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Abstract. The paper deals with modeling of blood perfusion and simulation of dynamic
CT investigation. The flow can be characterized at several scales for which different mod-
els are used. We focus on two levels: flow in larger branching vessels is described using a
simple “1D” model based of the Bernoulli equation. This model is coupled through point
sources/sinks with a “0D” model describing multicompartment flows in tissue parenchyma.
We propose also a model of homogenized layer which can better reflect arrangement of the
microvessels; the homogenization approach will be used to describe flows in the parenchyma
by a two-scale model which provides the effective parameters dependent on the microstruc-
ture. The research is motivated by modeling liver perfusion which should enable an improved
analysis of CT scans. For this purpose we describe a dynamic transport of the contrast fluid
at levels of the “1D” and “0D” models, so that time-space distribution of the so-called tissue
density can be computed and compared with the measured data obtained form the CT.

Keywords: Tissue perfusion, Multicompartment flow model, Porous materials, Dynamic
transport equations, Homogenization.

1. Introduction

Problem of tissue perfusion reconstruction is quite challenging for the biomechanical
and biomedical research. It is desirable to find accurately parts of the tissue with an insuffi-
cient blood supply, to localize anomalies in the blood micro-circulation and to quantify locally
the perfusion efficiency. Such information is need namely to asses physiological functionality
of the brain tissue and trends to pathologies. For the liver segmentation, it is important to
identify parts of the whole organ which are supplied with blood by a selected vein branch.
Our effort is to improve modeling techniques for processing the standard CT investigations.
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Microstructurally-oriented and computationally efficient models allow for simulations of tis-
sue perfusion and transport of the contrast fluid whose instantaneous volume concentration in
the parenchyma corresponds to the density registered by the CT. To cope with the complex-
ity of the perfusion trees, we use a combination of 3D and 1D fluid dynamics for large and
medium vessels, respectively, whereas Darcy flow “0D” models are used to describe blood
redistribution in the parenchyma and smaller vessels. In this paper we present a simplified
model where only a 1D model is employed to describe flow on the branching medium vessels.

We developed several multiscale and multicompartment models based on homoge-
nization [8,10,11];they involve effective parameters computed using solutions of local ”mi-
croscopic” problems in RVEs where the geometry and topology of different vessels is spec-
ified; each compartment is associated with one pressure field, their local differences reveal
the amount of the tissue perfusion. To describe the hierarchical arrangement of the perfused
tissue, we proposed a model of homogenized perfusion in the 3-compartment medium consti-
tuted by several transversely periodic layers with dual porosities [9].Thus, a 3D volume can
be replaced by a number of 2D ”homogenized layers” coupled by conditions governing the
fluid exchange between them. The 1D flow model on the branching vessel network is coupled
with the homogenized 0D flow model of the tissue perfusion by a non-compound solving pro-
cedure - the sheared data (pressures and fluxes) are being exchanged between the two models
on point and line interfaces defined in the 3D domain. Once the perfusion fields are computed,
the tracer redistribution can be simulated using a transport model. The local tracer concentra-
tions in different compartments are averaged to obtain the density maps comparable with the
CT outputs.

The paper is organized, as follows: First, in Section 2 we explain conception of a hi-
erarchical flow model in the context of the liver perfusion simulation. For modeling at the
whole organ level we use a lumped model with multiple sectors and ad hoc defined perme-
abilities and perfusion parameters, as discussed in Section 2.1. In Section 3 we report on the
two-scale model of homogenized perfused layer; it is outlined how this model can be used
to describe perfusion of liver lobules at the lowermost level where the blood is transported
between the portal and hepatic veins. In Section 4 we describe a model of the transport of the
tracer through the branching network of portal and hepatic veins

2. Hierarchical model of perfusion

The simulation of blood perfusion in tissues like liver or brain belongs to problems that
necessitate a sort of multiscale modeling to be used, cf. [4];the term “multiscale” is employed
in a slightly different manner than in [5],where the “geometrical multiscale” modeling was in-
troduced in the context of the cardiovascular system. Obviously, the difficulty of the problem
consists in the nature of the flow on branching structures incorporating blood vessels of very
different diameters. For instance, the blood is conveyed to the liver by the portal vein with its
diameter of D=1.3 cm. At the tissue parenchyma level, the blood channels are formed in the
lobular hexagonal structures with the characteristic size of 1.5 mm, so that the sinus through
which the blood flows from the portal to the hepatic compartments is formed by microvessels
with the diameter of about d=10 µm. Moreover the scale change characterized by the ratio
d/D = 0.001 is continuous, the perfusion trees have several hierarchies distinguished by the



number of “new” branches and reduced vessel diameters.
The model which we develop should allow also for simulation of the transport of the

contrast fluid (the tracer) during the dynamic perfusion test. The aim is to provide a computa-
tional feedback which would enable to analyze more accurately the CT scans obtained from
the standard dynamic perfusion test of a patient, cf. [7].Nowadays the methods based on the
deconvolution, or maximum slope techniques provide some characteristics like the blood flow,
blood volume, transition times and others for each voxel of the tissue, cf. [6].Our approach
should provide an alternative and more detailed interpretation of the measured CT scans. The
proposed strategy is based on the following tasks:

• to describe all involved hierarchies of the perfusion trees including the parenchyma by
suitable models involving few undetermined parameters;

• to reconstruct the organ (liver) shape and the blood vessels geometries up to a certain
hierarchy using the image segmentation techniques (based on the CT “static” data);

• to tune (by solving some optimization problems) selected parameters of the parenchyma
model (like permeability), so that the simulated dynamic CT test is as close as possible
to the measured data.

Such a “tuned” model would enable to analyze the blood flow in particular compartments and
to predict effects of intended medical treatment, like resection of a part of the tissue.

The proposed strategy contains several hurdles; on one hand the model should reflect
the microstructure and fit the complex geometry of the perfusion trees, on the other hand it
should be parameterized just using not too many parameters to prevent ill conditioning of the
“tuning” step involving simulations of the steady blood flow and the dynamic tracer transport.
For this purpose, the tuning parameters must reflect some important features of the perfusion
system.

In this paper we describe a simplified model on which we test the modeling of the
perfusion and tracer transport. It consists of the following parts:

1. The “inlet” and “outlet” trees which (in the case of the liver) described the portal and
hepatic veins, respectively. These trees are formed by pipes and junctions representing
the branching. For simplicity we consider incompressible, inviscid steady 1D flow, as
described in Section 2.2.

2. The parenchyma “0D” model is constituted by equations governing a multicompartment
Darcy flow in a 3D porous medium involving a pressure field associated with each
compartment. Thus, at any point of the organ domain Ω ⊂ R3 several (at least two)
different pressure values are defined which are associated with different compartments,
see Section 2.1. There are point sources and sinks defined in Ω where the “1D” trees
are connected to the “0D” model. It is worth noting that our definition of a “0D” model
is different from the one used in [5]

We intend to describe the blood flow in the parenchyma using a more accurate model based
on homogenization of the tissue microstructure. In Section 3 we report on a model which can
be adapted to describe flows at the level of lobules forming a periodic structure.



2.1. Macroscopic lumped modeling of parenchyma

We approximate the perfusion at the level of tissue parenchyma using a lumped “macro-
scopic” model describing parallel flows in multiple compartments, cf. [2].The model involves
pressures {pi}i, i = 1, . . . , ī which must satisfy the following equations:

∇ · wi +
∑

j

J i
j = f i , i = 1, . . . , ī in Ω ,

wi = −Ki∇pi ,

J i
j = Gi

j(p
i − pj) ,

(1)

where Ki is the local permeability of the i-th compartment network and Gi
j is the perfusion

coefficient related to compartments i, j, so that J i
j describes the amount of fluid which flows

from i to j (drainage flux; obviously J j
i = −J i

j ) and f i is the local source/sink flux of the
i-th compartment. Equations (1) are supplemented by the non-penetration conditions,

n · wi = −n · Ki∇pi = 0 , i = 1, . . . , ī . (2)

In our numerical tests we considered just two compartments, ī = 2. The local source/sink
functions for each compartment is defined using the Dirac distributions, see (4). They estab-
lish the interface between the “0D” and “1D” models, as explained below.

2.2. Flow on branching networks

Let T ({J j}j{`e}e) a branching tree formed by pipes `e and junctions J j . By J0 we
denote the input junction, whereas the terminal branches end by junctions Ĵk through which
they are connected with the parenchyma. Any junction J j = {e} of T joins several vessels
(pipes) `e, although the input and terminal junctions are just one-element sets. Further by n̂
we denote the number of all terminal junctions.

The simplest possible model of flow on T is presented by the following n̂+1 equations

1

2
ρw2

0 + p0 =
1

2
ρw2

k + pk , k = 1, 2, . . . , n̂

A0w0 =
n̂∑
k

Akwk ,
(3)

where (3)1 are the Bernoulli equations and (3)2 is the mass conservation; by Ak we denote the
cross-sections of terminal and input branches, i.e. of the associated vessels (we use a model
with constant cross-sections along each vessel which is a relevant simplifying assumption
with no effect on the contrast fluid transport, as will be explained in Section 4). Now the
problem is to compute the input pressure p0 and the terminal velocities {wk}k, k = 1, . . . , n̂

for a given input velocity w0 and terminal pressures {pk}k.
Although this model neglects the dissipation and may lead to unaccurate results in

general, in this paper we use it just for its simplicity, since the main focus is in modeling the
parenchyma perfusion. Anyway, it can be extended by some energy loss terms related to the
tree geometry.



2.3. Coupled “1D” – “0D” model

The “1D” model is coupled with the “0D” model through the terminal junctions which
specify the sources and sinks f i for all the considered compartments. For the i-th compartment
saturated by the tree T we define

f i(x) =
n̂∑

k=1

δ(x− x̂k)Akwk ,

pi(xk) = pk ,

(4)

where δ(x− x̂k) is the Dirac distribution at point x̂k ∈ Ω which is associated with the terminal
junction k. Condition (4)2 couples the pressures at the terminal junctions of the “1D” model
with the pressure fields in Ω. In practice, we use an approximation of δ(x− x̂k) which is based
upon the finite element discretization.

We conclude by a simple iterative algorithm used to compute the perfusion pressure
and velocity fields. Since there are two trees T , as illustrated in Fig. 5, we shall label the
corresponding solutions by indices P and H, denoting quantities associated with the portal
and hepatic veins. For given values w̄P

0 and p̄H
0 , i.e. the velocity in the portal (inlet) vein

and the pressure in hepatic (outlet) vein, the computation proceeds by repeating the following
steps:

1. Set all interface velocities and pressures to zero, namely {pP
k } = 0 and {wH

k } = 0. Set
i = 0 and τ = 1/N , for a given N ∈ N.

2. For the new iteration i := i+ 1, update wP
0 := min{iτ, 1}w̄P

0 and pH
0 := min{iτ, 1}p̄H

0 .

3. Solve (3) on trees T P and T H , so that
(
wP

0 , {pP
k }
)
7→
(
pP

0 , {wP
k }
)
, for the portal vein,

and
(
pH

0 , {wH
k }
)
7→
(
wH

0 , {pH
k }
)
, for the hepatic vein.

4. Solve (1)-(2) in Ω, so that
(
{wP

k }, {pH
k }
)
7→
(
{pP

k }, {wH
k }
)

and (pi(x),wi(x)) is com-
puted for a.a. x ∈ Ω.

5. Use the conditions (4) to update the interface variables for the next iteration i+ 1.

6. Go to step 2, unless a steady state is obtained.

3. Model of perfusion homogenized double-porous layers

Our aim is to develop a microstructurally-oriented and computationally efficient mod-
eling tool which will allow for simulations of tissue perfusion. Here we focus on modelling
the tissue parenchyma. At the level of small vessels and microvessels, the perfusion can be
described using the Darcy flow in double porous structure consisting of 3 compartments: two
mutually disconnected channels (small arteries and veins) and the matrix (microvessels and
capillaries), represented as the dual porosity, where the permeability is decreasing with the
scale parameter – the size of the microstructure.

We use techniques based on the asymptotic analysis by the periodic unfolding method
[3] and treat a specific microstructure topology which gives rise to several macroscopic pres-
sure fields, like in [14],cf. [10], satisfying specific homogenized equations. The layer-wise



Figure 1. A periodic structure of the layer with the highlighted reference cell comprising two
channel systems A and B.

decomposition is a new feature in the context of homogenized models, up to our knowledge.
A 3D layered structure occupying domain ΩH ⊂ R3 can be replaced by a finite number of 2D
”homogenized layers” Γ0 ⊂ R2 coupled by conditions governing the fluid exchange between
them, as proposed in [12].

3.1. Macroscopic equation for single layer

The homogenized problem for pressures pA and pB, associated with two channels A
and B, describes 2D parallel flows in homogenized layer Γ0 ⊂ R2, cf. [14].Each channel
system forms a connected domain (so, we assume at least a small co-lateralization of vessels
in the perfusion tree).

3.1.1 Microstructure and the reference cell.

The periodic microstructure is generated by the reference periodic cell, Y = Ξ × Iz,
where Ξ =]0, 1[2, Iz =]− 1/2, 1/2[, with the decomposition Y = YA ∪ YB ∪ YM into 3 non-
overlapping parts. Subdomains YA, YB represent the channels A and B, respectively, whereas
YM represents the dual porosity (a network of capillaries). The structure is periodic w.r.t.
coordinates y′ := (y1, y2) (this establishes the notion of the Y-periodicity which is refered to
below), the transversal coordinate is denoted by z. The upper and lower boundary segments
∂+Y = Ξ× z+ and ∂−Y = Ξ× z− with z± = ±1/2 are defined, whereby

∂±Y = ∂+Y ∪ ∂−Y and ∂±YD = ∂±Y ∩ ∂YD , (5)

for D = A,B,M . The channels have inlet / outlet branches entering through the layer faces
Γ+ and Γ−. The inlet / outlet “surfaces” Ak

D ∈ ∂±YD are labeled with indices k ∈ JD

(obviously, Ak
D ∩ Al

D = δkl). For instance, in Fig. 1 each of the two depicted channels A, B
has three such surfaces.



3.1.2 Macroscopic equations.

Two coupled “macroscopic” equations (one for A and one for B) involve the follow-
ing homogenized coefficients: permeabilities (Kab)

A,B of the channels, the transmission G
and drainage (Sa)A,B,k (for channel branches k ∈ JD) coefficients. They govern the fluid
redistribution between the two channel systems A and B.

Perfusion in the homogenized layer occupying the domain Γ0 is governed by two
equations, each per one channel system (in the paper the summation convention applies for
indices a, b ∈ {1, 2} of the coordinates x′ = (x1, x2))

− ∂

∂xa

[
KA

ab

∂

∂xb

p0,A +
∑
k∈JA

SA,k
a g̃k

A

]
+ G

(
p0,A − p0,B

)
= chAḡA −FA+ĝ+ −FA−ĝ− in Γ0 ,

− ∂

∂xa

[
KB

ab

∂

∂xb

p0,B +
∑
k∈JB

SB,k
a g̃k

B

]
+ G

(
p0,B − p0,A

)
= chB ḡB −FB+ĝ+ −FB−ĝ− in Γ0 ,

(6)

where fluxes ĝ+/−, ḡD and g̃k
D must be given such that the following solvability conditions

hold: ∑
k∈JD

|Ak
D|g̃k

D = 0, D = A,B ,

∑
D=A,B

∫
Γ0

(
1

h
ḡD + FD+ĝ+ + FD−ĝ−

)
= 0 .

(7)

Above FA+/−, chA are constants (the summation w.r.t. repeated indices a, b applies). The
term G

(
pA − pB

)
, evaluated at point x′ ∈ Γ0, expresses the amount of fluid (blood) perfused

through the matrix (the dual porosity) between sectors A and B. The details are reported in
[9].

A problem involving (6) and (7) is supplemented by boundary conditions on ∂Γ0 rep-
resenting the “side” boundary of the layer after the problem dimension has been reduced from
3D to 2D. As the result of homogenization, the original “no-flow” (Neumann type) condition
in 3D is replaced by the following condition

naKA
ab

∂

∂xb

p0,A = na

∑
k∈JA

SA,k
a g̃k

A . (8)

3.1.3 Microscopic problems.

The homogenized coefficients are evaluated using the characteristic responses (also
called the “corrector basis functions”) which solve microscopic problems defined in subsec-
tors YD, D = A,B,M of the decomposed cell Y . By ∂#Y ⊂ ∂Y we denote the “periodic”
boundary of Y . There are four groups of the microscopic problems.



1st micro-problem. Find πb
D (Y-periodic functions in y1, y2) such that for b = 1, 2 and

the two channels D = A,B

−∇h
y · K · ∇h

y

(
πb

D + yb

)
= 0 in YD ,

n · K · ∇h
y

(
πb

D + yb

)
= 0 on ∂YD \ ∂#YD ,

(9)

where K = (Kij) is the permeability in the channel D.
The solution to (9) is the characteristic response of the pressure in channel YD for the

imposed “unit” pressure gradient, whereby no flow through the external boundary ∂YD\∂#YD

is admitted. Corrector functions πb
D determine KD

ab, see [9].
2nd micro-problem. Find pg,D (Y-periodic functions in y1, y2) such that for D = A,B

and given g̃k
D, k ∈ JD,

−∇h
y · K∇h

yp
g,D = 0 in YD ,

n · K∇h
yp

g,D = h−1g̃k
D on Ak , k ∈ JD .

(10)

For solvability of (10), fluxes g̃k
D must satisfy (7)1. Solution pg,D presents the pressure

response in channel YD to external prescribed fluxes g̃k
D. The characteristic response to “unit”

fluxes are given by corrector functions γk
D which satisfy the decomposition

pg,D =
∑
k∈JD

γk
Dg̃

k
D , (11)

and determine coefficients SD,k
a . For more details on computing γk

D and SD,k
a we refer the

reader to [9].
3rd micro-problem. Find ηA (Y-periodic function in y1, y2) such that

∇h
y · κ̄∇h

yηA = 0 in YM ,

ηA = 1 on ∂YA ∩ ∂YM ,

ηA = 0 on ∂YB ∩ ∂YM ,

n · κ̄ · ∇h
yηA = 0 on ∂±YM ,

(12)

where κ̄ = (κ̄ij) is the permeability in the dual porosity YM . Thus, for a given scale ε0, the
“true” permeability is ε2

0κ̄.
The solution of (12), i.e. the pressure in the dual porosity, is the characteristic response

to the unit pressure prescribed on walls of YA, whereas zero pressure is prescribed on walls of
YB. No flux is admitted through the external face ∂±YM . Corrector function ηA is employed
to compute the homogenized coefficient G, see [9].

4th micro-problem. Find γ+/− (Y-periodic functions in y1, y2) such that

∇h
y · κ̄∇h

yγ
+/− = 0 in YM

γ+ = γ− = 0 on ∂MYA ∪ ∂MYB,

n+/− · κ̄∇h
yγ

+/− = 1/h on ∂+/−YM ,

n−/+ · κ̄∇h
yγ

+/− = 0 on ∂−/+YM ,

(13)
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A g2,ε
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B

Figure 2. Given data for the simulation of perfusion in the double-porous layer.

where +/− means the case: either +, or − is applied (mind the difference between
+/− and −/+). Above n+/− is the unit normal vector on ∂+/−YM . The solution of (13)
presents the characteristic pressure response in the dual porosity to unit fluxes through the
external face ∂±YM : to compute γ+, unit flux on ∂+YM and zero flux on ∂−YM apply, the op-
posite conditions hold for γ−. Corrector functions γ+/− determine coefficients F+/−

A ,F+/−
B ,

see [9].for details.

3.2. Numerical illustration

We consider a square representing the mid-plane segment of the associated layer. The
periodic structure depicted in Fig. 1, which is used in our computations, is generated by the
cell Y where both YA and YB are channels with 3 external branches; note that both channels
form connected domains in the entirety of the layer. It is important to note that the homog-
enized layer model with the double porosity has a real meaning for a defined scale ε > 0

which also is related to the layer thickness. To use the homogenized model established by
(6), the fluxes describing channel branch saturations {gk

A}, {gk
B} and external flows through

matrix interface ĝ+, ĝ− must be given such that (7) are satisfied. Consider a “real structure”
with given fluxes {gl,ε

A }, {g
k,ε
B } and ĝ±,ε, see Fig. 2. Eq. (7)1 holds if

εḡD :=

∑
k=1,2,3 g

k,ε
D |Ak

D|∑
l=1,2,3 |Al

D|
,

g̃k
D := gk,ε

D − εḡD ,

ĝ± :=
1

ε
g±,ε ,

(14)

where the last definition expresses proportionality of the matrix fluxes to the smallness of the
dual permeability, as discussed in [9], see also [12].Fluxes displayed in Fig. 2 were introduced



pA,wA pB,wB pA − pB

pM(·, x1) pM(·, x2) two macroscopic points:

Figure 3. An illustration of the perfusion simulation in a layer. The last picture indicates
positions of two points for which the pressure pM and perfusion velocity fields were evaluated.
The arrows indicate the perfusion velocities corresponding to the displayed pressure fields.

such that (7)2 holds, whereby ĝ±,ε = 0, thus, the dual porosity (the matrix part) was insulated
on the upper and lower edges of the layer.

In Fig. (3) the distribution of both macroscopic pressures in the homogenized layer is
depicted and the pressure field in the dual porosity of the microstructure is depicted for two
different macroscopic positions.

The multiscale modeling based on the homogenization method is implemented in our
in-house developed code SfePy, see [1].

3.3. Adaptation of the model for modeling of the liver parenchyma

As explained in the introduction, the homogenized layer model was proposed to cope
with perfusion on complex branching structures whereby the fluid can flow from one to an-
other through the dual porosity. The idea was to decompose a 3D volume into “parallel” layers
having periodic, but mutually different structures. In the context of the liver parenchyma, the
discussed model of one homogenized layer have a special meaning. On the microscale level
the tissue is formed by an almost periodic structure generated by lobules, see Fig. 4; they
are arranged as hexagonal structures with a limited thickness. The two channel systems A
and B represent the portal and central hepatic veins, whereas the dual porosity (the matrix)
can represent the lobule sinus. Other compartments (the hepatic artery and the bile ducts) are
neglected.

There are two possible methods how to employ the perfusion layer model within the
ad hoc macroscopic layer model. The first one is more coherent with the original idea of
decomposing a 3D volume into a number of homogenized layers, which means the dimension
reduction “3D to N times 2D”. The second one consists in proposing a lumping scheme which



Figure 4. A periodic “hexagonal” structure of the liver lobule. Downloaded at
http://illuminationstudios.com/archives/150/structure-of-a-hepatic-lobule

associates the structure of the two-compartment layer model (6) to with the analogical volume
perfusion model (1) defined with respect toa coordinate system reflecting locally the tissue
orthotropy: namely the pressure gradients (and associated fluxes) in the transversal directions
must be established for a layer with its thickness proportional to the scale ε > 0, as discussed
above in Section 3.2. To develop such a lumping scheme is a challenging task which may be
of interest for many other applications.

4. Convected contrast fluid in the porous materials

In this section we explain how to simulate the dynamic perfusion tests which are used
as principal method to assess blood flow in the brain or in the lever. It is based on the CT
(computed tomography) investigation which provides scans of the tissue density. This quan-
tity is proportional to the local concentration of the contrast fluid (the tracer) transported being
dissolved in the blood. We assume that the tracer does not diffuses in the solution, so it is only
convected. Its content in the solution is expressed by the saturation S.

4.1. Tracer redistribution in parenchyma

Let Si be the tracer saturation of the i-the compartment, so that ci = φiSi (no summa-
tion) is the tracer partial concentration associated with i. Clearly, Si ∈ [0, 1]; this boundedness
must be guaranteed by the transport equations (the conservation law). The total apparent con-
centration (the grey level) is then given as

C =
∑

i

ci =
∑

i

φiSi . (15)



The local conservation in a domain ω ⊂ Ω for the i-th compartment is expressed, as follows:∫
ω

φi∂S
i

∂t
+

∫
∂ω

wi · nSidΓ +
∑

j

∫
ω

Zi
j(S)J i

j =

∫
ω

Sinf
i
+ +

∫
ω

Sif i
− , (16)

where Sin is the external source saturation, f i
+ > 0 is the positive part (flow-in) of f i (f i

− is
the out-flow, vice versa) and the Z switches:

Zi
j(S) =

{
Si if J i

j > 0 ,
Sj if J i

j ≤ 0 .
(17)

From (16) we deduce the following problem: given {wi}i and {pi}i, for a given initial condi-
tions {Si(t = 0, x)}i = {Si

0(x)}i given in Ω, find {Si(t, x)}i such that

φi∂S
i

∂t
+∇ · (Siwi) +

∑
j

Zi
j(S)J i

j = Sinf
i
+ + Sif i

− x ∈ Ω, t > 0 , i = 1, . . . ī ,

Sj given on ∂j−Ω(wj) ,

(18)

where ∂j−Ω(wj) = {x ∈ ∂Ω| wj · n < 0}
Instead of the switch Z we may introduce corresponding index sets:

I i
+ = {j 6= i| J i

j > 0} , I i
− = {j 6= i| J i

j ≤ 0} . (19)

Further, by introducing the “true mean velocities” vi = (φi)−1wi, we can rewrite (18)1, as
follows:

φ
DviSi

Dt
+ Si∇ · wi +

∑
j∈Ii

−

SjJ i
j +

∑
j∈Ii

+

SiJ i
j = Sinf

i
+ + Sif i

− , (20)

where DviS
i

Dt
is the material derivative w.r.t. to vi.

4.2. Transport on branching network

We consider a branching network consisting of pipes and junctions. For such structure
we can derive the transport (advection) equations. Let ` =]x0, x1[, x0, x1 ∈ R be a pipe.
Thus, by x we refer to the axial coordinate along the oriented(!) pipe with the end-points
x0, x1, while by X ∈ R3 we mean the spatial positions associated with x. We consider a
velocity w(x) and cross-section A(x) given at any x ∈ `, which satisfy the mass conservation
(By Q we denote the flux in the pipe.)

∂x(wA) = ∂xQ = 0 , x ∈ `. (21)

Positivity of the convection velocity w is established in the context of the orientation of the
pipe, i.e. T =

∫ x1

x0
1/w(x) dx is the transition time of the steady flow in the pipe.



It is now easy to derive the following equation for transport of the tracer, where S(x, t)

is the local instantaneous saturation; possible forms of the same equation are:

∂t(AS) + ∂x(wAS) = 0 ,

or

A(x)∂tS(x, t) +Q∂xS(x, t) = 0 ,

or

∂tS(x, t) + w(x)∂xS(x, t) = 0 , x ∈ `.

(22)

At the pipe ends we consider the boundary conditions:

S(x0, t) = S0(t) given for Q > 0 ,

S(x1, t) = S1(t) given for Q ≤ 0 .
(23)

Transition times. We consider given saturations S0(t) and S1(t) at the end-points of pipe
`e, see (23). Eq. (22)3 can be written using the material derivative as

Dw S(x, t)

D t
= 0 , x ∈ `e , (24)

hence S(x1, t1) = S(x0, t0) where the transition time Te = t1 − t0 is Te =
∫ x1

x0
(w(x))−1dx.

Mixing and transport through junctions. We consider junctions (Xj, J j) connecting pipes
{`k}k∈Jj , where Xj ∈ R3 is the j-th junction spatial position and J j is the set of indices of
pipes connected at the junction. At any junction, a unique saturation S̃j is computed using an
obvious conservation law. The mean junction saturation S̃j satisfies∑

e∈Jj
+

SeAev
j
e + S̃j

∑
e∈Jj

−

Aev
j
e = 0 ,

where

vj
e = +we if e ends at junction j ,
vj

e = −we if e begins at junction j ,
J j

+ = {e ∈ J j| ve ≥ 0} ,
J j
− = {e ∈ J j| ve < 0} ,

(25)

so that velocities we in pipes `e define ve depending on the oriented network topology. We
can call J j

+ the index set of sources and J j
− the index set of sinks.

Assembling equations of the transport on the network Due to (24) and knowledge of the
transition times, the state of the transport is described by the junction saturations {S̃j(t)}j .
Equations of the model are assembled, as follows:

1. For `e with a given we define the source junction i = i(e), such that e ∈ J−, i.e. vi
e < 0.

It means, that S(x, t) for x ∈ `e is driven by S̃i(t).

2. The sink junction j of the pipe e, where e ∈ J+, is associated with the general form
equation (25), where Se(t) := S̃i(t− Te), where i = i(e).



3. Let a junction j is coupled directly with junctions {k+
e }e with e ∈ J j (we consider two

junctions (k+
e , k

−
e ), i.e. “source-sink” couple, for each junction. The junction equation

at time t is

S̃j(t)
∑
e∈Jj

−

Aev
j
e +

∑
e∈Jj

+

Aev
j
eS̃

ke(t− Te) = 0 . (26)

The junction equations (26) can be evaluated for discretized time interval, i.e. for
t ∈ {tn}n where tn = t0 +n∆t. Obviously, for a given Te, the saturation at tn−Te ∈ [tp, tp+1]

is approximated using the average of values at tp and tp+1 .

5. Numerical examples

Preliminary testing of the above described multiscale modeling approach was per-
formed for a simplified model of pig liver, Fig. 5 (left); domain Ω is the cube into which
two perfusion trees handled by the “1D” model penetrate; they are described schematically in
Fig. 5(right), whereby the lengths and average diameters of the main hepatic veins and their
segments listed in Table 1 are based on a sonography examination of an experimental pig
done at the Faculty of Medicine in Pilsen, Charles University in Prague. Effects of the hepatic
artery were not considered in the present example.

The blood flow was computed using the algorithm described in Section 2.3. The “0D”
model was treated numerically using the finite element method based on the weak formulation
of problem (1) and (2) with the coupling conditions (4) related to the “1D” flow model. In
Fig. 6 we display pressure fields and the associated perfusion velocities computed for the two
compartments V1 and V2 which are coupled with the “1D” trees TP and TH , respectively.

Figure 5. Simplified model of pig liver (left) and the 1D model of main hepatic vessels (right)
Geometrical parameters of trees TP and TH are given in Tab. 1.



Flow in V1 Flow in V2

Figure 6. Perfusion velocities in parallel sectors V1 (top left) and V2 (top right) connected
with the “1D” trees TP and TH , respectively, see Fig. 5. The associated pressure differences
indicate blood filtration in the capillary system, i.e flux between the two sectors.
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Figure 7. The external source saturation SP
0 (t).

To simulate propagation of the tracer, we consider external source saturation given in
the form of a time bolus defined at the input of the portal vein tree, as follows:

SP
0 (t) =

{
S̄
(
1− cos 2π t

T

)
for t ≤ T ,

0 for t > T ,
(27)

where S̄ = 0.4 and T = 2s. The porosity of the liver parenchym φi, i = 1, 2 is kept constant



in both systems and set equal to 0.8. The numerical solution of the tracer redistribution in the
parenchyma is based on Eq. (18), whose spatial discretization is carried out using the cell-
centered finite volume method formulated for unstructured hexahedral grids in combination
with the upwind scheme. The time integration employs the two-stage Runge-Kutta scheme
of second order accuracy. In Fig. 8 we display maps of the two saturations S1, S2 and of
the tracer concentration C evaluated using (15) at selected times. The maps are located in a
central section oriented in the horizontal plane.

Table 1. Parameters of the 1D vessel model. For the position of the segments A – I, see Fig. 5
hepatic portal vein TP hepatic veins TH

A B C D E F G H I J
diameter D [mm] 12 5.2 5 10 4 10 9.5 12 6.6 20
length L [mm] 56 46 36 20 33.5 44.8 36.4 4 52 30

6. Conclusion

The model of perfusion proposed in the paper describes the blood flow at several
scales; this modeling approach should provide a more accurate way of the perfusion quantifi-
cation when compared to the classical conventional compartment models, cf. [7] The “0D”
model, though describing complex flows on branching vessel networks embedded in the 3D
body, is based on the Darcy flow in multiple overlapping and mutually connected compart-
ments. The flow between them due to the pressure difference correspond to the blood fil-
tration in the parenchyma. We illustrated a simulation of the perfusion and tracer transport
on a simple example with an artificially generated geometry of the blood vessels. The tracer
concentration can be compared with measurements obtained from the standard CT perfusion
investigations. We plan to study the perfusion in realistic geometries. Besides various sim-
plifications of the modeling, the most serious problem to be solved is to determine the model
parameters. For this we intend to formulate and solve an inverse problem: for given maps
of concentrations (from measurements), compute an optimal set of parameters which provide
the best fit in terms of the computed concentrations. As the next step we intend to develop
a “lumping scheme” which allows to use the homogenized model of the perfused layer to
replace the ad hoc macroscopic “0D” model. The model can also be extended to capture ef-
fects of deformation. In [2] we considered an ad hoc macroscopic multicompartment model;
its structure can be interpreted as a lumped version of the homogenization based perfusion
models, e.g. [10,11], cf. [13], where the theory is explained in detail for a one compartment
double-porosity medium.
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Figure 8. Time development of the saturation Si, i = 1, 2 and the total concentration C
(cross-section parallel to xz plane; value ranges: S1 ∈ [0, 0.1], S2 ∈ [0, 0.005], C ∈ [0, 0.2])
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