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Abstract. Traditionally Hermite finite element methods have been used to solve PDE’s of

order higher than two. The goal of this work is to show that this technique is very useful for

solving second order PDE’s too, whenever the direct determination of quantities expressed

in terms of the derivatives of the solution, such as curvatures and fluxes is necessary. Em-

phasis will be given to applications of these discretization methods in the framework of flows

on curved manifolds and flows in highly heterogeneous porous media. Corresponding error

analyses and illustrative numerical results are given.
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1. Introduction

Hermite finite element methods have mostly been used to solve fourth order elliptic or

parabolic equations, modelling a certain number of problems in Solid and Fluid Mechanics.

Among well-known applications in this framework lie plate bending modeling and the incom-

pressible Navier-Stokes equations in terms of the stream function or the vector potential. This

is because this kind of methods using derivatives as degrees of freedom, seems quite natural

to ensure an acceptable conforming representation of the solution. The fact that second order

problems do not require the use of this kind of approach to attain the same goal, is probably

the reason why the use of Hermite finite element methods in this context has been rather over-

looked so far. Instead, whenever the direct representation of derivatives, fluxes or quantities

alike is required, most authors consider the use of natural mixed formulations, in which the

main unknown function and such related quantities are the multiple unknown fields of a sys-

tem equivalent to the original equation. However it is well-known that, if this mixed problem

is recast in the equivalent variational form of the standard Galerkin type, the stability issue

of its discrete finite element analogue becomes critical. This limits the choice of perform-

ing methods to solve the system numerically. For this reason alternative non standard mixed

formulations were proposed since the eighties, most known as stabilized mixed formulations.

These usually involve added terms to the standard Galerkin formulation depending on stabi-

lizing parameters, whose control is not always so obvious or easy to deal with in practical

situations.
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The main purpose of this work is to show that Hermite interpolation provides a valid alter-

native to represent not only the solution itself, but also related quantities expressed in terms

of its partial derivatives, without any need to consider stabilizing formulations. This is be-

cause in general the resulting finite element method is to be used in connection with the

natural Galerkin formulation as a conforming method. This means that the methods inherits

the stability properties of the continuous problem, and hence its convergence can be easily

established. Moreover its implementation can be achieved in a straightforward manner.

More specifically we consider here two applications of Hermite finite element methods. The

first one is the simulation of flows in porous media taking as a model Darcy’s law. Refer-

ring to [1] for the function space notations, in its simplest form this model corresponds to the

following equation:

Find u ∈ H1

0 (Ω) such that −∇ · [K∇u] = f in Ω (1)

where Ω is a bounded domain of <N , N = 2, 3, f is given in L2(Ω) and K is a tensor assumed

to be symmetric and positive definite but not necessarily constant.

We also show in this work that the Hermite interpolation is particularly well-suited

to represent the velocity field of a viscous incompressible fluid in the framework of a finite

element solution. Again for the sake of conciseness we study more particularly the case of

the stationary Stokes system, namely, the problem of finding a velocity field u ∈ H1(Ω) and

a pressure p ∈ L2
0(Ω) such that,







−µ∆u + ∇p = f in Ω
∇ · u = 0 in Ω
u = g on ∂Ω.

(2)

where µ is the fluid’s kinematic viscosity, ∂Ω is the boundary of the flow domain Ω, f is a

given force field in L2(Ω), and g is a prescribed velocity on the boundary satisfying the zero

global flux condition on ∂Ω. The notation L2
0(Ω) is used to represent the subspace of L2(Ω)

of functions having zero integral in Ω.

2. Methods for flow in porous media

The first method introduced in [9] for three-dimensional problems and in [10] for

two-dimensional ones, referred to here as HP2, is based on a Hermite representation of the

unknown function u with complete quadratics defined in each element of a triangular or tetra-

hedral mesh. The second method based on a Hermite representation of u by means of incom-

plete quadratics in each N-simplex, was introduced in [11]. It can be viewed as a modification

of the lowest order Raviart-Thomas mixed element [8] known as RT0, leading to better con-

vergence properties, though at equivalent cost. We refer to it hereafter as HRT0.

Convergence results were derived for the Hermite methods under study, in connection with

relevant model problems.

The presentation of the Hermite finite element methods is followed by a series of compara-

tive numerical studies, in which their performance is confronted with the one of several well-

established techniques to solve the diffusion equation and also the time-dependent convection-



M −→ 8 16 32

HRT0 −→ 0.53309 × 10−3 0.13400 × 10−3 0.33512 × 10−4

HP2 −→ 0.53434 × 10−3 0.14086 × 10−3 0.35914 × 10−4

RT0 −→ 0.95306 × 10−2 0.47632 × 10−2 0.23813 × 10−2

Table 1. Absolute errors of the solution measured in the L2-norm for the test-problem.

diffusion-reaction equation. More precisely we compare in different situations the Hermite

elements with the method RT0 itself, the mixed least-squares formulation with linear finite

element interpolations of both the unknown and its flux and an explicit scheme to deal with

convection-diffusion equations studied in [2]. In most cases the Hermite finite elements pro-

vide valuable and reliable alternatives to cope with different critical situations encountered in

practical applications. Among them we consider abrupt changes of a permeability tensor K

for flows in porous media, or yet very large gradients occurring in boundary layers in the case

of convection-diffusion processes at a high Péclet number.

Just to illustrate the results to be presented, we show the evolution of the errors of the approx-

imate solution of the above stationary diffusion equation obtained with the methods HRT0,

HP2, and RT0, for the following data: K is the identity tensor, Ω is the square (−1, 1)×(−1, 1)

and f(x1, x2) = 1−(x2
1+x2

2)/2. The exact solution is given by u(x1, x2) = (1−x2
1)(1−x2

2)/4.

We solved the problem numerically using uniform meshes generated by first subdividing the

computational domain into M2 equal squares and then each one of these squares into two

triangles by means of their diagonals parallel to the line x1 = x2. In Table 1 we display the

absolute errors for increasing values of M , of the approximate solution obtained both with the

Hermite methods HP2 and HRT0 and with the RT0 element, in the norm of L2(Ω).

As one can observe, the approximations obtained with both Hermite methods con-

verge quadratically in the L2-norm as predicted by the convergence analysis, whereas the

ones obtained with RT0 converge linearly.

3. Zienkiewicz-type N-simplex for incompressible flow

First we introduce some notations that we use in this Section: (·, ·) is the standard in-

ner product of L2(Ω) in scalar, vector or tensor version, with associated norm ‖ · ‖, and (·, ·)D

is the standard inner product of L2(D) with associated norm ‖ · ‖D, for any proper subset D

of Ω. ‖ · ‖r,D is the standard norm of Sobolev space Hr(D) for r ∈ < and | · |m,D represents

the standard semi-norm of Sobolev space Hm(D), for m ∈ IN , D being a subset of Ω. We

drop the subscript D whenever D is Ω itself.



3.1. Finite element description

To begin with we specify the Hermite finite elements we use to represent the velocity

field locally, that is in every N-simplex T of a mesh, N = 2, 3. Let Si be the vertices of T ,

i = 1, · · · , N + 1, and G its barycenter. We denote by λi the barycentric coordinate of T

associated with Si and set hij = length[SiSj].

In the case N = 2 the elements are nothing but the well-known Zienkiewicz triangle

in its two versions referred to here as Z1 and Z2, that is, with either incomplete or complete

cubics, as defined in [13]. Just for better guidance we recall below that the nine degrees of

freedom of Z1 are the function values and the first order derivatives along the edges of T at

its three vertices. For a convenient description of this Hermite finite element, the derivative

along a given edge at a vertex belonging to it is always taken in the direction leading from this

vertex to the other end of the edge under consideration. Denoting the bubble function of T by

ϕ = λ1λ2λ3 and Pm(T ) being the space of functions of degree less than or equal to m defined

in T , the subspace of P3(T ) associated with Z1 is the one spanned by the set of nine linearly

independent functions [{ζi}
3
i=1 ∪ {ζij}

3
i6=j=1], where ζi = λ3

i − ϕ and ζij = λ2
i λj + ϕ/2. The

nine canonical basis functions corresponding to the above specified degrees of freedom are

given in [13]. In the case of Z2 the above set of degrees of freedom is augmented with the

function value at G.

The extension to tetrahedra of the Zienkiewicz triangle we consider in this work is

described below:

Denoting by ϕijk the function λiλjλk the bubble function of face Fl of T , where the

integers i, j, k, l ∈ {1, 2, 3, 4} are assumed to be distinct, the analog of Z1 still denoted this

way is spanned by the set of sixteen linearly independent functions [{ζi}
4
i=1 ∪ {ζij}

4
i6=j=1],

where ζi = λ3
i −ϕijk −ϕijl−ϕikl and ζij = λ2

i λj +(ϕijk +ϕijl)/2. The set of sixteen degrees

of freedom defining Z1 in connection with the above basis are the function values at Si and

the first order derivatives at Si along the three edges converging to this point, for i = 1, 2, 3, 4.

Using the same notation for the analog of Z2, this element is based on the space P3(T ). The

dimension of this space being twenty, the set of degrees of freedom defining Z2 in connection

with it are the function values at Si and at the barycenter Gi of the face Fi opposite to Si,

together with the first order derivatives at Si along the three edges converging to this point,

for i = 1, 2, 3, 4.

The approximation properties of the above two- and three- dimensional elements were

studied in [4] and [12] respectively. Let us briefly recall them.

First of all it is an easy matter to verify that the subspaces of P3(T ) for elements Z1 contain

the space P2(T ). Therefore if u is a function in H l+2(T ), we can assert that its Zl-interpolate

in T πl
T (u) satisfies for suitable constants C l

m independent of T and u,

‖ u− πl
T (u) ‖m,T≤ C l

mhl+2−m|u|l+2,T m = 0, 1, . . . , l + 2.

3.2. Solution method

For the sake of simplicity we assume that Ω is a polygon if N = 2 and a polyhedron

if N = 3. Let P be a quasi-uniform family of partitions Th of Ω into triangles or tetrahedra,



satisfying the usual compatibility conditions for finite element meshes. Let h denote the max-

imum edge length of the elements in Th.

In all the sequel the letter C combined or not with other symbols represents constants

independent of h. Also throughout this work gh stands for piecewise cubic Hermite interpo-

lates of g on ∂Ω, assumed henceforth to belong to H5/2(∂Ω). More specifically if N = 2 we

mean the classical cubic interpolate at the vertices of Th belonging to ∂Ω, continuously differ-

entiable along every straight portion of ∂Ω, provided g ∈ H5/2(∂Ω). If N = 3 we define gh

to be the cubic Hermite interpolate of g on every face contained in ∂Ω of a tetrahedron of Th,

using the degrees of freedom of the Zienkiewicz triangle, either with complete or incomplete

cubics, according to the method being studied. Assuming that f ∈ Hl+1(T ) in every T ∈ Th,

for l equal to 1 or 2, we will also work with approximations f l
h of f in every element of Th,

satisfying ‖ f − f l
h ‖T≤ Clh

l+1|f |l+1,T ∀T ∈ Th.

The problems to approximate (2) considered in this work are of the same kind as those

proposed by Hughes-Franca-Balestra [7] and Douglas-Wang [5]. However in contrast to those

works, we employ different mathematical tools in our convergence analysis, which simplify

it significantly.

The solution methods to be studied use the pressure space Ql
h, for l = 1, 2 respectively, de-

fined as follows:

Ql
h := {q / q ∈ C0(Ω̄) ∩ L2

0(Ω), q/T ∈ Pl(T ) ∀T ∈ Th}

We associate with Ql
h spaces Vl

h := [V l
h]2 for l = 1, 2 to represent the velocity, both

being constructed upon the plate Zienkiewicz element Zl for N = 2 [13] or with its three-

dimensional version defined above. This means that V l
h is a space of continuous functions of

degree less than or equal to three in each element of Th, whose gradient is also continuous

at their vertices. While on the one hand V 2
h consists of piecewise complete cubics in every

N-simplex of Th, on the other hand in every element T a function of V 1
h is spanned by all

cubic functions, but the bubble functions, either of T itself if it is triangle or of the faces of T

if it is a tetrahedron.

Let us denote by V l
h0 the space V l

h ∩ H1
0 (Ω), and introduce a broken L2(Ω)-inner

product denoted by (·, ·)h, with associated norm ‖ · ‖h, defined as follows for functions u and

v defined only in the interior of the elements of Th:

(u, v)h =
∑

T∈Th

(u, v)T ; ‖ v ‖h=
√

(v, v)h.

Now given a numerical parameter δ > 0 to be specified later on, we consider the

following problems to approximate (2), where l equals 1 or 2:















Find ul
h ∈ Vl

h and pl
h ∈ Ql

h such that ∀v ∈ Vl
h0 and ∀q ∈ Ql

h

δ(µ∆ul
h −∇ pl

h, µ∆v −∇ q)h + µ(∇ ul
h,∇ v)

−(pl
h,∇ · v) + (∇ · ul

h, q) = −δ(f l
h, µ∆v −∇q)h + (f l

h,v)
ul

h = gh on ∂Ω.

(3)



3.3. A priori error estimates

We have proved in [3] the following a priori error estimate for problem (3):

Assume that f ∈ Hl+1(Ω), u ∈ Hl+2(Ω), p ∈ H l+1(Ω) and g/Γi
∈ Hl+2(Γi) for

i = 1, 2, . . . , m, where the Γi’s are m disjoint straight edges or plane faces whose union

is ∂Ω. If f l
h is chosen such that ‖ f − f l

h ‖≤ CN |f |l+1, and we take δ = h2, then there exist

constants Cl such that the approximate solution of (2) obtained by solving problem (3) satisfy:















‖ ∇(u− ul
h) ‖ +h ‖ ∆(u− ul

h) ‖h + ‖ p − pl
h ‖ +h ‖ ∇(p − pl

h) ‖

≤ Clh
l+1



|f |l+1 + |u|l+2 + |p|l+1 +

(

m
∑

i=1

‖ g ‖2

l+2,Γi

)1/2


 .
(4)

3.4. Miscelaneous remarks

It seems important to stress some merits of the Hermite elements studied in this paper.

First of all we can state that they have an a priori advantage over Lagrange elements of the

same order in terms of cost. More specifically, we can compare our second order method

with the Taylor-Hood element [6] based on a classical Lagrange quadratic representation of

the velocity and a continuous piecewise linear representation of the pressure, which is also a

second order element in the H1×L2-norm. A simple count shows that in the two-dimensional

case, on the same mesh, the ratio between the number of velocity degrees of freedom of our

second order element and the one of the Taylor-Hood element is roughly 3/4. However in the

three-dimensional case this ratio becomes even more favorable for it is reduced to about one

half. Concerning our third order elements a fair comparison is to be made with the Lagrange

cubics for the velocity and quadratics for the pressure. In this case the above specified ratios

are ca. 0.6 in both two- and three-dimensions. Notice however that in the two-dimensional

case we may use inner node static condensation for both third order elements being compared,

and in this case the velocity degree of freedom ratio is reduced to a little more than 0.4.

Another feature of Hermite pseudo-C1 elements like those we studied here, is the fact

that second order derivatives can be computed element by element within acceptable accu-

racy, directly from the numerical velocity field. This can be achieved by first interpolating the

velocity gradients continuously at the vertices of the mesh, using continuous piecewise linear

functions, which can be differentiated in each element.

The Zienkiewicz triangle has been used by the authors to simulate viscous incompress-

ible flow problems. Computational evaluations comparing the performance of their approach

with well-established methods of the same order such as Taylor-Hood’s [6] will be shown.

Moreover encouraging experiments indicated that, even for δ = 0, the Zienkiewicz’ represen-

tation of the velocity yields converging and good quality numerical results.

In view of this the authors intend to further exploit these Hermite methods in the near

future, in the simulation of flow on curved manifolds, in which an accurate determination of

velocity derivatives is a must.
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