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Abstract. The purpose of this research is to obtain an estimation of behavior of an elastic
body based on errorneous observations. To do this, the ensemble Kalman filter finite element
method is used. In numerical study, a three dimensional elastic body is considered. The
Iwatayama tunnel is employed. This construction site is located in Gifu prefecture, in Japan.
The external force is applied to the tunnel face. As the boundary condition, bottom of the
computational model is fixed in all directions. Dynamic motion is caused by the external force
applied to the body. Observation data of acceleration at observation points are necessity to
estimate acceleration at some other points. In this study, artificial data is used. Computed
values plus the white Gaussian noise is used as artificial observations. The finite element
method is applied to the spatial discretization and the linear acceleration method(Newmark
β method) is used as the temporal interpolation. Finally, the estimation is compared with the
results by the finite element method, and effectiveness of the EnKF is verified.We suggest that
an ensemble of size 40 and 100 to consider the relation between the size of ensemble members
and accuracy of the EnKF.
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1. INTRODUCTION

The measurements of the blasting vibration in tunnel excavation are often carried out.
However, natural phenomena generally consist of uncertain values and include several noises.
In recent years, computer technology made tremendous progress and numerical analysis is
effective in estimating natural phenomena.In general, the finite element method is applied to
the numerical simulation in the field of geomechanics.

To get fintered results, the Kalman filter (KF) method is useful, because the Kalman
filter can filter artificial and mechanical errors. It is useful for all engineering fields. The prob-
lem is that Kalman filter method is capable to estimate only in the time direction. To overcome
this problem Kalman filter will be combined with the finite element method (KF-FEM). By
this method, state values can be estimated in the time and space directions. However we
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need huge computational requirements, to overcome this difficulty the ensemble Kalman fil-
ter (EnKF) is created. The state values sare highly uncertain and an infinite number of samples
are nesessary. In nature, this is not really the case: there is geological uncertainty about dif-
ferent loading conditions, for example. One way to deal with this uncertainty is the random
finite element method. Several simulations are carried out to give an ensemble of state value
which are needed in EnKF. Parameters can be estimated using the limited number of observa-
tion data by combining the EnKF with the random finite element method. The present study
investigates whether the EnKF finite element method can be adaptable to the dynamic motion
of a three dimensional elastic body.By applying the estimation technique at the Iwatayama
tunnel site, we verify that the method is useful for tunnel excavation.

2. FINITE ELEMENT METHOD

2.1. Basic Equation and Boundary Condition

In this study, indicial notation and the summation convention are used to describe
equation. Eqs.(1)～(3) are the basic equations of the elastic body.
⟨Balance of stress equation⟩

σij,j − ρüi = 0, (1)

⟨Strain displacement equation⟩

εij =
1

2
(ui,j + uj,i), (2)

⟨Stress-strain equation⟩
σij = Dijklεkl, (3)

where σij ,ρ and üi are overall stress, density and acceleration, respectively. Dijkl is called as
the elastic coefficient matrix.

3. THE ENSEMBLE KALMAN FILTER

In the conventional Kalman filter, huge computational load is necessary to find the in-
verse of the matrix. In addition, the errors make prediction of estimation worse. To overcome
these difficulties the ensemble Kalman filter is originated by Evensen(1994). An ensemble
of possible state vectors are considered, which are generated using the random finite element
method, to represent statistical spread of the state vector. The ensemble Kalman filter consists
of three steps. The first step is the forecast step: To represent the errorneous behavior, we
assume that at time k, an ensemble of q forecasted state x

fq
k estimates random simple error

statistics. This ensemble is denoted by Xf
k ∈ Rn×q, where

Xf
n ≡

(
xf1
n , · · · , xfq

n

)
. (4)

The ensemble mean x̄f
n ∈ Rn is defined by

x̄f
n ≡ 1

q

q∑
i=1

xfi
n . (5)



An ensemble error matrix Cf
n ∈ Rn×q is expressed as follows.

Cf
n ≡

[
xf1
n − x̄f

n, · · · , xfq
n − x̄f

n

]
, (6)

The second step is the analysis step: To obtain the estimate of the state, the EnKF performs
an ensemble of the parallel data assimilation cycles, for i = 1, · · · , q

xai
n = xfi

n + K̂n

(
yfin − h

(
xfi
n

))
. (7)

The perturbed observations yin are assumed as;

yin = yn + vin. (8)

Thinking of the forecasted ensemble mean as the best estimate of the state, and spread of
the ensemble members as the error between best estimate and true state, we approximate the
analysis error covariance as follows;

P̂ a
n ≡ 1

q − 1
Ca

n (C
a
n)

T , (9)

where Ca
n is defined by Eq.(??), and xfi

n is replaced by the mean of the analysis estimate
ensemble members. This is different from Eq.(??), so a term is added.

P̂ a
n = (I −KnH)Cf

n . (10)

The Kalman gain is obtained by the approximation of the error covariance as,

K̂n = Cf
n

[
(q − 1)I +

(
HCf

n

)T
R−1HCf

n

]−1 (
HCf

n

)
R−1. (11)

In the EnKF, the Kalman gain can be obtained using the square matrix of order q.
Ensemble members is updated,and ensemble mean is replaced by the mean of the analysis
estimate ensemble members. Estimation value is calculated.

x̄a
n =

1

q

q∑
i=1

xai
n . (12)

The last step is to obtain the prediction of error statistics using the values of the forecast step:

xfi
n+1 = f (xai

n , un) + wi
n. (13)

For the elastic vibration equation, the discretized by the finite element method is used.

4. NUMERICAL STUDY

4.1. A Three Dimensional Elastic Body:Iwatayama Tunnel

A construction site of Iwatayama tunnel which is located in Gifu prefecture, Japan,
and employed for the practical site. The mountain is close to the residential area, and has
steep rock slope. Therefore it is important to make a close examination of rock vibration.



Figure 1. digital map of the Iwatayama tunnel

The digital map of Iwatayama tunnel is shown in Figure 1. The finite element mesh
used is shown in Figure 2. The total number of nodes and elements are 3746 and 18678,
respectively. The size of the body is 200 × 200 × 110[m]. As a boundary condition, bottom
is fixed, and the other surface is free. Poisson ratio and density are set as 0.30 and 2.0 ×
103[kg/m3], respectively. Each element is assumed to have a random elastic modulus. In this
study damping coefficient α0 and α1 are set as 0.001[1/sec] and 0.01[m/sec].



Figure 2. a finite element mesh

The domain is assumed to be subjected to the external force at the tunnel face, which
is expressed by

Γ̂αi =

∫
Γ

Aαi

(
e−ξt − e−ηt

)
dS. (14)

where Aαi is the magnitude of external force. The mesh is assumed that the tunnel was con-
structed about 70[m] from tunnel mouth as shown in Figure 3. Figure 3 shows the schematic
view of the tunnel face.



Figure 3. Cross section

Figure 4. Tunnel face

Observation and estimation points are set as shown in Figure 5. Acceleration at esti-
mation point is estimated using the observation data. This data is shown in the next section.



Figure 5. observation point and estimation point

The random finite element method combines the finite element method with the random field
theory. In this study, the elastic modulus and magnitude of the external force are randomized.
Elastic modulus based on a standard distribution can be transformed into those on a normal
distribution. For each element:

Ei = µE + σEZi, (15)

where µE is mean of the elastic modulus, and σE = 0.01 is standard deviation of the elastic
modulus, and i means number of element.µE is set 1.0× 109[kN/m3] in this study.

Aαi = µAαi
+ σAαi

Zi, (16)

where µAαi
is mean of magnitude of the external force, and σAαi

= 0.01 is the standard
deviation of the magnitude. µAi is set 1.0× 108[kN/m3].
The random variable based on standard normal distribution is represented by Zi.

4.2. Observation Data and Ensemble Members

Observation data are obtained by the random finite element method. 100 ensemble
members are used at each time step. In these figures, a solid line is ensemble mean. The
distribution of the ensemble is shown in Figures 6, 7 and 8. These figures show values on
X,Y,Z-direction, respectively.
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Figure 6. the ensemble at X-direction
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Figure 7. the ensemble at Y-direction
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Figure 8. the ensemble at Z-direction

4.3. Verification

Figures 12, 13 and 14 show the comparisons of acceleration between estimation value
using the EnKF finite element method and artificial observation value using the finite element
method. The estimation values can be found between the range of the ensemble members.
The filtering performed well.
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Figure 9. X-acceleration at estimation point
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Figure 10. Y-acceleration at estimation point
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Figure 11. Z-acceleration at estimation point

4.4. Comparison

We start with comparing the size of the ensemble members. We make comparison
between results with 40 ensemble members and 100 ensemble members. A low number en-
semble members make the range of error large.In contrast, if the number of ensemble members
increase, accuracy of the EnKF is improved. It is seen that the estimated acceleration with 40
ensemble members is almost coincident with the observed acceleration.
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Figure 12. X-acceleration at estimation point
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Figure 13. Y-acceleration at estimation point
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Figure 14. Z-acceleration at estimation point

5. CONCLUSION

It is found that the acceleration at estimation point can be estimated by the ensemble
Kalman filter finite element method. The EnKF finite element method can be successfully
applied to the cantilever beam and the Iwatayama tunnel model. The results of numerical ex-
periments show that the estimated data of acceleration are well in agreement with the observed
data. It is observed that, the accuracy of the EnKF increases when the number of ensemble
members grows. As the future work, state value is estimated using actual measured data. In
addition, the number of ensemble members should be increased.
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