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vantages of this kind of process is the automotive, due to the high production rates. In the last 
years, this industry has been continuously driven by new environmental and security rules, 
energy conservation laws and strong demands on sustainable development, which lead to 
steadily increasing requirements for stronger and lighter materials. In fact, there is a high de-
mand for decreasing the vehicles weight so that fuel efficiency is improved as well as their 
security by improving crash performance. In this context, the application of deep drawing 
processes to new materials is being highly influenced mainly by this industry. Thus, new ma-
terials like high strength steels and aluminum alloys have found an increasing use in the au-
tomotive industry since they can lead to lightweight components. In fact, advanced high 
strength steels are being used for more than 60% of the body parts of modern cars [19]. The 
growing complexity of deep drawing components has been leading to a greater dependence of 
virtual production concepts, in particular the numerical simulation of metal forming processes 
resorting to the finite element method and the extension of its use throughout all the produc-
tion chain [28]. The numerical simulation allows the virtual validation of forming tools and 
process parameters, leading to a time and costs decrease related when compared to its experi-
mental testing. In fact, it allows predicting the material flow, analyzing stress, strain and tem-
perature distribution, determining forming forces, forecasting potential sources of defects and 
failures, improving part quality and complexity and reducing manufacturing costs. Nowadays, 
in an integrated manufacturing environment modeling and simulation are often integrated 
parts of product and process design [32]. In addition, numerical simulation can help optimiz-
ing the entire production chain, from the raw material to the assembled product. This can 
translate in an enormous profit in both economic, time and technical terms, crucial in the cur-
rent highly competitive market. 

All these factors make the use of Finite Element Analysis (FE) of the utmost im-
portance in order to virtually design and optimize sheet metal forming processes. Such virtual 
try-out approach is consensually accepted as the main factor for the huge decrease in the time-
to-market life cycle of new formed parts as well as for the notable savings in terms of money, 
time and effort in their design, production and process set-up. Nowadays, there are many 
commercial codes specifically developed to the numerical simulation of forming processes, 
which are widely used in the industry. The increasing accuracy of the numerical simulation 
results and of the computational power also contributed to the high industrial interest for tools 
virtual try-out, since nowadays it is possible to analyze components and processes of increas-
ing complexity. 

Despite the clear potential of numerical simulation in technological processes analysis, 
its uncontrolled use is extremely dangerous. The CAE engineer should be aware that all the 
numerical simulations are model dependent and, consequently, imperfect and somehow 
wrong. Therefore, the correct interpretation of results requires specialized personnel with a 
detailed knowledge of the technological process and also of the code, such as, numerical 
methods, numerical parameters and algorithms, modeling of the mechanical behavior of the 
materials, etc. In fact, there is also a continuous effort in making the use of FEA more simple 
and interactive. The industry expects that the usage of the code should be so simple, that there 
is no need for an extra finite element expert. Furthermore, the simulation tool should be avail-
able there where it is needed, that is, it must be usable in the design office and not only in the 



 
 

computational department of the company. Therefore, user-friendliness is a critical issue for 
the application of the simulation tool in industry [30]. However, the risks associated to the 
incorrect usage of this powerful tool are high and are potentiated by its increasing versatility, 
as highlighted by the benchmark results for the NUMISHEET conferences. For example, in 
the BM 4 - Pre-strain Effect on Spring-back of 2-D Draw Bending, proposed by the bench-
mark committee of NUMISHEET’11 conference, one of the participants reported the results 
presented in Figure 1. This figure compares the experimentally evaluated punch force evolu-
tion with the punch displacement and the profile, after springback, with the numerical result 
predicted by one of the participants [7]. The incorrect control of the numerical parameter of a 
well-known dynamic explicit code leads to the inaccurate prediction of both results. 

 

(a) (b) 
Figure 1. Comparison between experimental and numerical results for BM4, NUMISH-

EET’11: (a) Punch force evolution with punch displacement; (b) profile after springback [7]. 
 
The awareness of the problems related with the careless use of FEA codes for sheet 

metal forming problems, this work presents the DD3LT platform, developed to support the 
learning and teaching of virtual try-out of sheet metal forming processes. This platform is 
supported on the DD3IMP code, which is an in-house FE solver that has been continuously 
developed and optimized to simulate sheet metal forming processes [21,24,25]. It also inte-
grates an extensive database of sheet metal forming benchmark problems and an interactive 
application for pre and post processing the models. In the following section, the main features 
of DD3LT platform are described. 
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2. DD3LT PLATFORM 

2.1. DD3IMP in-house code 

The finite element code DD3IMP (which stands for Deep-Drawing 3D IMPlicit code) 
has been specifically developed to simulate sheet metal forming processes. The mechanical 
model takes into account large elastoplastic strains and rotations, and assumes that the elastic 
strains are negligibly small with respect to unity. Elastic behavior is assumed to be isotropic. 
The plastic behavior is described through phenomenogical constitutive models based on the 
definition of: (i) an associated flow rule; (ii) a yield criterion and (iii) a work-hardening law. 
There are several yield criterion implemented in DD3IMP, considering isotropic (von Mises, 
1993 [33]; Drucker, 1949 [10]; and Hosford, 1972 [12]) and orthotropic (Hill, 1948 [11]; 
Bartlat et al., 1991 [3]; Karafilis and Boyce, 1993 [15]; Cazacu and Barlat, 2001 [5]; Drucker 
+L [3,5,15] and Cazacu et al. 2006 [6]) behavior. The isotropic work hardening behavior can 
be described either using the Swift, 1947 or the Voce, 1948 laws, which can be combined 
with the Prager, 1955 [26] and the Lemaître and Chaboche, 1985 [17] kinematic work harden-
ing laws. The work hardening behavior can also be described using the complete or the sim-
plified Teodosiu and Hu, 1998 models [31]. 

The updated lagrangian formulation implemented is based on the principle of virtual 
velocities proposed by McMeeking and Rice (1975) [20]. An explicit approach is used to cal-
culate an approximate first solution for the nodal displacements, the stress states and frictional 
contact forces. A minr  strategy is implemented to impose several restrictions on the size of the 
time increment in order to improve the convergence [35]. The first trial solution is iteratively 
corrected, using a Newton–Raphson algorithm, finishing when a satisfactory equilibrium state 
in the deformable body is achieved. It is then possible to update the blank sheet configuration, 
as well as all the state variables, passing on to the calculation of the next increment. This is 
repeated until the end of the process [21]. Table 1 presents a resume of DD3IMP main algo-
rithm. 

In sheet metal forming processes the boundary conditions are dictated by the contact 
established between the blank sheet and the tools. Such boundary conditions continuously 
change during the forming process, increasing the importance of correctly evaluating the ac-
tual contact surface and the kind of contact that is established at each point of the deformable 
body. A master–slave algorithm is adopted, with the tools behaving as rigid bodies. Cou-
lomb’s classical law models the friction contact problem between the tools and the blank 
sheet (deformable body). The contact with friction problem is treated by an augmented la-
grangian approach [21,24,25]. Then the above mentioned fully implicit Newton–Raphson 
scheme is used to solve, in a single iterative loop, all the problem non-linearities associated 
with either the contact with friction problem or the elastoplastic behavior of the deformable 
body. 

The forming tools are modeled using parametric surfaces, Bézier or Nagata type [23]. 
The blank sheet is discretized with 3D solid finite elements. Although penalized in this type 
of applications by computational cost and effectiveness, solid elements have many ad-
vantages. Among others, they allow the accurate evaluation of the contact forces through an 



 
 

accurate description of contact evolution and thickness change; the simultaneous contact on 
both sides of the sheet is naturally solved without any particular strategy or tricky algorithms. 
Also, solid elements are required for accuracy in FE springback simulation when the ratio 
between the tool radius and blank thickness is lower than 5–6 [18]. These facts have motivat-
ed many studies on the improvement of solid elements for sheet metal forming simulations 
[2,14,27,34]. In DD3IMP the traditional tri-linear eight-node hexahedral finite element can be 
applied using full integration, reduced integration or associated with a selective reduced inte-
gration scheme (SRI) [13]. Although the SRI scheme in torsion-dominant problems can ex-
hibit spurious zero-energy modes, this kind of finite elements allows efficient computation of 
the thickness evolution as well as the through-thickness stress gradients [1,22], depending on 
the type of applications and on the number of elements thought thickness and in sheet plane. 
There are other types of solid elements available in the finite element library, including 20-
node serendipity elements and the tri-quadratic 27-node hexahedral finite elements. 

 
Table 1. DD3IMP main algorithm. 

START 
Read and verify the input data 
Initialize the increment number 1N   
Repeat 
Prediction 

Impose the trial increment 
Impose contact with friction conditions 
Calculate the tangent stiffness matrix and nodal force vector 
Solve the system of equations for the imposed trial increment 
Calculate strains and stresses 
Calculate the minr  value to define the actual increment size 

Update the sheet and tools position 
Update the contact variables 

Correction 
Update the contact with friction conditions 
Calculate the strain and rotation increments 
Integrate the material’s behavior law 
Solve the system of equations 
Validate an eventual change of phase in the process 
Actualize the increment number 1N N   

Until the end of the process 
END 

 
DD3IMP allows the use of three different strategies to simulate the unloading phase. 

The first one can be understood as a simple continuation of the forming process, as the tools’ 
motion is reversed and the computation is carried out until the end of the process (loss of con-
tact between the tools and the formed part). This unloading strategy is in very close agreement 
with the physics of the real process itself, since it allows the changes in the contact areas be-
tween the blank sheet and tools during the unloading phase to be tracked. However, this pro-
cedure leads to a significant increase in CPU time due to the reversing tools’ displacement 
and can lead to convergence problems due to the discrete character of the contact. The second 



 
 

possible strategy consists of removing the tools, one by one, using only one time increment 
per tool (punch, die,…), forcing the equilibrium at each step by an implicit equilibrium itera-
tive loop. The third strategy performs springback in only one step, removing all the tools sim-
ultaneously and forcing the blank sheet to attain equilibrium. In this last strategy, named 
‘‘One Step Springback’’, all the constraints imposed by the tools vanish at the beginning of 
the unloading phase. There is no need to perform a trial solution since the initial solution for 
the implicit scheme corresponds to the configuration at the end of the forming phase. 

The model is defined using ANSI ASCII input files with a predefined format, which is 
a commonly adopted approach in many FEA solvers. The standard input files necessary to 
define the model are presented in Figure 2. Globally, these files contain the following infor-
mation: 

- DD3_bcon file is used to impose the problem boundary conditions. These can be 
planes with restrained displacement (e.g. the symmetry planes) or specific points 
with fixed displacements (e.g. points used to control the springback phase). 

- DD3_contact file is used to define the contact sets, i.e. to associate specific regions 
to specific tools, in order to minimize the contact search problem dimension. The 
Coulomb friction coefficient between the blank and the tool is also defined in this 
file. It is possible to define a global friction coefficient, different friction coeffi-
cients for each contact set (e.g. two different friction coefficients between the up-
per blank surface and the tool and the lower blank surface and the tool) and a dif-
ferent friction coefficient for each patch, used to define the tools geometry. 

- DD3_input file is used to define all numerical parameters (e.g. convergence crite-
ria, maximum number of iterations, tolerances and residues) as well as the output 
data (e.g. output files for results visualization, variables stored in the output post-
processing files). 

- DD3_mater file is used to define the material parameters, according to the previ-
ously selected yield criteria and hardening law. This file is also used to define the 
rolling direction according to the global axis. 

- DD3_mesh file is used to define the blank finite element discretization: coordi-
nates of each node and each finite element connectivity (i.e. the nodes belonging to 
each element). There are several formats available for this file, based on the pre-
processor used to define blank discretization. 

- DD3_phase file is used to define the forming process conditions, i.e. the total 
number of tools and phases and the role of each tool in each phase. The initial dis-
placement of the tools is also defined in this file. Finally, in this file each tool is re-
lated with one of the contact sets, previously defined in DD3_contact.dat.  

- DD3_tool file is used to define the tools geometry. The parametric surface descrip-
tion can be defined using either Bézier or Nagata patches. When using Nagata 
patches it is necessary to define a finite element discretization. In order to recover 
the surface normal with the Nagata patches, it is necessary to know the normal in 
each node of the surface discretization. When the information about tool geometry 
is available in IGES format, the normal in each node can be evaluated using this 
CAD file. The tool discretization can be obtained using GID preprocessor. There-



 
 

fore, when using Nagata patches, it is necessary to define for each N tool: 
DD3_toolN.igs; and a DD3_toolN.msh file. 

 

 
Figure 2. Standard input files necessary to define the FEA model in DD3IMP. 

 
Figure 3 presents an example of the DD3_input standard ANSI ASCII input file, nec-

essary to control the numerical parameters of DD3IMP solver. This figure highlights the char-
acteristics common to the majority of the input files: the information is structured in a colum-
nar form; each parameter as a fixed number of characters associated to its format and; it is 
important to know the parameters description in order to input valid values. It is important to 
mention that this type of layout favors the error occurrence, which is difficult to detect due to 
the large number of parameters. In order to circumvent this disadvantage, an interactive plat-
form was developed, which is described in the following section. 

 
===================+============================================================ 
Simulation and     |    NSTART      NEND      NOUT      iGID       INC       DEV 
Output Data        |         1     20000        05         5        51         0 
-------------------+------------------------------------------------------------ 
Tolerances and     |     TOLEQ    TEQOUT     RAPEQ     TOLST      CUNL    DUdamp 
residues           |   1.0E-02   1.0E-01   1.0E+09   1.0E-08     0.999      1.00 
-------------------+------------------------------------------------------------ 
Maximum number     |     IRMAX    IEQMAX    NMAXST 
of iterations      |         1        50        25 
-------------------+------------------------------------------------------------ 
Max. Increments    |     DEMAX     DWMAX    DSNMAX    DSTMAX 
for each NST       |    0.0500    1.5000       6.0       3.0 
-------------------+------------------------------------------------------------ 
Rmin               |      RINF      RSUP    DFNMAX   DFT1MAX   DFT2MAX 
Strategy           |    0.0010     5.000       0.0       0.0       0.0 
-------------------+------------------------------------------------------------ 
Solver             |     LEVEL    TOLCGV 
Parameters         |         4   1.0E-13 
-------------------+------------------------------------------------------------ 
Input data,        |    MEPOPT    iphOSS 
Cep                |         1         3 
===================+============================================================

Figure 3. DD3_input default input file. 
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2.2. Interactive application 

The main goal of the interactive application was to reduce the complexity in the use of 
DD3IMP solver. The user access to a large amount of different type of parameters is im-
portant in order to be able to explore them, but contributes for the increasing complexity in a 
first approach. Therefore, the goal was to diminish the time and effort necessary to achieve 
the results analysis, which is the more important phase for learning sheet metal forming tech-
nologies. The interactive application was built based on the underlining principle that the user 
may not be familiar with all the parameters available in the input files. Thus, although the 
parameters are visible and the user will receive information about them, the application will 
control its range of validity.  

The interactive application works based on the selection of a previously defined mod-
el. The idea is that the user will modify the parameters associated to that initial model. The 
user will be able to change all type of parameters, including: 

- Numerical parameters, e.g. increment size for each phase, number of iterations in 
each increment, penalty parameter for the augmented lagrangian method; 

- Process conditions, e.g. friction coefficient between the tools and the blank, blank-
holder force value, tools’ displacement, springback strategy; 

- Material properties, e.g. material work hardening law, yield criteria or a different 
material; 

- Blank characteristics, e.g. finite element type, finite element integration strategy, 
dimensions, finite element discretization; 

- Tools’ geometry, e.g. change the die radius, remove the blank folder. 
The interactive application also helps to organize the information concerning the models, as-
sociating each set of input files to a different directory. The changed input files are saved in 
the working directory by the interactive application, which also launches the selected/ altered 
simulation. The interactive application allows following the running simulation in real time, 
by visualizing the updated information concerning the increment and the tools displacement. 
It also generates an EXCEL© file report with the tools’ force evolution and allows visualizing 
same fields (e.g. strain, stress, contact forces). 

The interactive application was programmed in C++, on MS Visual Studio 2010 Pro-
fessional SP1, using the MFC10.0 classes available on .NETFramework 4.0. Special care was 
taken in order to guarantee compatibility between different platforms (x86 and x64) as well as 
different operating systems (Windows XP, Windows Vista, Windows Seven). For visualiza-
tion purposes the 3D (vtk) rendering library was selected. The model for the application was 
developed based on object oriented programming, based on the Model-View-Controller archi-
tecture. 

Figure 4 presents an example of the interactive platform showing the DD3_input 
standard ANSI ASCII input file, as well as the pane for controlling the numerical parameters. 
As show also in Figure 4, there is a description associated to each parameter. In order to avoid 
incorrect input values, validation tests were implemented for the numerical parameters. When 
a parameter is changed it is indicated in bold format and highlighted in the input file, empha-
sizing the changes introduced by the user. However, the input files can also be changed with-
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3. CONCLUSIONS 

Generally the accuracy requirements have increased with the usage of the simulation 
tool, promoting the continuous development of FEA solvers for sheet metal forming process-
es. However, the quality of the results depends not only on the FEA solver but also on the 
appropriate training of the CAE engineers. The DD3LT platform aims to help the training of 
sheet metal forming CAE engineers, providing in an interactive form, a large range of differ-
ent problems, which can be used to explore the influence of many different process parame-
ters. 
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