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Abstract. Passive control has been used to reduce vibration amplitudes. This is the case of
composite structures with elastic layers and viscoelastic core. These structures, which are
called by sandwich, present a high damping ratio and simple applicaticorder to design
sandwich structures, many aspects ranging from computer modeling to laboratory tests
should be considered. In this paper, an approach that involves a theoretical/numerical Golla-
Hughes-McTavish (GHM) based model is presented. The GHM method is applied to modeling
viscoelastic materials and, consequently, to aid the design of sandwich structures. In that
way, starting from dynamic properties of a viscoelastic material, numerical models are used
to evaluate the behavior of sandwich structures, showing the advantages and disadvantages
of the presented methodology. Comparisons with uncontrolled structures are also presented,
showing the dissipative characteristics of this type of passive control.
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1. INTRODUCTION

The development of new construction materials, the advancement of knowledge about
materials behavior and the domain of sophisticated construction techniques, allowed the
construction of lighter and high bearing capacity structures. This process extends to the
present days and imposed the need to check, during the design phase, the dynamic behavior of
structures, with few exceptions.

Structural vibrations are undesirable not only for the discomfort caused to users, but
also for the fatigue process, which is accelerated by dynamic oscillations. These effects may
be detected specifically in structures with low stiffness and low natural frequencies, leading to
large displacement amplitudes.



Aiming the reduction of structural vibrations, sealetechniques were developed to
increase structural damping. Among these technjgirespassive control with viscoelastic
materials has shown reasonable efficiency. Thegerrals have low bearing capacity with
high dissipative capacity when subjected to cygéformations. That is the main reason why
viscoelastic materials are applied in sandwich feyeith stiff elastic materials [1]. In that
way, in order to effectively reduce structural ations using viscoelastic materials, it is
important to understand the dynamic behavior of gtrecture and the used viscoelastic
material (VEM).

Within this context, this paper will discuss themputational modeling of viscoelastic
materials and their use for reducing vibrationssiructures, working as a passive control
mechanism in sandwich layers. A computational \etastic sandwich model, based on GHM
method, is analised and validated. Finally, congmas with uncontrolled structures are also
presented, showing the dissipative characterisfitisis type of passive control.

2. THE GHM MEHOD FOR VISCOELASTIC MATERIALSMODELING

The stress-strain relation on Laplace’s domain astioned by reference [2] may be
written as:

a(s) = [E, +h(9)e(s), (1)

where s is the Laplace operatog(s) and £(s) are, respectively, the stress and strain on
Laplace’s domaink, is the elastic fraction of complex modulus am@ is)the relaxation

function.
Functionh(s ) can be written using Biot’s [3] series, using witlo terms:
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wherea , [ and J are materials constants afw, 5,0)= . O
Starting from the equation of motion in the Laplaoenain:

Mts? +K g(e) = £4(9), (3)

where, M", K" and f'(s) are respectively the mass, stiffness and extéoaaling in the
Laplace domain, where:

K' =[E, +h(s)|K,, (4)

where: K, is the rigidity fraction associated with geomedticharacteristics of the model.
The GHM model defines the equation of motion intihee domain as [1]:
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where: z is the auxiliary variable introduced into the desh, called dissipation variable, and
K*=K,(E, +a).
Generalizing equation (5) far degrees of freedom, equation (6) may be written as

0 .. 0 0 : —
r\g Z'HSHO a_ﬂl}{g}{K _(CEY;; a) ;RHZ} :{f(;)}, (6)
o 0

K,=T'AT, (7)

where:

and A is a diagonal matrix consisting of the non-zemgeaivalues of the stiffness matrix
normalized with respect to the elastic modullisthe matrix of vectors corresponding to the
non-zero eigen-values of the mattpeK _,..; R = TA'2 and2=Rz.

As shown in equations (2) and (6) the number obipeive degrees of freedom
associated with viscoelastic elements depends emtimber of terms used in relaxation
function and the number of rigid body motions [#]should be noted that the greater the
number of terms used to write function relaxatioorenaccurate modeling [1].

Using equations (6) and (7), it is possible to daire stiffness, mass and damping
matrices, for any kind of Finite Element.

3. VALIDATION OF GHM METHOD

In order to verify the accuracy of GHM Method, rigswbtained by means of classical
modeling and those obtained by GHM will be analyz&He following viscoelastic bars
presented in figure 1 were used to develop theyaisalDimensions for length, width and
height are 1,00 m, 0,30 m and 0,15 m respectively.

P(t) = 1,0.sen(wt) kN

P(t) = 1,0.sen(wt) kN
(a) Bar with axial loading (b) Bar with transversal loading
Figure 1. Bars used in GHM validation.

Using the dissipation functiom(s) as shown in equation (2), the storage modulus



(G'(w)) and the damping facton(w)) are written as:

G'(w)=E,+a (e _25+ﬂ2) !
0-wf + 5 (®)
afow 1

n(w) = 6ow] + prar Gl

In the present example, adopting,=1,0MPa, a =5,0MPa, £=6,0.103 g and
0=1,2.16s? the frequency dependent properties of the usscbelastic material are ploted
in figure 2. The other mechanical properties osthbars are described in Table 1.

10’ ‘ ‘ ‘ 10

G'(omega)
=
om
n(omega)

10

10 10° 10 10 107 10
Frequency (rad/s) Frequency (rad/s)

@ G'(w) (o (@)
Figure 2.G'(w) andn(w) functions for viscoelastic material considered.

Table 1. Mechanical properties adopted for valaastructure.

Mechanical properties Value
Density 1120 kg/m3
Poisson’s coefficient 0,25

Matrices of viscoelastic Finite Elements formulablsdGHM Method are obtained with
equations (6) and (7) and matrices for classicamehts formulation are obtained by
changing, in the correspondent elastic matrix gllastic modulus by complex modulus.

Solutions in time domain are not trivial to classiéormulation, since the complex
modulus is frequency dependent. However, solutiondrequency domain, where, for
example, the amplitude of horizontal displacemantfree end of the bar is calculated to a
harmonic loading as shown in Figure 1.a, the smuin the classical formulation becomes
very simple. From the equation that express digpimnts for the model of figure 1 can be
easily reach:

d = [K classical(w) - (UZM classical(a))]_lf ’ (9)
where: K .....(@) andM ... («w) are, respectively, the global stiffness and maasixy d
is the displacement vector aifdis the external force vector. In the case of GHikfrfulation,



the analogous equation is:

{j} = [K e FiaDgyy — WM GHM ]_l{;} ) (10)

where: K 5,y » Dgyw @nd M,,,, are, respectively, the global stiffness, dampind enass
matrix.
As one can observe, the basic differences betwlen eguations (9) (classical
formulation) and (10) (GHM formulation) are:
— Matrices in equation (10) have additional rows antlmns associated to dissipation
dofs;
— The stiffness, damping and mass matrices in equafl®) are constant for any
frequency value, unlike matrices of equation (@) faequency dependent.

3.1. Spatial Frame Element

Discretizations with viscoelastic frame elemenths studied bar are shown in figures 3
and 4. This figures show the bar modeled with Spatial Frame Finite Elements.
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Figure 3. Bar discretized with five classical vistastic frame elements.
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Figure 4. Bar discretized with five GHM viscoeladtiame elements.

Figure 5 presents comparisons in terms of displac¢@mplitudes of the free extremity
of the analysed bar for classical and GHM modedsing the excitation frequency from 0 to
2000 rad/s. It is clearly notice that classical &M solutions are practically identical.
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Figure 5. Analysis of convergence for viscoelaame elements.

3.3. Constant Strain Triangular element (CST)

The classical and GHM viscoelastic CST elements tisenodel the bars are shown in
figure 6. Obviously this kind of Finite Elementrist the more appropriated, but the main goal
of the present analysis is to validate GHM model.
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(a) Classical viscoelastic CST element (b) GHM viscoelastic CST element

Figure 6. Viscoelastic CST elements.

An example of the bar domain discretization with MBH/iscoelastic CST Finite
Elements is shown in figure 7, where the domantissretized with 16 Finite Elements.
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Figure 7. Bar discretized with 16 GHM viscoelagli8T elements (unscaled).

With meshes like the one showed in figure 7, omedraw the graphics in figure 8. As
it was done previously, the excitation frequenaygeis from 0 to 2000 rad/s. In this figure, it
is easy to see that classical and GHM solutionseme as the meshes are refined.
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Figure 8. Analysis of convergence for viscoelaSi®T elements.

3.4. Linear Tetrahedron element (T4)

The classical and GHM viscoelastic T4 elements dusenodel the bars are shown i
figure 9.



(a) Classical viscoelastic T4 element (b) GHM viscoelastic T4 element
Figure 9. Viscoelastic T4 elements.

In figure 10 can be seen an example of the bar dordescretization with 480
Tetrahedral Finite Elements.

Figure 10. Bar discretized with 480 GHM viscoeladi elements.

With meshes like the one plotted in figure 10, caa draw the graphics of figure 11.
Once more, as the meshes are refined the classiddbHM models responses converge.
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Figure 11. Analysis of convergence for viscoelasdcelements.

4. SANDWICH VISCOELASTIC MODEL

Once seen that the GHM model is able to producaltse€ompatible with those
obtained by classical formulation, it will be evalled the damping capacity of a beam with
annular section through computer simulation by Grikthod.



The bar consists in a cantilever elastic beam amttular cross section, working as base
structure and was applied in this structure twoogtastic sandwich damping treatments: one
with treatment on sectors 1 and 2 and another tsgtitment on four sectors, as shown in
figure 12. Dimensions are presented in table 2imiilar example was analyzed by Borges

[5]

Sector 1
stiff layer

—

+ //‘
base structure VEM
(b) Cross section detail

Sector 3 ~

Sector 2
(a) Cross section

Figure 12. Cross sections of the analyzed beams.

Table 2. Mechanical properties adopted for theyereal structure.

Layer External radius (mm) Thickness (mm)

Base 10 1

VEM 12 2
Restriction 13 1

The mechanical properties of elastic layers come@tl@nd viscoelastic layer are listed
in table 3.

Table 3. Mechanical properties adopted for sandwsinircture.

Mechanical properties Elastic layer Viscoelastiela
Density 8794 kg/m3 795 kg/m3
Poisson’s coefficient 0,33 0,49
Elastic Modulus 109,6 GPa -

E, - 1,17 MPa

a - 2,21 MPa

J:; - 143000 8

J - 8,57.16 s*

The structure was simulated under the action ofamrher impact at 20 cm from
cantilever and, at same point, was observed tims\tesisal displacement along the time. The
domain of structure was dicretized with linearabt&dral element meshes, as shown in figure
13. The observed displacements are plotted indid®. In this figure the efficiency of the
viscoelastic sandwich treatment may be easily eleseDamping obtained with treatment on
four sectors is practically identical to the onaaleed with the two sectors treatment.



(a) Beam with damping treatment on sectors 1 and 2 (b) Beam with damping treatment on four sectors.
Figure 13. Structural Finite Element discretization

With these mesh ware simulated the base beam wWwghtwo damping treatment
configurations and its time response are showigatd 14.
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Figure 14. Time response for the beam with dampiggtment.

5. CONCLUSIONS

This study evaluated the GHM method on computationadeling of viscoelastic
materials acting as structural vibration damperse TGHM was implemented in a finite
element code and was observed that GHM producedtgasearly to those with classical
formulation when using a convenient mesh refineméhts fact allows the validation the
GHM method, since this behavior occurred for ghety of developed finite elements.



Analyzing the obtained responses for the cantiléesm, one can be observe that the
adopted damping treatment, in both cases, consigenacreased the damping ratio of the
structure when compared with the elastic strucitieout damping treatment. This structural
behavior allows the conclusion that viscoelastidemals may be used to reduce vibration
oscillations.
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