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Abstract. The main purpose of this work is to simulate the displacement in a fluid
medium, of a rigid cylinder contained in another fixed one. This phenomena is called
annular cavity. To fulfill our goal, we used the Arbitrary Lagrangian-Eulerian method,
to describe the fluid-structure interface and treat the mesh’s deformation. Finally, a
numerical test is performed, on one hand to study the numerical stability, and on the
other hand to determine the contact force between the two cylinders.
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1. INTRODUCTION

The aim of this work is to study deformations of a rigid structure with respect to
the mechanical stress induced by a fluid in a confined area. Indeed, the main problem
of this phenomena is how to represent the forces of interaction by using the Eulerian
formulation for the fluid and the Lagrangian formulation for the structure [7]. There
are two approaches to simulate this phenomena: Fixed mesh methods [9, 15, 10, 5] and
the Arbitrary Lagrangian-Eulerian method (ALE) which is used in the present work
Code_Saturne [11, 3].

The outline of this paper is the following: In section 2, we will be describing
the problem of fluid-structure interaction. In section 3, we explain the concept of the
Arbitrary Lagrangian-Eulerian method, in order to represent the fluid-structure inter-
face. Finally, by the use of Code_Saturne, a numerical test contribute on one hand, to
study the structure’s displacement and the numerical stability, and on the other hand
to determine the contact force between both cylinders.

2. FORMULATION OF FLUID AND STRUCTURE PROBLEMS

One consider a fluid domain Ωf in an incompressible, Newtonian, isothermal
context, and a solid one Ωs. One denote Γ(t) the interface between the unsteady fluid

Blucher Mechanical Engineering Proceedings
May 2014, vol. 1 , num. 1
www.proceedings.blucher.com.br/evento/10wccm



domain Ωf (t) and the solid domain Ωs(t). Also, one define the domain Ω considered to
be fixed during time by:

Ωf (t)
∪

Ωs(t) = Ω(t), Γ = Ωs(t)
∩

Ωf (t), Ωf (t)
∩

Ωs(t) = ∅

Figure 1. Field of fluid structure interaction

2.1. Fluid property

One considers a Newtonian viscous fluid, in an incompressible, isothermal, homo-
geneous and isotropic framework, it is then described by the conservation of momentum
and the continuity equations [14]:

∂(ρfu)
∂t

+ div(ρfu ⊗ u) + ∇p − 2µf div(D(u)) = ρffext,

div(u) = 0,

(1)

where u = uf is the fluid field, p = pf pressure field, ρf fluid density, µf the dynamic
viscosity, fext the external force density and D(uf ) the strain rate tensor:

D(uf ) = 1
2
[
∇u + (∇u)T

]

2.2. Solid property

One can take the general case of a solid with small deformations, for which the
only body force is the gravity one g. The motion of the solid domain is described by
the conservation of momentum equation [13] as follows:

ρs

∂2v

∂t2 + ρsgeg − ∇.σs = 0, (2)

where v the displacement of the structure, ρs is its density, eg the an upward
vertical unit vector, σs the solid strem, ε the deformation of the structure, E the Young’s



modulus and νP the Poisson’s ratio. The law describing the elastic behavior of the
structure’s deformation is the following:

ε =
1 + νp

E
σs −

νP

E
tr(σs)Id. (3)

After choosing a specific model for each of the fluid and the structure, it is
necessary to couple these two areas. So, we are facing a problem of fluid-strusture
interaction. Before treating this problem numerically, one show first, the necessary
conditions for coupling these two areas in order to preserve the equilibrium at the
interface.

2.3. Fluid-structure interface

• The first condition is to ensure the continuity of velocities at the interface:

uf |Γ = v̇s|Γ (4)

• The second condition describes the action-reaction principle. It ensures the con-
tinuity of these efforts at the interface Γ: This can be mathematically expressed
by:

σf .nf |Γ = σs.ns|Γ (5)

3. ARBITRARY LAGRANGIAN-EULERIAN method

3.1. Fluid formulation

The ALE method consists in defining an arbitrary domain Ωa which correspond
to an arbitrary discretization of the domain Ωt [7], whose nodes on the fluid domain
boundaries coincide with the Eulerian mesh ones. In Ωa, a point M is identified by the
independent variables ξ and a continuous function Ψ as follows:

x = Ψ(ξ, t) (6)

The Lagrangian velocity at the point M is identified as follows:

w(t, x) =
∂Ψ(ξ, t)

∂t
. (7)

Using this notation for all dependent variables f in the Eulerian domain one gets:

f(t, x) = f(φ(t, x), t).

As for its Lagrangian (or material) derivative, we also write:

df

dt
=

∂f

∂t
+ u.∇xf (8)

We also note that:



f(t, x) = f(Ψ(ξ, t), t) = f̂(ξ, t).

Then, the Lagrangian derivative is:

∂f̂

∂t
=

∂f

∂t
+ w.∇xf. (9)

Finally, using relations (8) et (9), we can write the Lagrangian derivative on the
arbitrary domain Ωa:

df

dt
=

∂f̂

∂t
+ (u − w).∇xf. (10)

Applying the relation (10) to the velocity field, equations (1) become:
∂û

∂t
+ (u − w).∇u +

1
ρf

∇p − 2νf div(D(u)) = fext,

div(u) = 0,

(11)

A method for calculating the velocity of the mesh w was proposed by Souli and
Zolesio [16]. This method consists in solving a diffusion equation of the form:

div(λ(∇w)) = 0 in Ω

w = v̇imposed in Γ.
(12)

λ is the diffusion coefficient of the mesh. It can control the mesh deformation.
Indeed, according to this constant, the mesh becomes distorted, especially near the
moving interface Γ. So, it’s necessary to increase its value around the moving interface,
and to decrease it in the rest of the domain in order to calculate the efforts.

3.2. Solid computation

The discretization of equation (2) by using the finite element method, leads us
to solve the following equation:

Msv̈ + Csv̇ + Ksv + F = 0, (13)

with Ms the solid mass, Cs the damping coefficient, Ks the stiffness and F the force
applied on the structure.

The algorithm adopted is that of Newmark, which is defined as follows:

Msv̈
n+1 + Csv̇

n+1 + Ksv
n+1 + F n+1 = 0, (14)

v̇n+1 = v̇n + ∆t
[
(1 − α)v̈n + αv̈n+1

]
, (15)

vn+1 = vn + ∆tv̇n + ∆t2
[
(1
2

− β)v̈n + βv̈n+1
]

, (16)
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where α and β are two constants.
One introduces relations (15) and (16) in equation (14), to obtain then the value

of v̈n+1. Also, from relations (15) and (16), one calculates the values of v̇n+1 and vn+1.

For α = 1
2 and β = 1

4 , in order to have a scheme of order 2 which is unconditionally
stable. The algorithm is summarized in figure 2.

4. NUMERICAL VALIDATION

One considers a fluid between two coaxial cylinders of radius R1 = 0.1 m and
R2 = 0.2 m. The central cylinder of radius R1 is connected to a spring of mass ms = 1 kg,

and of stiffness KS, while the second one is fixed. One discards the cylinder within a
distance x0 = 0005 m from its equilibrium position and release it without initial velocity,
figure 3.

Annular cavity Mesh of the cavity

Figure 3. Geometry of the annular cavity and its quadratic mesh

For fluid computations, the schemes used for the space variable, is the second
order centered scheme, as for the time variable we use Crank-Nickolson with a constant
time step. The mesh used for this study contains 3600 celles. The inner cylinder is
reduced to a single degree of freedom system node in the center mass of gravity. The
numerical datas are summarized in table 1:

Fluid Mass ∆t Viscosity
Air ρair = 1 kgm−3 0.0628 s µair = 19.6 10−6 kgm−1s−1

Water ρwater = 1000 kgm−3 0.0628 s µwater = 0.001 kgm−1s−1

Table 1. Calculus parameters

The cylinder oscillates around its initial position as shown in figures 4 et 5. We
note that, if there is an air flow without damping, the structure’s displacement will be
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Figure 4. Solid displacement in air for six oscillations: The damping constent, Cs = 2π.
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Figure 5. Solid displacement in water for six oscillations: The damping constent, Cs =
2π.



periodic of period 1, otherwise the cylinder stops after six oscillations because of the
friction caused by the water. In the next section, we study the stability depending on
the mass and the frequency of the structure.

4.1. Influence of solid mass on numerical stability

In this section, we study the influence of changing the mass ms of the structure,
on the stability of the flow [14], while keeping the frequency f = 1

2π

√
( k

ms
) constant.

M.A. Fernández and al. [8] have developed a criteria to measure the numerical scheme
stability. It is defined as follows:

ρs ≥
C

Hα

(
ρfh + 2

µf∆t

h

)
, (17)

where C is a constant which does not depend, neither on the flow physics, nor on the
mesh size. H and h are respectively, the mesh sizes for both structure and fluid, and α

is a function defined as follows:

α =
{

0 si Ωs = Γ
1 si Ωs ̸= Γ (18)

ρs = ms k ∆t Result Stability condition(17)
1 (2π)2 6.28 10−2 Stable Verified

0.8 ms(2π)2 6.28 10−2 Stable Verified
0.7 ms(2π)2 6.28 10−2 Stable Verified
0.65 ms(2π)2 6.28 10−2 Unstable Broken
0.6 ms(2π)2 6.28 10−2 Unstable Broken
0.5 ms(2π)2 6.28 10−2 Unstable Broken
0.1 ms(2π)2 6.28 10−2 Unstable Broken

Table 2. Numerical stability for several solid mass

In the table 2, we show the test cases we have made. We notice that for a
given structure of mass greater or equal than 0.7 kg, the calculations converged. Using
these test cases, we compute the value of the constant C which appear in the inequality
of M.A. Fernández and al. [8] as the minimum value between all those that ensure
convergence of the structure’s displacement:

C = Min


ms

(ρfh + 2
µf∆t

h
)

 = 0.62 (19)

and h = O(10−3).
Otherwise, in the case where the mass of the structure is strictly less than 0.7 kg,

the displacement of the structure diverges. This instability is expected and it’s consistent

with the inequality of M.A. Fernández and al. (17), because ρs <
C

Hα

(
ρfh + 2

µf∆t

h

)
.



In the next section, we compute the contact force between a master surface (fixed
wall) and a slave surface (moving wall) by using the penalty method.

4.2. Contact force

Before calculating the contact force between two structures, one must locate the
contact place, the master surface and the slave one. In general, ain’t no method exist
for choosing these two surfaces. However, some authors give rules to define these two
surfaces [2, 12]. In theory, there are two methods to calculate the impact force: The
Lagrange multipliers method and the penalty one [4].

The Lagrange multipliers method is more expansive in terms of time cost, than
the penalization one. For this reason, we will adopt the penalty method:

F = −kchocd, (20)

where kchoc is the stiffness of the shock and d is the distance of penetration.

It’s difficult to have a sharp estimate for the value of the shock’s stifness. If this
value is too low, the interpenetration becomes unacceptable and the fluid passes through
the structure. So, to limit penetrations, the stiffness must be high. In 3D there is a
formula for calculating the stiffness [1, 6]:

kchoc = rfac

GS2

V
, (21)

where G = E
2(1+νp) , S, and V are respectively, the shear modulus of materials, the contact

surface of the master element and its contact volume. rfac is a scalar factor. The figure 6
shows the result obtained after calculating a contact force of an air flow without friction.
We note also that the minimal distance of contact between the master surface and the
slave one is equal to 0.104m.

5. CONCLUSION

This work investigates the issue involving in the same time fluid structure inter-
action and contact between solids. The purpose is to check whether or not an explicit
numerical integration of contact forces does not affect the numerical stability of an it-
erative procedure involved for a fluid solid coupled computation. The example of the
annular cavity is used to illustrate the validity limit of the approach.
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Figure 6. Contact force, with E = 150 MPa, νp = 0.3, rfac = 1 and jeu = 0.104 m
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