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Abstract. The numerical simulation of problems involving contact with friction between de-

formable and rigid bodies is highly dependent of the predicted contact conditions, which are 

continuously changing during the process. In the case of sheet metal forming processes, the 

forming tools are assumed to behave rigidly, and thus only the definition of the outer surfaces 

is required for the simulation. This paper presents the contact search algorithms currently 

implemented in DD3IMP in-house finite element solver, which has been continuously devel-

oped and optimized to simulate sheet metal forming processes. Nowadays, in DD3IMP it is 

possible to describe the forming tools either using Bézier or Nagata patches, for which dis-

tinct contact search algorithms are adopted. The results show that the accuracy and computa-

tion cost of both algorithms is similar. The Nagata patch description is more versatile than 

Bézier since it can be extracted using any combination of CAD and mesh generation software. 

Besides, the numerical results accuracy is almost independent of the polyhedral mesh gener-

ated. 
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1. INTRODUCTION 

Nowadays, the Finite Element Method (FEM) is commonly used to simulate problems 

involving contact with friction between rigid and deformable bodies. One of the most im-

portant topics for attaining accurate FEM results is the treatment of the contact with friction 

conditions during the process [11]. Most of FEM codes resort to polyhedral meshes for the 

rigid body surface description due to their wide application, ability to describe complex ge-

ometries and simplicity. However, this last characteristic can lead to large errors in the geo-

metrical description and convergence problems in the contact treatment schemes, as well as to 

an artificial roughness of the surfaces. It is known that smoothing the discretized surfaces can 

help to obtain optimal and reliable convergence in the numerical simulation procedure, par-

ticularly in full implicit FEM codes [4]. However, the smoothing methods typically proposed 
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contribute to higher computational cost than the polyhedral mesh description. In this context, 

a new type of parametric surface was recently proposed by Nagata, which allows smoothing 

any polyhedral mesh with biquadratic Nagata patches, using only the position and normal 

vectors at its vertices. Previous studies show that Nagata patch enables the creation of rigid 

body models much more accurate, both in terms of shape and normal vectors, than those of 

conventional polyhedral representations [2,6], allowing a more accurate and numerically sta-

ble simulation of a wide range of contact with friction processes. 

DD3IMP is an in-house finite element solver that has been continuously developed 

and optimized to simulate sheet metal forming processes [10]. Its main characteristic is the 

use of a fully implicit algorithm of Newton-Raphson type to solve, within a single iterative 

loop, the non-linearities related with the frictional contact problem and the elastoplastic be-

havior of the deformable body [5]. The forming tools are assumed to behave rigidly, and thus 

only the definition of the outer surfaces is needed for the simulation. Nowadays, in DD3IMP 

it is possible to describe the forming tools either using Bézier patches or using Nagata patch-

es, defined based on polyhedral mesh models of the outer surfaces. In either case, the mas-

ter/slave contact strategy combined with the classic node-to-segment algorithm is employed 

in the code, to enforce the non-penetration condition between the sheet and the tools.  

This paper describes the global and local contact search algorithms adopted for both 

Bézier and Nagata patches. The numerical simulation of a cross tool deep drawing process 

was selected to validate the new developed algorithms. Hence, section 2 comprises the geo-

metric description of Bézier and Nagata patches, as well the mathematical equivalency be-

tween Nagata and biquadratic Bézier patches. The contact search algorithms implemented in 

DD3IMP are described in section 3, being the local search similar for both types of patches. 

The accuracy and computational performance of the algorithms is evaluated in section 4 

through the numerical simulation of a cross tool shape deep drawing benchmark. 

2. TOOL SURFACE DESCRIPTIONS 

The numerical simulation of problems involving contact with friction between a de-

formable body and several rigid bodies requires significant care concerning the description of 

the arbitrarily shaped surfaces that define the rigid bodies. Several schemes have been sug-

gested for tool surface (rigid bodies) description in sheet metal forming analysis, which can 

be classified in three groups: (i) the analytical function scheme; (ii) the finite element mesh 

scheme, and (iii) the parametric patch scheme.  

The analytical function scheme is very useful to describe simple tool surfaces. Never-

theless its extension for describing complex tool surfaces is limited [18]. In the finite element 

mesh scheme, the tool surfaces are divided into finite elements which typically present an 

irregular distribution, leading to computational difficulties in contact searching [14]. Moreo-

ver, the elements are usually bilinear which leads to an inaccurate surface description, as well 

as to an artificial roughness. Nevertheless, currently this method is the most used due to its 

wide application, ability to describe complex geometries and simplicity. The parametric patch 

scheme describes the tool surfaces using an assembly of patches. The parametric surfaces 

typically employed were originally developed for CAD applications, such as NURBS, Bézier 



 

 

and Gregory patch [15,17,12]. This approach allows using directly the information generate 

by any CAD system to define the surface geometry. Nevertheless, sometimes this information 

contains inaccuracies such as geometric discontinuities between patches and inconsistent sur-

face orientations. Moreover, the use of high order polynomials in surface definition involves 

complex contact search algorithms, leading to high computation cost of the local contact 

search algorithm [2]. 

The scheme adopted to define the tool surfaces dictates the algorithm employed to 

identify, for each node of the deformable body candidate to establish contact, the reference 

position on the rigid body where contact can be established, called contact search algorithm 

[14]. In implicit finite element formulations of contact problems, a special attention is re-

quired in order to avoid severe convergence problems due to sudden changes of the normal 

vector to the tool surface [4]. These problems can be overcome using a smoothing contact 

surface, reproduced through the parametric patch scheme. Additionally, smoothing method 

provides more accurate approximations of the real shape than the ones obtained with the pol-

yhedral mesh method, particularly in the case of coarse meshes. Therefore, DD3IMP solver 

adopts a parametric patch description of the tools. 

Typically, the sheet metal forming processes involve several forming tools, presenting 

dissimilar geometries. Therefore, in order to perform the numerical simulation of these pro-

cesses, each tool must be defined by a set of patches. The necessary number of patches for the 

proper description of each tool increases with its complexity. Currently, in DD3IMP it is pos-

sible to describe the forming tools either using parametric Bézier or Nagata patches. Hence, 

these two types of parametric patches are described in detail in the next subsections. 

2.1. Bézier patches 

The geometric definition of the surfaces composing the forming tools is usually per-

formed with the aid of CAD software packages. The information about the Bézier patches can 

be extracted directly from some CAD packages using the standard STEP file format. Howev-

er, this strategy involves some limitations due to the inherent simplicity of Bézier patches, 

particularly when applied to describe very complex geometries. Therefore, it is necessary to 

perform some operations on the CAD model, such as surfaces division, in order to attain a 

proper geometrical definition with patches presenting a reduced degree. 

The most widely used method in geometric modeling applications is the tensor product 

scheme, which is basically a bidirectional curve scheme [1,13]. Thus, a Bézier patch can be 

defined as the tensorial product of two Bézier curves, given by: 
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where ijP  are the position vector of the vertices of a polygonal control net, leading to a total 

of {( 1)( 1)}n m   control points, since the indices n  and m  present a variation equal to the 

number of polygon vertices less one, in the   and   directions, respectively. The , ( )i nB   

and , ( )j mB   are the Bernstein basis functions in the   and   parametric directions. The 



 

 

Bernstein polynomial of degree n  is defined by:  
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where the binomial coefficient is given explicitly by: 
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where !n  denotes the factorial of n . An important feature of Bézier patches is that its geome-

try does not change neither with the mathematical operations of translation nor with rotation. 

The translational/rotational of the surface corresponds to subject each control point to the 

same operation. Figure 1 presents both the polygonal control net and the Bézier patch, in or-

der to highlight the position of the control points that define the patch. 

 

 

 

(a) (b) 

Figure 1. Example of a quartic×cubic Bézier patch: (a) the control net; (b) the Bézier patch. 

 

Bézier patches can also be described using the monomial form, also called power basis 

form, which is given by: 
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where i  and j  are called the basis (or blending) functions and the coefficients of the power 

basis representation are evaluated using the control points coordinates, as follows: 

 ,ij ip pr rjM Nb P  (5) 

where the square matrices ipM  and rjN , defined with the aid of binomial coefficients previ-

ously defined in Equation (4), are described by: 
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Note that the definition imposes that 0ipM   for 0 i p   and 0rjN   for 0 r j  , which 

results in two upper triangular matrices. The main advantage of the monomial form is the fact 

that guarantees lower time for operations such as calculations of point coordinates or deriva-

tives. However, this form is numerically less stable, mainly for patches with high degree [1]. 

Thus, the monomial form presented in Equation (4) is the one used in DD3IMP solver since it 

is computational less expensive. Nevertheless, in order to avoid numerical instabilities, the 

maximum patch degree allowed is limited to six, in each parametric direction [9]. 

2.2. Nagata patches 

The Nagata patch is a quadratic parametric interpolator for polyhedral meshes. This 

method can be used as a mesh smoothing technique in order to reduce the sudden changes of 

the surface normal vector, which characterizes polyhedral meshes composed by bilinear ele-

ments [2]. The Nagata patch interpolation algorithm recovers the curvature of surfaces with 

good accuracy, using only the position and normal vectors of each vertex of the polyhedral 

model [6]. The strategy followed in DD3IMP solver to describe the forming tools with aid of 

Nagata patches comprises firstly in a discretization of the tool surfaces using any mesh gener-

ator. Note that the discretization of the tools can be achieved using either triangular or quadri-

lateral bilinear finite elements. Moreover, the required surface normal vectors in each node, of 

the tool discretization, are evaluated from the information available in the IGES file format, 

which was originally used in the mesh generation [8]. 

The Nagata patch is based on the interpolation of an edge using the following curve: 
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where   is the local coordinate of the curve. The position vector of each edge end point is 

given by 0x  and 1x , while its unit normal vectors are given by 0n  and 1n , respectively. The 

coefficient c , which adds the curvature to the edge is evaluated as: 
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where 0 1a  n n , is the cosine of the angle between the normal vectors and 0 1[ , ]n n  repre-

sents a matrix with the first column equal to vector 0n  and the second equal to vector 1n . The 

above formulation, described to an edge, can be extended to general polygonal patches, such 

as triangular and quadrilateral patches, assuring C
1
 continuity in the nodes and quasi-C

1
 in the 

edges between patches. 

In the case of a triangular patch, schematically presented in Figure 2 (a), its vertices 



 

 

have the position vectors 00x , 10x  and 11x , and normal vectors 00n , 10n  and 11n , respectively. 

The resulting interpolated surface is the triangular Nagata patch defined by the following 

quadratic polynomial: 

 2 2
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where the six coefficient vectors 
ijc  are calculated using only the position and normal vectors 

of the mesh vertices, as follows: 

 

00 00

10 10 00 1

01 11 10 1 3

11 3 1 2

20 1

02 2

,

,

,

,

,

,



  

   

  





c x

c x x c

c x x c c

c c c c

c c

c c

 (10) 

where 1c , 2c  and 3c  are the vectors defined by Equation (8) for the edges 00 10( , )x x , 10 11( , )x x  

and 00 11( , )x x , respectively. 

The quadrilateral patch, exemplified in Figure 2 (b), is interpolated in a similar way as 

the triangular patch. Consider that the patch has vertices with position vectors 00x , 10x , 11x  

and 01x  and normal vectors 00n , 10n , 11n  and 01n , respectively. The vertices do not need to 

be coplanar. Then, the quadrilateral Nagata patch is given by: 
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where the eight coefficient vectors 
ijc  are calculated using only the position and normal vec-

tors of the mesh vertices, as follows: 
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where 1c , 2c , 3c  and 4c  are the vectors defined by Equation (8) for the edges 00 10( , )x x , 

10 11( , )x x , 01 11( , )x x  and 00 01( , )x x , respectively. The above formulation can be extended for 

other polygonal patch types [6]. Nevertheless, triangular and quadrilateral elements are the 

most commonly used in mesh generators to describe surfaces. 

 



 

 

  
(a) (b) 

Figure 2. Nagata patch interpolation: (a) triangular patch; (b) quadrilateral patch. 

2.3. Equivalence between biquadratic Bézier and quadrilateral Nagata patches 

Since the quadrilateral Nagata patch is a quadratic degree surface in both parametric di-

rections and presents the same surface domain as a Bézier patch, it is possible to establish a 

mathematical equivalency between the biquadratic Bézier patch and the quadrilateral Nagata 

patch. This equivalence is performed considering the Bézier form, which uses control points 

in its definition. Thus, according to Equation (1), a biquadratic Bézier patch is given by: 
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where the Bernstein polynomials of degree two are defined using both Equation (2) and (3). 

The expansion of the sum in the above equation leads to the following polynomial: 
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In order to compare this equation with the one corresponding to the quadrilateral Nagata 

patch, presented in Equation (11), the arrangement of the sums was performed in the same 

way. Hence, matching each corresponding term of the two equations leads to a system of 

equations, which associates the Bézier control points to the Nagata patch coefficients. Solving 

this system of equations by means of isolating the Bézier control points, leads to following 

solution: 
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This formulation allows converting a quadrilateral Nagata patch into the corresponding bi-

quadratic Bézier patch, with exactly the same geometry. It should be noted that the vice-versa 

approach can also be useful, i.e. obtain the Nagata coefficients from the control points. How-

ever, this operation can lead to a discrepancy between both surfaces since the last term of 

Equation (14) is omitted in the Nagata patch formulation (see Equation (11)). 

3. CONTACT SEARCH ALGORITHM 

The number of patches required to define each tool involved in the process to be simu-

lated depends on the geometric complexity of the model. The aim of the contact search algo-

rithm is to identify, for each node of the deformable body candidate to establish contact, both 

the tool patch and the exactly position where contact can occur. The contact search algorithm 

must be simultaneously accurate and efficient in order to quickly identify all potential contact 

zones [10]. Thus, usually it is divided in two phases: global and local search. The global 

search algorithm must identify all potential contact patches, while the local contact search 

algorithm must identify the position where the node will establish contact. The main motiva-

tion for global contact search is to minimize the number of operations of the local search algo-

rithm, which is usually computationally more expensive [9]. 

The contact search algorithm implemented in DD3IMP solver, for Bézier patches, has 

been continuously tested and optimized [10]. This algorithm exploits the special features of 

parametric Bézier patches to ensure proper and efficient contact detection. Thus, the imple-

mentation and tuning of the contact search algorithm for Nagata patches was performed using 

as reference the knowledge acquired with Bézier patches. The main difference between both 

types of parametric patches lies in the number of patches needed to properly describe the tools 

geometry. Since the Nagata patch is only a quadratic surface, typically it is necessary to use 

more patches to attain the same accuracy as using Bézier. Whatever the parametric descrip-

tion adopted, the first phase of the global search algorithm consists in associating a predefined 

set of tools to each node, based only on the orientation of each patch outward normal vector to 



 

 

the blank. The remaining phases of the global contact search algorithm, for both types of par-

ametric patch, are described in detail in the next subsections.  

3.1. Global contact search for Bézier 

The remaining phases of the global contact search algorithm implemented in DD3IMP 

for Bézier patches are the following: (a) construction of a uniform grid of points on each 

patch; (b) evaluation of the distances between each node of the deformable body and the 

points of the grid, and (c) selection of ten candidate patches to perform the local contact 

search. The dimension of the grid constructed over each patch is determined based on the 

maximum degree, 
maxPD  and 

maxPD , for each parametric patch direction   and  , respec-

tively. Therefore, in the beginning of the numerical simulation those values are determined 

for the tool in analysis. Thus, the number of grid divisions, GD , in each direction is deter-

mined taking into account the maximum patch degree, according to the following expres-

sions:  

 
max max2 and 2 .GD PD GD PD      (16) 

Note that the total number of divisions for each Bézier patch is given by {( )( )}GD GD  , 

leading a total number of grid points equal to{( 1)( 1)}GD GD   , for each patch. This grid 

is uniformly distributed in the both local coordinates of the patch ( , )  . Note that this grid of 

points is calculated only at the beginning of the simulation and updated when the tool position 

changes. As previously mentioned, in the first phase of the global search a set of tools is se-

lected for each node of the deformable body candidate to establish contact. Thus, the third 

phase consists in evaluating the distance between the node and every point of each grid, creat-

ed on the patches which compose the set of candidates. This process is repeated, in each in-

cremental tool displacement, in order to determine at the beginning of each increment the ten 

Bézier patches closest to the each node, which was not in contact in the previous increment. 

Hence, for each node it is stored both the identification number of the ten selected patches, as 

well as the local coordinates of the closest grid point, which will be used as initial approxima-

tion for the projection algorithm (local contact search). 

3.2. Global contact search for Nagata 

The global contact search algorithm implemented in DD3IMP solver for Nagata patches 

was developed with the same philosophy previously applied to Bézier patches. However, the 

special features of the Nagata patch were explored, such as mesh connectivity of the patches 

and coordinates of the tool nodes, in order to improve the efficiency and robustness of the 

implemented algorithm. Thus, the selection of the candidate patches to contact with each node 

of the deformable body is based mainly in geometric considerations between this node and the 

tools discretization. The remaining phases of the developed algorithm can also be divided 

into: (a) selection of a certain number of tool nodes closer to the deformable body node and 

application of inverse mesh connectivity in order to select their corresponding patches; (b) 



 

 

construction of a uniform grid of points on each patch of every tool, and (c) selection of the 

candidate patches for local contact search based on the distance between the deformable body 

node and every grid point. 

For each node of the deformable body candidate to establish contact, the second phase 

of the global search algorithm consists in evaluating the distance between the deformable 

body node and every node of the set of tools, predefined at the beginning of global search. 

Thus, for each tool contained within this set, the selected number of closest tool nodes is giv-

en by: 

 2

max5 int(0.015 ),N Rt   (17) 

where int()  is the function that converts a real number into a integer and maxRt  is the maxi-

mum ratio between the maximum and minimum edge length of each finite element used in 

tool definition. This strategy allows selecting a different number of closest tool nodes for each 

tool, guaranteeing that this number depends on the tool mesh topology. After that, the patches 

that share these tool nodes are selected through the mesh connectivity. However, the number 

of patches selected using this strategy can be excessive to directly apply the local contact 

search algorithm. Hence, in order to reduce the number of patches for the local search, the 

third phase of the global search comprises the creation of a grid of points on each patch, 

which compose the tool surfaces, such as in the case of Bézier patches. The grid of points is 

composed by the same number of divisions in each parametric direction since the Nagata 

patch degree is the same in both directions. Thus, the number of grid divisions in each para-

metric direction is given by: 

 maxint max(2, ) ,
10

R
GD

 
  

 
 (18) 

where max()  is the maximum function and maxR  is the maximum ratio between the maximum 

and minimum edge length of each finite element, used in every tool surface discretization. 

Note that this third phase in performed only at the beginning of each numerical simulation, 

since the coordinates of grid points are updated based on the tool displacement in each incre-

ment. The last phase is identical to the one implemented for Bézier surfaces, where the ten 

Nagata patches closest to each deformable body node are selected through the distance be-

tween the node and every point of each grid. This process is performed in each incremental 

tool displacement. For each node, it is stored both the identification number of the ten select-

ed patches, as well as the local coordinates of the closest grid point, which will be used as 

initial approximation for the projection algorithm (local contact search). 

3.3. Local contact search: projection algorithm 

Most of the finite element codes dealing with large deformation contact problems are 

based on the so called master/slave contact strategy combined with the node-to-segment con-

tact search strategy [16]. This means that the nodes of the deformable body (slave nodes) are 

prohibited from penetrating the surface of the rigid body (master surface). Then, for each 



 

 

node of the deformable body def
x , the objective of the local contact search is to select one 

patch, from all candidates previously determined in the global search, in order to determine 

the reference position ref
x  where contact can be established. Presently, the projection algo-

rithm is used in DD3IMP code to find the reference position for each node of the deformable 

body candidate to establish contact. This algorithm evaluates the reference position ref
x , 

based on the orthogonal projection of the deformable body node def
x  on the tool surface 

placed in the actual position, minimizing the distance between the node and the reference po-

sition, as shown in Figure 3 [9]. 

 

 
Figure 3. Orthogonal projection of a generic node of the deformable body on a patch compos-

ing the tool surface. 

 

The projection algorithm is applied in each iteration of every tool displacement incre-

ment. For each node of the deformable body def
x , the implicit coordinates of the reference 

position ref
x  and the normal distance nd  are evaluated through the solution of the following 

system of equations: 

 Proj n tool n def( , , ) ( , ) ( , ) ,d d         F S u n x 0  (19) 

where ( , ) S  represents any point on the selected patch (Bézier or Nagata), tool
u  is the tool 

displacement from the beginning until the actual position and ( , ) n  is the outward patch 

normal. Since the patch definition ( , ) S  and its outward normal vector ( , ) n  are non-

linear functions of the parametric coordinates ( , )  , a iterative method is mandatory to solve 

the problem. The Newton-Raphson algorithm is used to solve this system of equations, which 

can be summarized as follows for the 1i   iteration: 
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T( ) ( )
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where a  is the solution vector and ProjF  is the Jacobian matrix of the system of equations 

presented in (19). In this study, the convergence criterion is based on the simultaneous satis-

faction of the two following conditions: 
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where Conv

a  and Conv

F  are predefined threshold values. Note that the system of equations (19) 

is solved for every patch preselected in the global contact search. In case of multiple solutions 

the algorithm selects the solution with the minimum normal distance nd  value. 

The Jacobian matrix ProjF  presented in system of equation (20) is defined as: 

 Proj n Proj n

n
( , , ) , , ( , , ).d d

d
   

 

   
  

   
F F  (22) 

Thus, in order to determine the Jacobian matrix it is necessary to calculate the partial deriva-

tives of Proj
F , which result in the partial derivatives of both the patch and its normal vector, 

with respect to the local coordinates. The unit normal vector can be defined as a function of 

the patch local coordinates through the cross product of its first partial derivatives, as follows: 
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S S
n

S S
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where ( , )  S  and ( , )  S  are the first partial derivatives of the patch with respect to   

and  , respectively. Both first partial derivatives of the patches can be easily derived from 

the Equation (4) for Bézier patches and Equations (9) and (11) for triangular and quadrilateral 

Nagata patches, respectively. On the other hand, the gradient of the normal vector with re-

spect to local coordinates of the patch is evaluated using the Weingarten formula [3]. 

4. COMPUTATIONAL PERFORMANCE 

This section presents the influence of the global contact search algorithms implemented 

on the performance of the local contact search algorithm. In order to compare the developed 

algorithms, the numerical simulation of a deep drawing process was selected. Different tool 

models are employed in the numerical simulations, which are composed of Nagata patches 

interpolations of both structured and unstructured discretizations. The punch force evolution 

and the sheet thickness are selected to compare the numerical results obtained with all tool 

models tested. Finally, the algorithms performance is evaluated in terms of computational 

cost. 

4.1. Cross tool deep drawing process 

The numerical simulation of the cross tool deep drawing process was the selected ex-

ample to analyze the performance of the developed contact search algorithms, implemented in 

the DD3IMP solver. This problem involves three rigid tools: punch, blank holder and die, 

leading to a process decomposed into three phases: blank-holder clamping, punch displace-



 

 

ment until 60 mm and springback. The blank sheet is a square with 250 mm length and 0.8 

mm thickness. Due to geometrical and material symmetry conditions, only one quarter of the 

global model is simulated, as shown in Figure 4 (a). The mechanical properties of the mild 

steel considered for the blank sheet are presented in Table 1. A friction coefficient of 0.03 is 

defined for the contact between the tools and the sheet, while the blank holder force used as a 

constant value of 72.5 kN. This process parameter was selected in order to prevent the occur-

rence of necking, tearing and wrinkling defects in the final part. The blank sheet was discre-

tized with a regular mesh composed by 7688 hexahedron solid finite elements, with two ele-

ment layers in the thickness direction. All simulations were carried out in a computer 

equipped with Intel® Core™ i7-950 (3.07 GHz) CPU and the Windows7 Professional (64-

bits platform) operating system. 

 

 

 

(a) (b) 

Figure 4. Cross tool deep drawing process: (a) surface tools described by Bézier patches; (b) 

directions selected for thickness measurements in the formed part. 

 

Table 1. Material parameters of mild steel. 

Elastic Proprieties 
Swift Hardening Law

p

0( )nK     
Hill’48 Yield Criterion 

210 GPaE   529.5 MPaK   0.251F   

0.3   
0 0.00439   0.297G   

 0.268n   0.703H   

  1.50L M   

  1.290N   

4.2. Results analysis and discussion 

This section presents the comparison of the numerical results obtained with every tool 

model tested in this study. The total computational time required to complete each simulation 

is also studied and compared between tool models. The results obtained from the tool model 

composed by Bézier patches of arbitrary order (labeled Bézier AO) are assumed as the refer-

xd

xyd

O



 

 

ence results, since it is the model previously validated. The forming tool modeled by Bézier 

patches is shown in Figure 4 (a), which is composed by a total of 61 patches with a maximum 

degree of six. Note that the CAD model (IGES file format) required to generate the models 

composed by Nagata patches was created from the CAD model composed by Bézier patches 

of arbitrary order, through the STEP file format. In order to evaluate the influence of the 

number of Nagata patches used in the tool description seven tool models were created. Table 

2 summarizes, for each of the seven models studied, the number of patches used as well as the 

typology and topology of the Nagata patches discretization. The structured discretizations are 

labeled by “St”, while the unstructured are denoted by “Unst”. The discretizations composed 

only of quadrilateral Nagata patches are labeled by “QN” while the label “TN” is used in case 

of discretizations composed only of triangular Nagata patches. The study considers also one 

model composed by both types (quadrilateral and triangular) of patches, which are denoted by 

“MN”. 

 

Table 2. Number of Nagata patches used in each forming tool model. 

Tool model Punch Blank holder Die Total 

St-QN-85 28 10 47 85 

St-QN-210 74 16 120 210 

St-QN-589 230 28 331 589 

St-QN-1241 472 40 729 1241 

St-MN-226 82 16 128 226 

Unst-TN-1848 471 328 1049 1848 

Unst-QN-1103 309 174 620 1103 

 

  
(a) (b) 

  
(c) (d) 

Figure 5. Die described by a structured discretization of quadrilateral Nagata patches: (a) St-

QN-85; (b) St-QN-210; (c) St-QN-589; (d) St-QN-1241. 

 



 

 

Figure 5 presents the die discretization for the four models which are described using 

structured quadrilateral Nagata patches. The punch and blank holder are omitted since they 

present a similar geometry to the die, as shown in Figure 4 (a), and consequently present a 

similar patch discretization. The flat areas of the tool are discretized with the minimum num-

ber of patches, in order to reduce the total number of required patches to accurately describe 

the tools geometry. On the other hand, the curved tool areas are discretized with an increasing 

number of patches, which leads to increasing tool geometry accuracy (minimize the shape 

error) [6, 7]. Figure 6 presents the comparison of the force punch evolution for the QN” tool 

models considered. A slight difference is observed in the punch force evolution for the model 

“St-QN-85”, which is the one presenting the smaller number of patches in its definition. The 

remaining models have a force evolution similar to the one obtained with tools described by 

Bézier patches. As shown in Figure 7, the same behavior is observed for the final sheet thick-

ness distribution, measured along both direction presented in Figure 4 (b). The predicted sheet 

thickness for the tool model composed by a smaller number of patches is smaller than in other 

tool models, mostly along the direction dx, as shown in Figure 7 (a). 

 

 

Figure 6. Punch force evolution with its displacement for forming tools composed by struc-

tured discretizations of quadrilateral Nagata patches. 

 

  
(a) (b) 

Figure 7. Thickness distribution at the end of the deep drawing process using forming tools 

composed by structured discretizations of quadrilateral Nagata patches: (a) along direction dx; 

(b) along direction dxy. 
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The discrepancy of the numerical simulation results for the tool model “St-QN-85” is 

due to the Nagata patch interpolation accuracy. Both the global and local contact search algo-

rithms developed to deal with Nagata patches are efficient in the contact detection for every 

tool model studied. Therefore, in order to quantify the geometry tool model accuracy, the 

shape error distribution in each Nagata patch is determined, as follows: 

 
Shape Nagata CAD CAD( ) ,   P P n  (24) 

where NagataP  is the position vector of a generic point on the patch, CADP  is the corresponding 

orthogonal projection on the CAD model (IGES file composed by trimmed NURBS surfaces) 

and CADn  is the unit surface normal vector at the projected point. Figure 8 presents the com-

parison of the shape error distribution between both two die models with less number of 

patches (St-QN-85 and St-QN-210). In both models, the maximum shape error attained is 

located in the hyperbolic section of the torus that corresponds to a fillet with radius of 7 mm. 

Nevertheless, the maximum value attained for the “St-QN-210” model is one magnitude order 

lower than the one obtained with the “St-QN-85”. Hence, models with a geometric error as 

the one obtained with the“St-QN-85” model lead to different numerical results and should be 

avoided. 

 

  
(a) (b) 

Figure 8. Shape error distribution on the die geometry for the model: (a) St-QN-85; (b) St-

QN-210. 

 

As described in section 2.3, it is possible to establish the equivalence between the 

quadrilateral Nagata patches and the biquadratic Bézier patches. Therefore, in order to test the 

efficiency and robustness of the algorithm already implemented for Bézier patches when ap-

plied to a larger number of patches, the four “QN” Nagata models were converted into models 

composed by biquadratic Bézier patches. Since the geometry of both types of models is exact-

ly the same, the numerical results obtained should be the same in case of correct contact de-

tection. The use of the global contact search algorithm presented in section 2.1, to deal with 

the contact treatment evolving Bézier patches, leads to the same punch force and  thickness 

evolution as the one obtained with Nagata patches, presented in Figure 6 and Figure 7, respec-

tively. 

The tool models previously studied are composed only by quadrilateral Nagata patch-

es. However, the discretization of 3-sides surfaces is easier with triangular elements, which 

Shape[mm]
Shape[mm]



 

 

will originate triangular Nagata patches after interpolation. It should be mentioned that un-

structured discretizations are simpler to generate. Nevertheless, the distorted generated ele-

ments (quadrilateral or triangular) can lead to problems in the Nagata patches tool geometry 

accuracy. 

 

   
(a) (b) (c) 

Figure 9. Discretization of the die with Nagata patches for the model: (a) St-MN-226; (b) 

Unst-TN-1848; (c) Unst-QN-1103. 

 

The tool model comprising a structured discretization with both triangular and quadri-

lateral Nagata patches is shown in Figure 9 (a). The only difference to the “St-QN-210” mod-

el presented in Figure 5 (b) is the discretization of the 3-side surfaces with triangular patches. 

In order to complete the analysis of the effect of tool discretization, two unstructured discreti-

zations were built, one composed only by triangular patches (Figure 9 (b)) and other one with 

quadrilateral patches (Figure 9 (c)). Figure 10 presents the comparison of the punch force 

evolution for the three tool models shown in Figure 9. The punch force evolution for the 

model “Unst-QN-1103” presents a high increase in the final part of the forming process, at-

taining the maximum value of 340 kN. Note that the punch force scale was clipped in order to 

highlight the region of the reference results. The punch force peak for the “Unst-QN-1103” is 

due to the type of tools used in the process, i.e. the punch geometry is obtained offsetting the 

die geometry with a value equal to the initial sheet thickness. Hence, at the end of the deep 

drawing process, the gap between the punch and die should be constant and equal to initial 

sheet thickness. However, the tool model composed by an unstructured discretization of quad-

rilateral Nagata patches presents excessive shape error in the region of the die indicated in 

Figure 9 (b) with a circle. Thus, the gap between the die and the punch at end of the process is 

considerable smaller than the initial sheet thickness and, consequently, the punch force in-

crease abruptly. 

 



 

 

 

Figure 10. Comparison of the punch force evolution for forming tools composed by unstruc-

tured discretizations of Nagata patches. 

 

  
(a) (b) 

Figure 11. Thickness distribution at the end of process using forming tools composed by un-

structured discretizations: (a) along direction dx; (b) along direction dxy. 

 

Figure 11 shows the thickness evolution along both directions indicated in Figure 4 

(b), for the tool models composed by unstructured Nagata patches. In contrast with the punch 

force evolution, the thickness distribution at the end of the process is correctly predicted for 

all tool models. In fact, the two directions where the thickness evolution is studied are located 

far from the die region with excessive shape error, as visible by the comparison between Fig-

ure 4 (b) and Figure 9 (c). These results confirm the local effect of the tool shape error distri-

bution.  

In addition to the numerical results accuracy, the computation time becomes an in-

creasingly important factor in the efficiency of any simulation code. Figure 12 presents the 

total computational time obtained for each of the tool models used in the numerical simula-

tion. Globally, the computational time is almost the same for all tool models studied. Howev-

er, the global contact search algorithm implemented for Nagata patches seems more insensi-

tive to the total number of patches used in the tool surfaces description, when compared with 

the one applied for Bézier patches. The tool models composed by Nagata patches have a 

computational cost slightly inferior to the one obtained with the reference result (Bézier AO), 

except the “Unst-TN-1848” model.  
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Figure 12. Comparison of the computational time for all tool models studied. 

5. CONCLUSIONS 

The new global contact search algorithm implemented in DD3IMP solver to deal with 

Nagata patches in tool surface description was successfully validated with the numerical sim-

ulation of a forming process involving complex tool geometry. The numerical simulation of 

the cross tool deep drawing process was the selected one for this study in order to highlight 

the robustness and efficiency of the new developed algorithm in complex forming processes. 

Several tool surface discretizations were performed with both triangular and quadrilateral Na-

gata patches, as well structured and unstructured discretizations. The punch force evolution 

and thickness distribution, at the end of the process, were evaluated and compared for all tool 

models studied. The results obtained with Nagata patches show that for a wide range of tool 

surface discretizations, all numerical results are in agreement with those previously obtained 

with the global search algorithm implemented for Bézier patches of arbitrary order. In terms 

of computational cost, both algorithms present the same behavior. The use of Nagata patches 

in the tool description is more versatile than Bézier, since they can be easily generated from 

any combination of CAD and mesh generation software. 
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