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Abstract. This paper presents a new formulation of the Boundary Element Method to visco-

plastic problems in a two-dimensional analysis. Visco-plastic stresses and strains are ob-

tained until the visco-plastic strain rate reaches the steady state condition. A perfect visco-

plastic analysis is also carried out in linear strain hardening (H’=0) materials. Part of the 

domain, the part that is susceptible to yield is discretized into quadratic, quadrilateral con-

tinuous cells. The loads are used to demonstrate time effects in the analysis carried out. Nu-

merical results are compared with solution obtained from the Finite Element Method (FEM). 
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1. INTRODUCTION 

In the case of  problems with high temperature gradients where inelastic strain rates are proportional to 

high power of stress, regions with strain rate concentration provide nearly all the inelastic contribution 

to the stress rates [1]. The main reason for the success of the BEM (boundary element method) in any 

problem is the ability to model high stress concentration fields accurately and efficiently. A compre-

hensive review of the historic development of the BEM for inelasticity can be found in the work of 

Aliabadi [2]. An alternative methodology based on the use of the Kelvin fundamental solutions was 

presented in [3], [4] and[5]. Recently, the DBEM (dual boundary element method) has been developed 

as a very effective numerical tool to model general fracture problems with numerous applications to 

linear elastic and non-elastic fracture problems [6]. 

 

BEM has been applied to elastoplastic problems since the early seventies with the work of 

Swedlow and Cruse [7] and Richardella [8] who implemented the von Mises criterion for 2D 

problems using piecewise constant interpolation for the plastic strains. Later, Telles and 

Brebbia [9] and others had, by the beginning of the eighties, developed and implemented 

BEM formulations for 2D and 3D inelastic, viscoplastic and elastoplastic problems (see [10] 

for further details). 

 

In recent years, Aliabadi and co-workers [11] have introduced a new generation of boundary 

element method for solution of fracture mechanics problems. The method which was original-

ly proposed for linear elastic problems[12], [13] and [14] has since been extended to many 

other fields including problems involving nonlinear material and geometric behavior [15]. 
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In the present paper applications of the DBEM to visco-plasticity are presented. The speci-

mens analyzed are three different plates. The boundary was discretized with quadratic contin-

uous and semi-discontinuous elements, but the domain with nine nodes internal cells. In 

visco-plasticity only the part susceptible to yielding was discretized. The von Mises yield cri-

terion was applied so the material used for these sort of analysis were metals.  

 
2. VISCO-PLASTICITY  THEORY 

 

In order to explain the theory of visco-plasticity it is convenient to analyze the one-

dimensional rheological model see ¡Error! No se encuentra el origen de la referencia. 

for more details. A uniaxial yield stress     governs the onset of the visco-plastic deformation. 

Once visco-plasticty begins the stress level for continuing visco-plastic flow depends on the 

strain hardening characteristics of the material (    ).  
After applying Hook’s law and boundary conditions, it is possible to obtain: 

 

                     (1) 

 

Expression (1) is the visco-plastic strain rate in terms of the stresses for the uniaxial case in 

which (.) denotes the derivative with respect to the time,  . 
From the visco-plastic model the strain response with time can be represented by two cases. 

The first case is the perfectly visco-plastic material in which     . In this case the visco-

plastic deformation continues at a constant strain rate. 

The second case is the linear hardening case (    ), where after the initial elastic response, 

the visco-plastic strain rate is exponential and reaches the steady state condition when this 

value becomes zero. On the other hand, for a perfectly visco-plastic material there is always 

an imbalance of stress       in the system which does not reduce and consequently the 

steady state condition can not be achieved. 

3 BOUNDARY INTEGRAL EQUATIONS 

The boundary conditions in terms of rates are; for displacements ii uu    and for tractions 

ii tt   and the equation representing the traction boundary conditions is, 
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Equation (2) is for three dimensional problems. In order to work with two dimensional prob-

lems for the plane stress state it is necessary to remove the strain in z direction, so 033 
a . 

 

 The solution of the equation (2) leads to the following boundary Integral representation of the 

boundary displacements when the initial strain approach for the solution of inelastic prob-

lems is used 
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In a similar way the boundary integral equation of the internal stresses is expressed by 
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Where  is a Cauchy integral, ijkD  and ijkS are terms containing the derivative of the dis-

placements and tractions, ijf is the free term and ij  is the fundamental solution for the do-

main. 

3.1 Boundary Integral Formulation for Visco-plasticity 

    In the visco-plastic analysis like plasticity, the initial strain approach will be applied and 

the integral equation to calculate the displacement on the boundary is basically the same, the 

only difference is that the plastic strain is replaced with the visco-plastic strain rate. So the 

displacement equation can be rewritten as: 
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Where iu , it  and ij
vp  are the displacement, traction and visco-plastic strain rates respective-

ly. ijij ut ',' and ij' are the displacement, traction and third order fundamental solutions, respec-

tively, which are functions of the positions of the collocation point x′ and the field point x 

which belong to the boundary, or the internal point z and the material properties. 

 

In order to illustrate the results obtained with the Boundary Element Method three different 

plates were analyzed as is shown below.  

 

4 EXAMPLES  

 

 

4.1. The Notched plate  

 

An aluminum plate with a notch and geometry as illustrated in figure 1, it is considered in this 

case. The plate is constrained in X and Y direction on the edge of the notch and it is assumed 

to have the following material properties: Young’s modulus, E =70000 MPa; Poisson’s ratio  

ν= 0.2; Applied stress  a =140 Mpa., y  = 243 Mpa. with γ=0.01 and t = 0.01 s 
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Figure 1 Geometry in a plate with a notch 

 

Figure 2.   Stresses in Y direction for a notched plate.
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Figure 3.  Displacements in Y direction for a notched plate. 

 

 

4.2 Plate with a hole 

 

A perforated tension specimen with dimensions and geometry as illustrated in figure 4, it is 

considered in this example. The plate is constrained in X and Y direction on the edge and was 

subjected to the same tensile load, material properties and constants as the example 4.1. 
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Figure 4 Geometry for a plate with a hole 

 

Figure 5 Stresses in the center of the plate in Y direction from the center of the hole. 

5 CONCLUSIONS 

In this paper the BEM was applied to the analysis of non-elastic time dependent problems. It 

has been demonstrated here that this method is an accurate and efficient method for analyzing 

and modeling visco-plastic problems. The visco-plastic stresses and displacements obtained 

of the Boundary Element Method are in good agreement with the ones calculated in the Finite 

Element Method.  The increment of time plays a very important role for the accuracy of the 

results, if we make a good selection the efficiency of the program and the results will be guar-

anteed.  The visco-plastic behaviour is represented by a plastic strain field over a region, sus-

ceptible to yield, discretized with quadrilateral quadratic continuous and discontinuous inter-

nal cells.  
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