] · ∇V . (42)

From the above result, the derivative of the shape functional Jχε(uε, θε) can be written equiv-
alently in the following form:

J̇χε(uε, θε) =

∫
Ω

(
1

2
((Sε(uε, θε)−Qε(θε)) · ∇usε)I − (∇uε)⊤Sε(uε, θε)

)
· ∇V

+

∫
Ω

[(qε(θε) · ∇φε)I − 2qε(θε)⊗s ∇φε] · ∇V

−
∫
Ω

Qε(θ̇ε) · ∇(uε − u)s , (43)

which leads to the result with Σε given by (33).

Proposition 2 Let Jχε(uε, θε) be the functional defined by (20). Then, its derivative with
respect to the small parameter ε is given by

J̇χε(uε, θε) = −
∫
∂Bε

JΣεKn · n−
∫
Ω

Qε(θ
′
ε) · ∇(uε − u)s , (44)

where V is the shape change velocity field defined in Ω that satisfies V |∂Ω = 0 and V |∂Bε =

−n; θ′ε is the spatial derivative of the temperature field and Σε is a generalization of the
classical Eshelby momentum-energy tensor presented in (33).

Proof. By making use of the Reynolds’ Transport Theorem [11, 20], we obtain the following
identities:(∫

Ω

σε(uε) · ∇usε
)·

=

∫
Ω

2(σε(uε) · ∇u̇sε + div(σε(uε)) · (∇uε)V )

+

∫
∂Ω

[
(σε(uε) · ∇usε)I − 2(∇uε)⊤σε(uε)

]
n · V

+

∫
∂Bε

J(σε(uε) · ∇usε)I − 2(∇uε)⊤σε(uε)Kn · V, (45)(∫
Ω

Qε(θε) · ∇usε
)·

=

∫
Ω

(Qε(θε) · ∇u̇sε +Qε(θ
′
ε) · ∇usε) +

∫
Ω

div(Qε(θε)) · (∇uε)V

−
∫
∂Ω

[
(∇uε)⊤Qε(θε)− (Qε(θε) · ∇usε)I

]
n · V

−
∫
∂Bε

J(∇uε)⊤Qε(θε)− (Qε(θε) · ∇usε)IKn · V . (46)



Introducing the above expressions in the definitions of the shape derivative (31) and taking
into account that: (i) u̇ε ∈ UM

ε , see [20], the terms in u̇ε satisfy the state equation (23); (ii)
divSε(uε, θε) = 0 in Ω ; (iii) adding the term ±

∫
Ω
Qε(θ

′
ε) · ∇us ; and (iv) the shape change

velocity field V defined in Ω satisfies V |∂Ω = 0 and V |∂Bε = −n; then

J̇χε(uε, θε) = −
∫
∂Bε

J1
2
((Sε(uε, θε)−Qε(θε)) · ∇usε)I − (∇uε)⊤Sε(uε, θε)Kn · n

−
∫
Ω

Qε(θ
′
ε) · ∇(uε − u)s −

∫
Ω

Qε(θ
′
ε) · ∇us. (47)

By using the relation between the material and spatial derivatives of the temperature field, the
above expression can be written as,

J̇χε(uε, θε) = −
∫
∂Bε

J1
2
((Sε(uε, θε)−Qε(θε)) · ∇usε)I − (∇uε)⊤Sε(uε, θε)Kn · n

−
∫
Ω

Qε(θ
′
ε) · ∇(uε − u)s −

∫
Ω

Qε(θ̇ε) · ∇us +
∫
Ω

Qε(∇θε · n) · ∇us .(48)

On the other hand, the derivative of the state equation (26) with respect to parameter ε is given
by ∫

Ω

qε(θ̇ε) · ∇η = −
∫
Ω

[(qε(θε) · ∇η)I − 2qε(θε)⊗s ∇η] · ∇V ∀η ∈ VT
ε . (49)

Next, tacking η = φε in the above expression, we obtain∫
Ω

qε(θ̇ε) · ∇φε = −
∫
Ω

[(qε(θε) · ∇φε)I − 2qε(θε)⊗s ∇φε] · ∇V , (50)

and tacking η = θ̇ε in the auxiliary problem (30), we obtain∫
Ω

qε(φε) · ∇θ̇ε =
∫
Ω

Qε(θ̇ε) · ∇us . (51)

By using the definition of the heat flux operator (27) and comparing the two last expressions,
the following identity holds∫

Ω

Qε(θ̇ε) · ∇us = −
∫
Ω

[(qε(θε) · ∇φε)I − 2qε(θε)⊗s ∇φε] · ∇V. (52)

From the above result, the derivative of the shape functional Jχε(uε, θε) can be written equiv-
alently in the following form,

J̇χε(uε, θε) = −
∫
∂Bε

J1
2
((Sε(uε, θε)−Qε(θε)) · ∇usε)I − (∇uε)⊤Sε(uε, θε)Kn · n

+

∫
Ω

[(qε(θε) · ∇φε)I − 2qε(θε)⊗s ∇φε] · ∇V

−
∫
Ω

Qε(θ
′
ε) · ∇(uε − u)s +

∫
Ω

Qε(∇θε · n) · ∇us . (53)



By integrating by parts the second term in the above expression and using the definition of the
Eshelby’s tensor Σε, we have

J̇χε(uε, θε) = −
∫
∂Bε

JΣεKn · n−
∫
Ω

Qε(θ
′
ε) · ∇(uε − u)s

−
∫
Ω

div[(qε(θε) · ∇φε)I − 2qε(θε)⊗s ∇φε] · V

+

∫
Ω

Qε(∇θε · V ) · ∇us . (54)

Taking into account the state equation (26) and the auxiliary problem (30), we observe that
the second term in the above expression satisfies the following identity∫

Ω

div[(qε(θε) · ∇φε)I − 2qε(θε)⊗s ∇φε] · V =

∫
Ω

Qε(∇θε · V ) · ∇us . (55)

Then, the lats two terms in (54) vanish, leading to the result.

Corollary 3 By considering the relation between the material and spatial derivative of the
temperature field, (32) can be written as:

J̇χε(uε, θε) =

∫
Ω

Σε · ∇V −
∫
Ω

Qε(θ
′
ε) · ∇(uε − u)s −

∫
Ω

Qε(∇θε · V ) · ∇(uε − u)s. (56)

By integrating by part the firt term of the above expression and using the restriccion of the
velocity field V on the boundaries ∂Ω and ∂Bε, we obtain

J̇χε(uε, θε) = −
∫
∂Bε

JΣεKn·n−∫
Ω

divΣε·V−
∫
Ω

Qε(θ
′
ε)·∇(uε−u)s−

∫
Ω

Qε(∇θε·V )·∇(uε−u)s .

(57)
By comparing (44) with (57) and recalling that both identities are valid for all V ∈ Ω, the
follow result holds true∫

Ω

(div(Σε) + γMε γ
C
ε (CB · ∇(uε − u)s)∇θε) · V = 0 ∀V ∈ Ω, (58)

Thus, the equation for the balance of the configurational forces [12] can be written as:

div(Σε) = −γMε γCε (CB · ∇(uε − u)s)∇θε in Ω. (59)

To analytically solve the integrals expression of the derivative J̇χε(uε, θε) it is neces-
sary to perform an asymptotic analysis of the solutions of the PDE’s involved in these coupled
problems. In order to simplify the analysys, let us use the linearity property of the shape func-
tional with respect to the solution of the thermal problem (26) and split the analysis in two
cases: (i) γT = 1 and (ii) γM = γC = 1.

3.1. Case γT = 1

For this particular case, γT = 1, we have that the temperature field is not perturbed
by the presence of the inclusion Bε in the mechanical problem. Then, the temperature for the



unperturbed and perturbed problems coincides, i.e. θε = θ. Thus, the derivative of the shape
functional can be written as:

J̇χε(uε, θ) = −
∫
∂Bε

JΣεKn·n = −
∫
∂Bε

J1
2
((Sε(uε, θ)−Qε(θ))·∇usε)I−(∇uε)⊤Sε(uε, θ)Kn·n .

(60)
Considering a curvilinear coordinate system (t, n) defined on the boundary of the in-

clusion ∂Bε, the jump condition of the stress field Sε(uε, θ) in the boundary ∂Bε can be
written, tacking into account the orthogonality of the normal (n) and tangential (t) vectors,
as:

[[Sε(uε, θ)Kn = JSnn
ε (uε, θ)Kn+ JStn

ε (uε, θ)Kt = 0 , (61)

which leads to the following result,

[[Snn
ε (uε, θ)K = 0 and [[Stn

ε (uε, θ)K = 0 on ∂Bε . (62)

In the same way, the continuity condition of the displacement field defined on the
boundary ∂Bε results in the following relations

[[uεK = 0 ⇒ [[∂tuεK = 0 on ∂Bε . (63)

The above continuity relations implies the continuity of the tangential component of
the deformation tensor ∇usε,

[[uεK = 0 ⇒ [[(∇usε)
ttK = 0 on ∂Bε . (64)

In view of the above decomposition, it is possible to analyze each term of (60) sepa-
rately:

[[(Sε(uε, θ) · ∇usε) IKn · n = JSε(uε, θ) · ∇usεK
= JSnn

ε (uε, θ) (∇usε)
nn + 2Snt

ε (uε, θ) (∇usε)
nt + Stt

ε (uε, θ) (∇usε)
ttK,(65)

[[(∇uε)⊤Sε(uε, θ)Kn · n = JSnn
ε (uε, θ)∂nu

n
ε + Stn

ε (uε, θ)∂nu
t
εK, (66)

[[(Qε(θ) · ∇usε) IKn · n = JQε(θ) · ∇usεK
= JQnn

ε (θ) (∇usε)
nn + 2Qnt

ε (θ) (∇usε)
nt +Qtt

ε (θ) (∇usε)
ttK, (67)

where ∂nutε = (∇uε)tn. With the above continuity properties, the expression (65) can be
written as:

[[Sε(uε, θ) · ∇usεK = Snn
ε (uε, θ)J(∇usε)nnK + Stn(uε, θ)J∂nutεK + (∇usε)

tt JStt
ε (uε, θ)K . (68)

By using the same continuity properties, (66) can be re-written as:

[[(∇uε)⊤Sε(uε, θ)Kn · n = Snn
ε (uε, θ)J(∇usε)nnK + Stn

ε (uε, θ)J∂nutεK. (69)

By considering an isotropic thermal expansion, i.e. Qnn(θ) = Qtt(θ) and Qnt(θ) = 0,
from (67) we have that

[[Qε(θ) · ∇usεK = Qnn(θ)(JγCε γCε (∇usε)
nnK + (1− γMγC

)
(∇usε)

tt) . (70)



Then, the operator of the normal jump of the Eshely tensor on the boundary of the
perturbation Bε can be written as:

2JΣεKn · n = (∇usε)
tt JStt

ε (uε, θ)K − Snn
ε (uε, θ)J(∇usε)nnK − Snt

ε (uε, θ)J∂nutεK
− Qnn(θ)(JγMε γCε (∇usε)

nnK + (1− γMγC
)
(∇usε)

tt) . (71)

Note that, the first part of the normal jump of the Eshelby tensor is classical presented
in terms of the mechanical deformation ∇usε. The second part of this jump represents the
explicit contribution of thermal problem through the thermal expansion parameter. Finally,
the derivative of the shape functional Jχε(uε, θ) can be written as:

J̇χε(uε, θ) = −1

2

∫
∂Bε

(∇usε)
tt JStt

ε (uε, θ)K − Snn
ε (uε, θ)J(∇usε)nnK − Snt

ε (uε, θ)J∂nutεK
−Qnn(θ)(JγMε γCε (∇usε)

nnK + (1− γMγC
)
(∇usε)

tt) . (72)

In order to obtain an explicit expression for the perturbed stress field, we consider the
following ansatz for the displacement field uε:

uε(x) = u(x) + wε(x/ε) + ũε(x), (73)

where wε is such that it decays to zero at the infinity, i.e., wε → 0 at ∞. Then, the mechanical
stress satisfies the identity

σε(uε) = γMε C∇us + γMε C∇ws
ε + γMε C∇ũsε . (74)

Moreover, by introducing the term −Qε(θ) at both sides of the above expression,
the stress field associated to the perturbed domain Sε(uε, θ) admits the following asymptotic
expansion

Sε(uε, θ) = γMε σ(u) + σε(wε) + σε(ũε)− γMε γ
C
ε Q(θ) , (75)

where σε(wε) is the solution of the exterior problem
div(σε(wε)) = 0 in R2

σε(wε) = γMε C∇ws
ε

σε(wε) → 0 at ∞
[[σε(wε)Kn = −(1− γM)σ(u(x̂))n+ (1− γMγC)Q(θ(x̂))n on ∂Bε

, (76)

and the residue ũε satisfies the equation

div(σε(ũε)) = 0 in Ω\Bε

div(σε(ũε)) = (1− γC)γMCB∇θ in Bε

σε(ũε) = γMε C∇ũsε
ũε = −wε on ∂ΓD

σε(ũε) = −σε(wε) on ∂ΓN

[[σε(ũε)Kn = ε(1− γM)(∇σ(u(ζ))n)n− ε(1− γMγC)(∇Q(θ(ξ))n)n on ∂Bε

,

(77)
which has the following estimate ∥ũε∥H1(Ω;R2) = o(ε). Moreover, the points ζ and ξ in (77)
belong to the interval (x, x̂).

By considering a polar system of coordinates (r, ϕ) centered at point x̂ (center of the
inclusion Bε) and aligned with the principal directions of the tensor S(u, θ) associated to the
original domain Ω, the components of the tensor σε(wε) are given by:



• Exterior solution (r ≥ ε)

σε(wε)
rr = − 1− γM

1 + aγM
ε2

r2

(
σ1 + σ2

2

)
− 1− γM

1 + bγM
ε2

r2

(
4− 3

ε2

r2

)(
σ1 − σ2

2

)
cos 2ϕ

+
1− γMγC

1 + aγM
ε2

r2

(
Q1 +Q2

2

)
, (78)

σε(wε)
ϕϕ =

1− γM

1 + aγM
ε2

r2

(
σ1 + σ2

2

)
− 3

1− γM

1 + bγM
ε4

r4

(
σ1 − σ2

2

)
cos 2ϕ

− 1− γMγC

1 + aγM
ε2

r2

(
Q1 +Q2

2

)
, (79)

σε(wε)
ϕr = − 1− γM

1 + bγM
ε2

r2

(
2− 3

ε2

r2

)(
σ1 − σ2

2

)
sin 2ϕ. (80)

• Interior solution (0 < r < ε)

σε(wε)
rr =

aγM(1− γM)

1 + aγM

(
σ1 + σ2

2

)
+
bγM(1− γM)

1 + bγM

(
σ1 − σ2

2

)
cos 2ϕ

− aγM(1− γMγC)

1 + aγM

(
Q1 +Q2

2

)
, (81)

σε(wε)
ϕϕ =

aγM(1− γM)

1 + aγM

(
σ1 + σ2

2

)
− bγM(1− γM)

1 + bγM

(
σ1 − σ2

2

)
cos 2ϕ

− aγM(1− γMγC)

1 + aγM

(
Q1 +Q2

2

)
, (82)

σε(wε)
ϕr = −bγ

M(1− γM)

1 + bγM

(
σ1 − σ2

2

)
sin 2ϕ . (83)

where σ1,2 and Q1,2 are, respectively, the principal stress associated to the tensor σ(u) and
Q(θ) of the unperturbed domain Ω, evaluated at the point x̂ ∈ Ω. Moreover, the constants a
and b in (78) to (83) depend only on Poisson’s ratio ν of the matrix, and are given by

a =
1 + ν

1− ν
and b =

3− ν

1 + ν
. (84)

Finally, using the asymptotic expansions presented in (78) to (83), we have that the
derivative J̇χε is given by the following expression:

J̇χε(uε, θ) = −πε
E

(
1− γM

1 + bγM

)[
4σ(u) · σ(u) + γM (b− 2a)− 1

1 + aγM
(trσ(u))2

]
− πε

2E

(
1− γMγC

1 + aγM

)[
(1− γMγC)(1 + ν)(trQ(θ))2 − 4trσ(u)trQ(θ)

]
+o(ε), (85)

where tr(·) denotes the trace operator of tensor (·).



3.2. Case γM = 1 and γC = 1

In this case the restriction γM = 1 and γC = 1 is introduced in expression (44), then
the derivative of the shape functional Jχε(uε, θε) is given by:

J̇χε(uε, θε) =

∫
∂Bε

J(qε(θε) · ∇φε)I − 2qε(θε)⊗s ∇φεKn · n+ E(ε), (86)

where the term E(ε) is given by

E(ε) = −
∫
Ω

Qε(θ
′
ε) · ∇(uε − u)s. (87)

The temperature field θε associated to the perturbed problem admits the following
asymptotic expansion:

θε(x) = θ(x) + vε(x/ε) + θ̃ε(x), (88)

where vε is the solution of the exterior problem
div(qε(vε)) = 0 in R2

qε(vε) = −γTε K∇vε
vε → 0 at ∞

[[vεK = 0 on ∂Bε

[[qε(vε)K · n = −(1− γT )∇θ(x̂) · n on ∂Bε

, (89)

and the residue θ̃ε must be satisfies the following equation:

div(qε(θ̃ε)) = 0 in Ω

qε(θ̃ε) = −γTε K∇θ̃ε
θ̃ε = −vε on ΓDT

qε(θ̃ε) · n = −qε(vε) · n on ΓNT

[[qε(θ̃ε)K · n = ε(1− γT )(∇q(θ(ϑ))n) · n on ∂Bε

, (90)

which has the following estimate ∥θ̃ε∥H1(Ω) = o(ε). Moreover, the point ϑ in (90) belongs to
the interval (x, x̂). In addition, the solution vε to the exterior problem can be explicitly written
as:

• Exterior solution (r ≥ ε)

vε(x/ε) =
1− γT

1 + γT
ε2

∥x− x̂∥2
∇θ(x̂) · (x− x̂). (91)

• Interior solution (0 < r < ε)

vε(x/ε) =
1− γT

1 + γT
∇θ(x̂) · (x− x̂). (92)

On the other hand, the field φε – solution of the auxiliary problem (30) – admits the
following asymptotic expansion

φε(x) = φ(x) + pε(x/ε) + φ̃ε(x), (93)



where pε is the solution of the exterior problem
div(qε(pε)) = 0 in R2

qε(pε) = −γTε K∇pε
pε → 0 at ∞

[[pεK = 0 on ∂Bε

[[qε(pε)K · n = −(1− γT )∇φ(x̂) · n on ∂Bε

, (94)

and the residue φ̃ε must be satisfies the following equation:

div(qε(φ̃ε)) = 0 in Ω \Bε

div(qε(φ̃ε)) = −(1− γT )CB · ∇us in Bε

qε(φ̃ε) = −γTε K∇φ̃ε

φ̃ε = −pε on ΓDT

qε(φ̃ε) · n = −qε(pε) on ΓNT

[[qε(φ̃ε)K · n = ε(1− γT )(∇q(φ(ϱ))n) · n on ∂Bε

, (95)

which has the following estimate ∥φ̃ε∥H1(Ω) = o(ε). Moreover, the point ϱ in (95) belongs
to the interval (x, x̂). In addition, the solution φε to the exterior problem can be explicitly
written as:

• Exterior solution (r ≥ ε)

pε(x/ε) =
1− γT

1 + γT
ε2

∥x− x̂∥2
∇φ(x̂) · (x− x̂). (96)

• Interior solution (0 < r < ε)

pε(x/ε) =
1− γT

1 + γT
∇φ(x̂) · (x− x̂). (97)

Finally, using the asymptotic expansions presented in (91), (92), (96) and (97), and
recalling the estimate for (87); we have that the derivative of the functional Jχε(uε, θε) is
given by the following expression:

J̇χε(uε, θε) = −4πε
1− γT

1 + γT
∇θ · ∇φ+ o(ε). (98)

3.3. Topological Derivative

In order to calculate the topological derivative, we shall adopt the methodology devel-
oped in [17], whereby the topological derivative is obtained as

DT (x̂) = lim
ε→0

1

f ′(ε)
J̇χε(uε, θε), (99)

where the function f(ε) is the size of the perturbation, i.e. f(ε) = πε2 ⇒ f ′(ε) = 2πε.
Due to the linearity property of the shape functional with respect to the thermal prob-

lem (26), it is possible to write the topological derivative of the functional Jχε(uε, θε) based



on the results given in (85) and (98). Then, the final expression of the topological derivative
becomes a scalar function defined over the unperturbed domain Ω, that is

DT (x̂) = − 1

2E

(
1− γM

1 + bγM

)[
4σ(u) · σ(u) + γM(b− 2a)− 1

1 + aγM
(trσ(u))2

]
− 1

4E

(
1− γMγC

1 + aγM

)[
(1− γMγC)(1 + ν)(trQ(θ))2 − 4trσ(u)trQ(θ)

]
−2

1− γT

1 + γT
∇θ · ∇φ. (100)

Notice that the first term is classic in the topological asymptotic analysis for the elas-
ticity problem. The linearity property mentioned previously appears explicitly in the last term
of the above results, see term involving the contrast parameter γT . On the other hand, the non-
linear dependence of the problem with the thermo-elastic constitutive properties appears, also
explicitly, in the term with the contrast parameters γMγC . These two last terms represents the
contribution of the thermal problem to the elastic stress problem.

For study the sensitivity of the problem to the insertion of a hole in the domain, we
can take the limit of the (100) when the contrasts γM , γC and γT tend simultaneously to 0.
Then, for this particular case, the topological derivative as the form

DT (x̂)|hole = − 1

2E

[
4σ(u) · σ(u)− (trσ(u))2

]
−trQ(θ)

4E
[(1+ν)trQ(θ)−4trσ(u)]−2∇θ·∇φ.

(101)

4. Final comments

The topological derivative in its closed form for the total potential mechanical energy
associated to a thermo-mechanical semi-coupled system, when a circular inclusion is intro-
duced at an arbitrary point of the domain, has been derived. In particular, the linear elasticity
system (modeled by the Navier equation) coupled with the steady-state heat conduction prob-
lem (modeled by the Laplace equation) has been considered. The mechanical coupling term
comes out from the thermal stress induced by the temperature field. Since this term is non-
local, a non-standard adjoint state has been introduced, which allowed to obtain a closed form
for the topological derivative. In addition, a full mathematical justification for the derived for-
mulas and precise estimates for the remainders of the topological asymptotic expansion have
been provided. Finally, we remark that this information can be potentially used in a number
of applications of practical interest such as multi-physic topology design of structures under
mechanical and/or thermal loads.
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