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Abstract. A variational approach for fiber reinforced viscoelastic materials subject to dam-
age The mechanical properties of soft biological tissues vary depending on how the internal
structure is organized. Classical examples of tissues are ligaments, tendons, skin, arteries,
and annulus fibrous. The main element of such tissues is the fibers which are responsible for
the tissue resistance and the main mechanical characteristic is their viscoelastic anisotropic
behavior. The objective of this paper is to extend an existing model for viscoelastic materials
with (anisotropic) reinforcement of fibers in order to include damage that arises when strains
assumes values greater than some physiological range. The model is based on a variational
framework in which its mechanical behavior is described by a free energy incremental po-
tential whose local minimization provides the constraints for the internal variable updates
for each load increment. Among the advantages of these variational approaches we should
mention the ability to represent different material models depending on the choice of suit-
able potential functions and the obtention of symmetric constitutive tangent matrices. Some
numerical examples are shown in order to evaluate the performance of the proposed model.
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1. INTRODUCTION

In this work is proposed a variational constitutive model appropriate to simulate the
mechanical behaviour of connective soft tissues (e.g. ligaments and tendons) subject to large
strains, different loading velocities and damage. These soft biological tissues are mainly
formed by arrangements of collagen fibers embedded in a cellular matrix. This internal struc-
ture provides an anisotropic mechanical response dependent on the fiber directions as well as
a viscosity due to intersticial fluid and interaction among fibers. Many models have been pro-
posed to model these kinds of materials relating different phenomena (large strains, hyperelas-
ticity, anisotropy, viscosity, damage, etc.). Among them, we can mention [1],[2],[3],[4],[5],[6].
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In [7] a variational framework for viscoelastic anisotropic materials submitted to finite
strain regime is proposed. The aim of the present work is to extend this variational formulation
to include damage behaviours, including different damage equations proposed in literature
([3], [5], [4],[6]).

The variational framework of this paper is stated in Section 2. Section 3 presents the
variational damage formulation. Section 4 shows some preliminary results using different
damage functions proposed in literature. Final remarks are enclosed in Section 6.

2. VARIATIONAL CONSTITUTIVE MODEL

Hyperelastic models are based on the existence of a free energy function W which is
dependent only on the total strain. Then, the first Piola-Kirchhoff stress tensor P is defined as

P =
∂W (F)

∂F
= 2F

∂W (C)

∂C
(1)

where F is the gradient of deformation and C = FTF the Cauchy-Green tensor.
The stress state of dissipative materials is dependent not only on the total strain but

also on the strain history. In order to overcome this difficulty an approach based on varia-
tional concepts was proposed in [8] in which the constitutive problem can be stated analo-
gously to Eq.(1) in an incremental way. Variational constitutive models are based on pseudo-
hyperelastic potentials where the constitutive problem can be stated analogously to a hypere-
lastic model. In this approach a pseudo-potential energy, also called the Incremental Potential,
is defined at each load step, providing the first Piola-Kichhoff stress as follows:

Pn+1 =
∂Ψ(Fn+1; ξn)

∂Fn+1

= 2Fn+1
∂Ψ(Cn+1; ξn)

∂Cn+1

(2)

In this expression, ξ = {F,Fi,Q} is the set of external and internal state variables. The
elastic and inelastic gradients of deformation Fe and Fi are obtained from the multiplica-
tive decomposition of F. The symbol Q includes all remaining internal variables related to
the dissipative phenomena. In [8] it is shown that the Incremental Potential may have the
expression:

Ψ(Fn+1; ξn) = min
Fi

n+1,Qn+1

{W (ξn+1)−W (ξn) + ∆tψ(̊Fi, Q̊; ξn)} (3)

W (ξ) = ϕ(F) + ϕe(FFi−1

) + ϕi(Fi,Q) (4)

The strain energy is decomposed additively into elastic and inelastic contributions ϕ, ϕe and
ϕi, depending on the total value of F, on the elastic part Fe and on the inelastic part Fi and
internal variables Q respectively. ψ is the (pseudo) potential that provides the dependence of
the stress on the rate (incremental approximation of rate) variables F̊i and Q̊.

The minimization problem (3) identifies the optimal values of Fi
n+1 and Qn+1, which

define the internal variables associated with the new state Fn+1. Once this minimization
problem is solved, stresses may be computed by Eq.(2) as in hyperelastic models. Different
material models may be constructed in this general framework depending on the particular
choices and arrangements of potentials ϕ, ϕe, ϕi and ψ.



Figure 1. Rheological model

3. ANISOTROPIC VISCOELASTIC MODEL SUBJECT TO DAMAGE

The anisotropic viscoelastic damage model proposed here is an extension of the work
[7] in order to introduce mechanical damage on the fiber-reinforcement, which became sig-
nificant on finite strains. The inclusion of fibers is performed following concepts shown in [9]
by an additive decomposition of energies:

Ψ = Ψiso + Ψd
f (5)

where, Ψiso is the potential related to the isotropic viscoelastic model proposed in [10],
while Ψd

f is related to the fiber contribution subject to mechanical damage.
The fiber-reinforcement contribution proposed in [7], that represents the anisotropic

fiber behaviour, is modified to take into account the mechanical damage.
Figure 1 shows a rheological representation of the addition (5) in which both the

isotropic and the fiber contributions are connected in parallel, reacting independently of each
other for the same total strain. The additive decomposition in Equation (5) states that the
incremental potential of the isotropic matrix and that of the fibers are uncoupled. The same
happens for the elastic and Maxwell branches of the fiber contribution. Each branch depends
on the given strain increment over ∆t and the constitutive response of the composite comes
only from the additive constitutive response of each component, which is clearly illustrated
in Figure 1. Moreover, this model considers that fibers are continuously distributed in the
isotropic ground substance (matrix) [9] and therefore, no distinction is made on the size or
length of them.

3.1. Isotropic Incremental Potential

As mentioned above, the incremental potential Ψiso is exactly that presented in [10].
Nevertheless, we use this section to make a brief description of this model in order to keep
the text minimally self-contained. We begin by assuming a classical multiplicative decom-
position of the gradient of deformation into isochoric and volumetric parts F = JF̂ with
J = det(F). The isochoric part allows also for a multiplicative separation into elastic and



viscous contributions: F̂i = F̂eFv. With these hypotheses, the free energy1 W is defined as

W (C) = U(J) + ϕ(Ĉ) + ϕe(Ĉe) (6)

where
Ĉ = F̂

T

F̂ Ĉe = F̂eT F̂e (7)

The isochoric potential ϕ is an isotropic function of the eigenvalues ci of C. The (elastic)
volumetric contribution originates from the potential U which is dependent on J :

U(J) =
k

2
[ln J ]2 (8)

The potentials ϕ,ϕe and ψ are assumed to be isochoric functions of the Cauchy tensors Ĉ, Ĉe

and of the viscous stretching Dv by means of their respective eigenvalues ci, cei and dvi , i.e.,
ϕ(Ĉ) = ϕ(c1, c2, c3) , ϕe(Ĉe) = ϕ(ce1, c

e
2, c

e
3), ψ(Dv) = ψ(dv1, d

v
2, d

v
3).

The viscous stretching Dv is defined by

Dv = Sym(Lv) = Lv = ḞvFv−1

(9)

where it is defined that Lv is symmetric. The viscous flow is assumed to be isochoric by
means of the following constrains on the spectral components of Dv

dvj ∈ KQ = {pj ∈ R⇒ p1 + p2 + p3 = 0}
Mv

j ∈ KM = {Nj ∈ Sym⇒ Nj ·Nj = 1,Ni ·Nj = 0, i 6= j} (10)

From these definitions, it is shown in [10] that at each time increment ∆t, the isotropic Incre-
mental Potential in Eq.(3), takes the form

Ψiso(Fn+1; ξn) = ∆ϕ(Ĉn+1) + ∆U(Jn+1) + min
Mv

j ,∆q
v
j

{
∆ϕe(Ĉe

n+1) + ∆tψ
(
Dv
n+1

)}
(11)

subject to

dvj =
∆qvj
∆t

, ∆qvj ∈ KQ = {pj ∈ R⇒ p1 + p2 + p3 = 0} (12)

Mv
j ∈ KM = {Nj ∈ Sym⇒ Nj ·Nj = 1,Ni ·Nj = 0, i 6= j (13)

In expression (11) we have

∆ϕ(Ĉn+1) = ϕ(Ĉn+1)− ϕ(Ĉn)

∆ϕe(Ĉe
n+1) = ϕe(Ĉe

n+1)− ϕe(Ĉe
n) (14)

∆U(Jn+1) = U(Jn+1)− U(Jn)

with

Ĉe
n+1 = F̂eT

n+1F̂
e
n+1 = Ĉpr

(
exp[∆tDv

n+1]
)−2

Ĉpr = Fv−T

n Ĉn+1F
v−1

n ∆tDv
n+1 =

∑3
j=1∆qvjMj (15)

Fv
n+1F

v−1

n = exp[∆tDv
n+1] F̂e

n+1 = F̂n+1F̂
v−1

n+1

1For simplicity of notation we omit the subscript iso from the potentials associated with the isotropic contri-
butions. However, we maintain the subscript f for the potentials associated with the fiber counterpart.



The optimality condition of (11) with respect to Mv
j results in Ĉe

n+1, Ĉpr and Dv

sharing the same eigenvectors Ee
j = Epr

j = Mv
j respectively. Finally, the minimization with

respect to ∆qvj results in the following set of nonlinear equations [10]:

∂ϕe

∂εej
− ∂ψ

∂dvj
+ λ = 0 j = 1, 2, 3

∆qv1 + ∆qv2 + ∆qv3 = 0 (16)

where λ is the Lagrangian multiplier associated with the constraint (12) and εej = 1
2

ln(cej).
The four nonlinear equations (16) can be solved by the Newton method, a technique that
also provides the analytical tangent modulus to be used in the global equilibrium problem.
Once the minimizers ∆qvj are obtained, the first Piola-Kirchhoff stress tensor is calculated by
the classic “hyperelastic-like” expression. Detailed information regarding these operations is
found in [10].

3.2. Anisotropic Viscoelastic Damage Incremental Potential

The corresponding Incremental Potential for anisotropic damage behaviour Ψd
f , re-

lated to fiber directions, is not only dependent on the Cauchy tensor C, but also on the struc-
tural tensor Af = af ⊗ af , where af is the unit vector defining the fiber direction. This
dependence in the present case is related to the invariant If [1]:

If = Ĉ : Af = af · Ĉ · af = λ2
f (17)

which has the particular physical interpretation of the quadratic stretch in the direction of
the fiber λ2

f . The total elongation λf acting on the Maxwell branch of the fiber contribution
(Fig.1) may be decomposed into elastic and inelastic and viscous contributions: λf = λefλ

v
f .

The rate of viscous stretching of the fiber is defined as:

dvf = λ̇vfλ
v
f
−1 (18)

The incremental evolution of the viscous stretch is obtained using the exponential mapping
proposed in [11] that allows us to write

λvfn+1
= exp(∆t dvf )λ

v
fn ; ∆λvf = exp(∆t dvf ) =

λvfn+1

λvfn
; dvf =

1

∆t
ln(∆λvf ) (19)

The anisotropic viscoelastic pseudo-potential proposed by [7] carry out the depen-
dence of an internal state variable which introduce viscoelastic effects. The fiber counterpart
of the free energy Wf is defined as

Wf = ϕf + ϕef ; (20)

The potentials ϕf and ϕef are assumed to be functions of the total fiber stretch λf and of the
elastic fiber stretch of the Maxwell branch λef , respectively. It is also assumed the existence
of a dissipative pseudo-potential ψf that is function of the rate of fiber viscous stretching dvf :

ϕf = ϕf (λf ); ϕef = ϕef (λ
e
f ); ψf = ψf (d

v
f ) (21)

In order to include the phenomenon of fiber damaging in the model proposed in [7],
two new internal variables η and ηe are added. This changes the expressions of the elastic



potentials during the deformation process and consequently the mechanical behaviour of the
material. η is the internal damage variable that acts on the potential ϕf of the main branch of
the fiber contribution while ηe is the internal damage variable that acts on the potentials ϕef
and ψf of the Maxwell branch of the fiber contribution. A simple form for this inclusion is
the following:

Wf = ϕdf + ϕedf ; (22)

where
ϕdf (λf , η) = (1− η)ϕf (λf ) + φ(η) χf = χf (η̇) (23)

ϕedf (λef , η
e) = (1− ηe)ϕef (λef ) + φe(ηe) χef = χef (η̇

e) (24)

The potentials φ and φe account for the laws of hardenning/softenning of the fibers due to the
mechanical damage. χf and χef are dissipative pseudo-potentials depending on the rate of the
corresponding damage variables and intimately related tho their evolution.

With these definitions and following analogous arguments found in [10] and [7] it is
defined the following fiber contribution of the incremental potential:

Ψd
f = min

ηn+1

{
∆ϕdf

(
λfn+1 , ηn+1

)
+ ∆tχf (η̇n+1)

}
+

+ min
λvfn+1

,ηen+1

{
∆ϕedf

(
λefn+1

(
λvfn+1

), ηen+1

)
+ ∆tψf (d

v
fn+1

(λvfn+1
)
)

+ ∆tχef (η̇
e
n+1)

}
(25)

where

∆ϕdf = ϕdf (λfn+1 , ηn+1)− ϕdf (λfn , ηn) (26)

∆ϕedf = ϕedf (λefn+1
, ηen+1)− ϕedf (λefn , η

e
n) (27)

Physically, the fibers do not bear compressive stresses. Therefore, potentials ϕf , ϕef
and ψf have some particularities, which leads to some care being required in approaching the
minimization problem. This is discussed in detail in [7].

3.3. Material Models

The mechanical behaviour of different materials may be represented from a suitable
choice of the potential functions. Those used in the present article are shown bellow.

3.3.1 Hencky and Ogden Models

The Hencky expressions are of the type

ϕ = µ
3∑
j=1

(ln(λj))
2 , ϕe = µe

3∑
j=1

(
ln(λej)

)2
, ψ = ηv

3∑
j=1

(
dvj
)2 (28)

while the Ogden expressions are written as

ϕ =
3∑
j=1

N∑
p=1

µp
αp

([λj]
αp − 1) , ϕe =

3∑
j=1

N∑
p=1

µep
αp

([
λej
]αp − 1

)
, (29)

ψ =
3∑
j=1

N∑
p=1

ηvp
αp

([
dvj
]αp − 1

)
. (30)

Symbols µ, µe, ηv, µp, µep, µ
v
p, αp are material parameters to be identified. More details on

this issue are found in [10].



3.3.2 Fiber Material Models

Different expressions of hyperelastic fiber-materials are found in the literature. In this
work is used that proposed in [1]:

ϕf =


k1

2k2

{exp[k2(λf
2 − 1)2]− 1} if λf > 0

0 if λf ≤ 0

(31)

Similar behaviour is set for the dissipative potential ψf , attributing a zero value to a compres-
sive viscous stretching:

ψf (d
v
f ) =

{
ψf (d

v
f ) if dvf ≥ 0

0 if dvf < 0
(32)

where ψf is any of the viscous models previously presented (Hencky or Ogden Model).

3.3.3 Damage Material Models

Different functions has been proposed in the literature for the damage variable. Con-
sider first the following intermediate variables

Φd =
√

max
s∈(−∞,t)

ϕf (λf (s)), Λ =
Φd − Φd

min

Φd
max − Φd

min

where Φd has the meaning of the square root of the maximum value the strain energy of the
undamaged fiber achieved in time, α, β,Φd

min and Φd
max are material parameters and Λ is a

normalization of Φd. In [3] is proposed the following exponential expression of damage as a
function of Φd:

η(Φd) =


0 if Φd < Φd

min

1−
1− exp

(
β
[
Φd − Φd

max

])
1− exp

(
β
[
Φd

min − Φd
max

]) if Φd
min ≤ Φd ≤ Φd

max

1 if Φd > Φd
max

(33)

In [4], similar expression is proposed, now of a polynomial type:

η(Φd) =


0 if Φd < Φd

min

Λ2
[
1− β

[
Λ2 − 1

]]
if Φd

min ≤ Φd ≤ Φd
max

1 if Φd > Φd
max

(34)

In [5] takes the form

η(Φd) =
1

2

1 +
αΦd exp

[
2α
(

2Φd

β
− 1
)]
− 1

αΦd exp
[
2α
(

2Φd

β
− 1
)]

+ 1

 (35)

while in [6] a mathematical function of “S” shape is stated:

η(Φd) =
1

1 + exp (−α [Φd − β])
(36)



All these cases correspond to pure elastic-damage models in which the damage variable η is
completely defined by the current value of Φd.

In the present framework, η is obtained from the optimality condition (25) in wich
a potential function φ(η) is needed (see (23) and (25)). To obtain this potential function
it is possible to use an approach similar to that presented by [12]. The expressions given
above were all proposed in the context of elastic-damage models with a strain-energy density
function of the form

Ψ(F, η) = ηΨ(F) + φ(η) (37)

where it is possible to obtain the function ∂φ(η)
∂η

using the constrain (See [12]):

∂Ψ

∂η
= 0 (38)

which results in the following expression:

∂φ(η)

∂η
= Ψ(F). (39)

The expression (39) may be used to obtain the correspond function φ(η) of each dam-
age expression η(Φd) presented above for elastic-damage models. It should be noted that
the constraint (38) is conceptually analogous to the optimality conditions of the minimization
problem (25) with respect to η. The difference appears due to the dissipative potential χf that
characterizes the possible dependence of the process to the rate η̇:

χf (η̇) =

{
χf (η̇) if η̇ ≥ 0

0 if η̇ < 0
(40)

4. PRELIMINARY RESULTS

In order to verify the ability of the proposed model to represent the viscoelastic-
damage behaviour, uniaxial stretching tests with controlled stretching cycles are performed.
Since the anisotropic behaviour was extensively investigated in [7], here only the damage
effect on the fiber direction is presented.

The material parameters are presented in Table 1. These parameters don’t have any
correlation with a real materials and have been chosen to study the model capability. In this
section are presented only results for the damage models proposed by [5] and [4], respectiv-
elly, Case I and Case II.

The results using the damage function correspondent to the Case I are presented in
Fig.2-4. Fig.2 presents the stress response of the model. Fig.3 shown separately the stress
contribution of the fiber Main branch and the fiber Maxwell branch. Finally, Fig.4 presents
the history of the damage variables η (Main branch) and ηe (Maxwell branch).

The results using the damage function correspondent to the Case II are presented
in Fig.5-7. In the same order proposed above, Fig.5 presents the stress response of the
model, Fig.6 shown separately the stress contribution of the fiber main branch and the fiber
Maxwell’s branch and Fig.7 presents the history of the damage variables η (Main branch) and
ηe (Maxwell’s branch).



Table 1. Material parameters used on the uniaxial tests for the fiber contribution.

Potential Fiber
Model Parameters

ϕf Holzapfel k1 = 100 MPa e k2 = 1.5 MPa
ϕef Holzapfel k1 = 100 MPa e k2 = 1.5 MPa
φ (I) Rodriguez α = 0.1 e β = 1
φe (I) Rodriguez α = 0.1 e β = 1
φ (II) Peña β = 1, Φd

min = 0 e Φd
max = 10

φe (II) Peña β = 1, Φd
min = 0 e Φd

max = 10
ψf Hencky ηv = 3000 MPa.s−1
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Figure 2. Stress response (Case I)
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Figure 3. Stress contributions (Case I)
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Figure 4. Damage history (Case I)
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Figure 5. Stress response (Case II)



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

10

20

30

40

50

60

70

80

90

Strain

S
tr

es
s 

[M
P

a]

 

 

Fiber − Main
Fiber − Maxwell

Figure 6. Stress contributions (Case II)
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Figure 7. Damage history (Case II)



In both cases (Case I and II) were used the same parameters in the potentials of the
Main branch (ϕf and φ) and of the Maxwell’s branch (ϕef and φe). The viscous effect is clear
noted only on the Maxwell’s contribution (See Fig.3 and Fig.6), while the damage behavior
can be seen on both curves. The damage behavior is noticed on the begging of the second
loading, where the stiffness is lower than in the first loading, and also in dissipation behavior
characterized by the path of the unloading curves.

5. CONCLUSIONS

The main objective of this works was achieved. In the preliminary results was shown
that was possible to represent viscoelastic-damage behavior by means of a convenient intro-
duction of two new damage variables in a existent variational framework. In this case was
used a fiber-reinforced viscoelastic variational model.

It should be mentioned that the presented examples have the goal of verifying the
ability of the proposed approach to follow expected qualitative behaviors. Experimental data
should be used in further works in order to perform a parameter identification for the proposed
potentials.
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