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Abstract. Beam elements are some of the most used finite elements in structural analysis. 

Formulations for these types of elements date from the first years of finite element applications; 

however, there are still some interesting details to be found in their formulations. In our search 

for accuracy and computational efficiency, different approaches have been taken to formulate 

them. Cubic Hermite polynomials were used with potential energy to produce the first beam 

elements, however, it was difficult to formulate plate and shell elements compatible with them. 

Compatible two noded elements with linear interpolations were devised but they tend to lock in 

shear forcing us to under integrate the shear stiffness, and still they were not as accurate. In our 

quest for accuracy other types of variational principles have been used, mainly the Hellinger-

Reissner and the Hu-Washizu principles. Hellinger-Reissner beam elements are accurate and 

efficient but have difficulties when non linear strain driven constitutive relationships are needed 

to model the material behavior. Hu-Washizu type elements, on the other hand, have no such 

problem and are therefore excellent candidates for these formulations, but it is difficult to devise 

adequate stress, strain and displacement interpolations that offer the same accuracy and 

efficiency. Different alternatives are used to improve the response of the base linear element; two 

of them are linked interpolations and bubble functions. In this work it is shown how linked 

interpolations can be used to avoid the shear locking problem, and bubble functions can be used 

to generate equivalent strain interpolations that improve the accuracy by using a Hu-Washizu 

type formulation. The resulting element is as efficient and accurate as a Hellinger-Reissner one 

but has no problem handling strain driven constitutive relationships for the material. 
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1. INTRODUCTION 

Beam elements are some of the most common types of members employed in solid 

structural analysis, and their computational modeling has been evolving since the earliest days of 

the finite element method. Stiffness formulations use displacement interpolation functions. 

Displacement based beam elements were formulated from the potential energy principle or from 

the virtual work principle using Hermitian interpolation functions. These elements satisfy 

compatibility but generate only approximate stiffness matrices for non-prismatic beams. Most of 
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these elements were based on the Euler-Bernoulli theory and are accurate when the curvature and 

bending moments are proportional. In the presence of nonlinearity, when the curvatures are of 

higher order than the bending moments, like in a hinge, extreme refinement is needed for an 

accurate solution [1]. Flexibility methods use force interpolation. These elements are obtained 

from the complementary potential energy or from the virtual force principle. They have the 

advantage of exactly representing the flexibility matrix for non-prismatic elements but have 

problems satisfying compatibility. One of the first formulations of a force based element is the 

work of Ciampi and Carlesimo [2]. Mixed formulations based on a two field principle of the 

Hellinger-Reissner type were developed later by several authors. The work of Spacone, Ciampi 

and Fillipou [3], and Ayoub and Fillipou [4] generalize beam formulations with independent 

interpolations of force and displacement. These methods offer good accuracy of the flexibility 

matrix and satisfy compatibility, but have problems incorporating strain driven material models 

since they use a flexibility approach for the constitutive relationships. Furthermore, these 

methods do not have a variational consistent structure, and the stress recovery is not clearly 

stated. 

The Hu-Washizu principle allows for a three field formulation combining independent 

displacement, strain and stress fields. Elements based on this principle satisfy compatibility and 

are capable of representing independent strain and stress fields. Assumed enhanced strain 

elements based on this principle have been successful in the solution of several solid mechanics 

problems because the strain fields are tailored for the specific problems, like incompressibility or 

deformation in bending dominated problems. The difficulty with its use is in the definition of 

adequate fields for strain and stress. An example of a beam element formulated with this 

principle is the one presented by Taylor, Fillipou, Saritas and Auricchio [5] which is equivalent 

to a Hellinger-Reissner type element but allowing strain driven constitutive relationships for the 

material. An elegant formulation for assumed enhanced elements based on this principle is the 

one presented by Kasper and Taylor [6], which will be used in the present work. 

In this work the Hu-Washizu principle is used to generate a beam formulation of the 

Timoshenko type. The element has no locking in shear and is as accurate as the Hellinger-

Reissner type elements. In addition, it is consistent in its variational stress recovery.  As a 

contribution of this work, it is shown how the shear locking problem can be eliminated by using 

linked interpolations [7] and how to increase the accuracy of the linear beam element by using an 

enhanced strain field equivalent to a bubble function of the rotation field. 

In section 2 a brief description of the beam kinematics and the strong form are presented. 

In section 3, the weak form corresponding to the stationary condition of the Hu-Washizu 

principle is presented. In section 4, the matrix forms produced by the specific interpolations for 

displacements, strains and stresses are presented, and the effect of linked interpolations in the 

stiffness matrix is shown. Specifically, it is shown how linked interpolations make the shear part 

of the stiffness matrix singular avoiding the locking effect, and how an enhanced strain field 

equivalent to a rotation bubble function increases the accuracy of the element. Finally, in section 

5, numerical examples are presented followed by a conclusion in section 6. 



2. BEAM KINEMATICS AND STRONG FORM 

We use a Timoshenko type theory assuming that a plane section, initially normal to the 

longitudinal axis of the beam, remains plane during all the process of deformation but not 

necessarily orthogonal to it. This allows for shear deformation to be taken into account. In figure 

(1.a) a lateral view of the beam is shown with the plane XY being a principal plane. Figure (1.b) 

shows the positive convention for lateral centroidal displacement cv  and transverse section 

rotation zc . Displacement and rotation are combined in the generalized displacement vector u: 
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Figure 1. (a) Lateral view of the beam element. (b) Positive displacement and rotation. 

 

Longitudinal displacement of a material particle on a transverse section is expressed as 

 zcu y   (2) 

The strain resultant vector Rε  is composed by the shear strain xy  and beam curvature xy  
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The stress resultant vector Rσ  is formed by the shear force yQ  and the bending moment 

zM : 
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The shear force and bending moment are defined, respectively by 

 y xy

A

Q dA  , z x

A

M ydA   (5) 

Assuming elastic constitutive relationships for the material and combining them with 

equations (5), we obtain the resultant stress-strain relationships where E is the modulus of 

elasticity, G the shear modulus, A the transverse section, ky the shear correction factor and Iz the 

second moment of inertia. 
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Figure 2 shows a differential beam element from which the equilibrium equations are 

obtained: 
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Figure 2. Differential beam element and external loads. 

Equations (3) and (6) to (8) state the strong form of the beam problem. 

3. THE HU-WASHIZU PRINCIPLE AND THE WEAK FORM. 

The three field Hu-Washizu principle may be expressed as: 
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Equation (9) uses a stored strain energy function RW from which the resultant stress-strain 

relationship may be obtained 
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 Equation (6) is a special case of equation (10) in which the material is linear elastic. 

Equation (9) contains the external potential energy produced by a body force field b and resultant 

traction vector tR. 

The weak form of the problem is obtained by making the Hu-Washizu principle 

stationary. U, E and S represent respectively variations of u, ε  and σ .  The weak form is split in 

three parts: 
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Following Kasper and Taylor [6], equations (11) and (12) combined collapse into a form 

similar to the principle of minimum potential energy, and thus will represent the mean for solving 

the equilibrium equations. Equation (12) will result in an expression to recover post-processing 

results and (13) will define the enhanced strain, as will be detailed in the next section. 

4. THE MATRIX FORM 

Interpolation functions for displacement, strain and stress and their variations may be 

expressed in terms of nodal displacements u  and U , and indeterminate coefficients 0β , 1β , 0γ , 

1γ , α  and 0β , 1β , 0γ , 1γ , α : 

 u = Nu , 0 1R σ β +Pβ , 0 1Rε = γ +Qγ +Rα  (14) 

 U = NU , 0 1S β +Pβ , 0 1E = γ +Qγ +Rα  (15) 



Following [6], equation (13) is transformed into an equivalent expression for the resultant 

strain which is obtained as: 

 R u  ε B u B α  (16) 

Where 
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From equation (12) the resultant stress is recovered by evaluating the coefficients as: 
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Finally, by combining equations (11) and (12), but using the definition of the resultant 

strain (16), a set of stiffness equations is obtained which can be solved by using a Newton-

Raphson approach. Coefficients α  may be condensed out if necessary since they are not 

continuous between elements. 
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Using static condensation on equation (22) the equivalent stiffness matrix and the 

condensed coefficients are given by 
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4.1. Linear element with two nodes. 

In figure 3 the linear beam element with two nodes implemented in this work is shown. 

 

 

 

 

 

Figure 3. Beam element with two nodes. 

 

Without considering the enhanced term R in the strain field at this moment, the following 

interpolations are used: 
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After inserting (27) through (30) into (25), the following condensed stiffness matrix is 

obtained: 

  
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The first term, which is the shear part, is of order 4 with 2 rigid body modes and full rank 

2. The actual rank is 2 and therefore, it will lock when L is large or the beam is thin because the L 

terms in the matrix will dominate the behavior. The second term, the flexural part is of order 2, 

with 1 rigid body mode and full rank 1. The actual rank is 1 and it will describe correctly constant 

curvature. 

 In order to solve the shear locking problem a quadratic linked interpolation [7] is 

proposed to enrich the displacement description (27): 
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The following shear stiffness is obtained: 
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In order to reduce its rank by one, the coefficients (2,2) and (4,2) are equated giving the 

value a=1/2. The matrix order is still 4 with 2 rigid body modes and full rank 2, but now the rank 

is 1, and it will not lock when L is large or the beam is thin. The final stiffness matrix is now: 
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An alternative procedure to assign a value to the coefficient a, consists in computing the 

shear strain: 
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With a=1/2 the linear part is eliminated and the shear strain is constant along the element. 

This was the assumption taken in [7]. The same effect is obtained by taking 01xy   in (28). Still 

another alternative to obtain the same result would be to sub integrate with 1 point the 

expressions for the shear stiffness matrix. They are all equivalent schemes. 

With the stiffness matrix given in (35), the beam element will not lock but its accuracy is 

still not very good, it takes too many elements for the solution to converge to the right values. 

Therefore, a further improvement is necessary, and it is achieved by introducing an enhanced 

strain field. This field is obtained by adding a bubble function to the rotation field (32): 
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It can be demonstrated that the addition of the bubble function in (37) is equivalent to 

using the following enhanced linear strain field in (28): 
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After this enhancement, the final stiffness matrix will not lock in shear and the beam 

formulation will be very accurate as shown in the examples below. 
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It can be shown that equation (39) is completely equivalent to the stiffness matrix 

proposed in [5] by Taylor, Fillipou, Saritas and Auricchio, which was found in a different way. 

 

5. NUMERICAL EXAMPLES 

5.1. Displacement validation: Simply supported beam with uniform load. 

Consider the simply supported beam shown in figure 4 with uniform load. The properties 

of the problem are: E = 10
6
, v = 0.25, q = 1, k = 5/6, h = b = 1. (Taylor et al.[5]) 

 

  

 

 

 

 

Figure 4. Simply supported beam with uniform load. 

 

The exact solution of the problem using Timoshenko beam theory is: 
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The problem is modeled with one element using symmetry. Table 1 shows the results of 

the analysis for different aspect ratios, comparing the formulations of Taylor et al. [5], the one 

developed by the authors of this paper, based on the Hu-Washizu variational principle, and the 

one developed by Gallegos [8] under the Hellinger-Reissner variational principle. 



Table 1. Maximum displacement and rotation in a simply supported beam under uniform 

load. 

 L/h = 10 L/h = 100 

wmax ×10
2
 θ0 ×10

-3
 wmax ×10

-2 
θ0  

Exact solution 0.160000 -0.50000 0.15629 -0.50000 

Taylor et al. 0.160000 -0.50000 0.15629 -0.50000 

Gallegos and Lecona 0.160000 -0.50000 0.15629 -0.50000 

Hellinger-Reissner 0.160000 -0.50000 0.15629 -0.50000 

 

All formulations yield the same results, even for thin beams. No shear locking is 

observed. 

Figure 5 illustrates the effect of the enhanced strain functions presented above on the 

vertical displacement. Note how remarkable is the improvement in the accuracy, especially for 

coarse meshes. The factor acting on the shear stiffness matrix in (39) is really important in order 

to get accurate results. 

 

 
Figure 5. Vertical displacement for beams with different aspect ratios considering linked 

interpolations and linked and enhanced interpolations. 

5.2. Displacement and Force validation: Fixed-fixed beam under uniform load. 

Consider the fixed-fixed beam subjected to uniform load shown in figure 6. Properties for 

the square cross section used are: E = 47619.04763, v = 0.052801058, q = -1.0, L = 4. 

 

 

 

 

 

  

Figure 6. Fixed-fixed beam under uniform load. 

 



A comparison between the Hellinger-Reissner formulation by Gallegos [8] and the 

authors of this paper is made for maximum vertical displacement and maximum moment as 

shown in Table 2 and Table 3 respectively. An exact solution of this example is derived for a 

Timoshenko beam. 

 

 

Table 2. Maximum vertical displacement in a fixed-fixed beam under uniform load. 

 L/h = 10 L/h = 100 

wmax wmax 

Exact Solution -0.00722 -65.7 

Gallegos and Lecona -0.00723 -65.7 

Hellinger-Reissner -0.00723 -65.7 

 

Table 3. Maximum moment at beam ends in a fixed-fixed beam under uniform loading. 

Maximum Moment 

Elements 

 

L/h = 10 L/h = 100 

Gallegos 

and 

Lecona 

Hellinger-

Reissner 

Gallegos 

and 

Lecona 

Hellinger-

Reissner 

2 -1.000 -1.000 -1.000 -1.000 

4 -1.250 -1.250 -1.250 -1.250 

8 -1.312 -1.312 -1.312 -1.312 

16 -1.328 -1.328 -1.328 -1.328 

32 -1.332 -1.332 -1.332 -1.332 

64 -1.333 -1.333 -1.333 -1.333 

Exact 

solution 
-1.333 -1.333 

 

The estimate of lateral deflection is excellent as can be observed from the results in Table 

2. Table 3, on the other hand, shows that a fine mesh is still necessary to capture correctly  the 

maximum moment in the beam. The Hellinger-Reissner formulation and our current Hu-Washizu 

element are completely equivalent. 

 5.3. Strain Enhancement: Cantilever beam with uniform load. 

Consider the fixed-free beam shown in figure 7. Let the properties of this beam be the 

same as those used for the first example, that is, E = 10
6
, v = 0.25, q = 1, k = 5/6, h = b = 1. 

This example is demonstrates the differences between the Hellinger-Reissner [8] 

formulation and the current Hu-Washizu one. 

 



 

 

   

Figure 7. Cantilever beam under uniform load. 

 

Table 4 and Table 5 display the maximum shear distortion and curvature for the two 

formulations. A considerable improvement is obtained in the Hu-Washizu formulation since the 

strains are approximated independently, as expected. 

 

Table 4. Maximum distortion in a cantilever beam under uniform loading. 

Maximum Distortion γ 

Elements 

 

L/h = 10 L/h = 100 

Gallegos 

and 

Lecona 

Hellinger-

Reissner 

Gallegos 

and 

Lecona 

Hellinger-

Reissner 

1 -1.501e-5 -51.5e-5 -1.501e-4 -0.500 

2 -2.251e-5 -21.0e-5 -2.251e-4 -0.188 

4 -2.626e-5 -8.095e-5 -2.626e-4 -0.055 

8 -2.814e-5 -4.278e-5 -2.814e-4 -0.015 

16 -2.907e-5 -3.286e-5 -2.907e-4 -4.075e-3 

32 -2.954e-5 -3.050e-5 -2.954e-4 -1.257e-3 

64 -2.978e-5 -3.002e-5 -2.978e-4 -5.400e-4 

100 -2.986e-5 -3.000e-5 -2.986e-4 -3.981e-4 

 

Table 5. Maximum curvature in a cantilever beam under uniform loading. 

Maximum Curvature κ 

Elements 

 

L/h = 10 L/h = 100 

Gallegos 

and 

Lecona 

Gallegos 

Gallegos 

and 

Lecona 

Gallegos 

1 -0.500e-3 -0.200e-3 -0.050 -0.020 

2 -0.575e-3 -0.350e-3 -0.058 -0.035 

4 -0.594e-3 -0.463e-3 -0.059 -0.046 

8 -0.598e-3 -0.528e-3 -0.060 -0.053 

16 -0.600e-3 -0.563e-3 -0.060 -0.056 

32 -0.600e-3 -0.581e-3 -0.060 -0.058 

64 -0.600e-3 -0.591e-3 -0.060 -0.059 

100 -0.600e-3 -0.594e-3 -0.060 -0.059 



 

Figure 8. Convergence for strain results in a cantilever beam under uniform loading. (a) 

shows shear distortion convergence and (b) curvature convergence. 

 

In Figure 8, the difference in convergence between the Hellinger-Reissner [8] and the 

current Hu-Washizu formulation is shown. Again, a considerable improvement is observed as a 

consequence of the independent interpolation for the strains. This effect is more important in 

coarse meshes. Since in the Hu-Washizu formulation the strains are described by linear fields, 

softer plots for strains can be obtained in comparison with the constant values obtained in [8], as 

shown in Figure 9. 

 

 

Figure 9. Curvature in a cantilever beam under uniform load for (a) Hellinger-Reissner 

based formulation (b) Hu-Washizu based formulation.  
 
 



6. CONCLUSIONS 

The formulation and implementation for a linear Timoshenko beam element with two 

nodes based on the Hu-Washizu principle has been presented in this work. The original element 

has a problem with shear locking and slow convergence. In order to remedy the locking problem, 

a linked quadratic interpolation was added to the displacement field linking it to nodal rotations. 

The linking functions are multiplied by a scale factor, the magnitude of which is adjusted in order 

to make singular the shear component of the stiffness matrix. This adjustment is equivalent to 

assuming a constant shear strain along the element or to sub integrate the shear component with 

one integration point. 

The accuracy is improved by enhancing the strain field. One of the difficulties of the three 

field principle is the right selection of interpolation functions. We have selected here a constant 

shear and a linear curvature fields which are equivalent to adding a quadratic bubble function to 

the rotation field. These interpolations produce an additional factor which multiplies the shear 

stiffness matrix and scales it proportionally to the ratio of flexural stiffness to the sum of shear 

and flexural stiffness combined. For short span beams, with large shear stiffness and small 

flexural stiffness, the factor is smaller than the unit and diminishes further the effect of the shear 

stiffness, while in long span beams, with small shear stiffness and large flexural stiffness, the 

factor tends to the unit value. 

The examples presented in this work show the excellent capacity of this element to 

describe correctly the displacement, strain and curvature of beams even with coarse meshes. The 

accuracy of shear and moment on the other hand, still require the use of a fine mesh to reach the 

correct result. 

In summary, the beam element formulated here is accurate even for coarse meshes and 

does not show locking in shear for thin beams. The form of the constitutive relationship used in 

the formulation allows strain driven algorithms to be used without any problem. This will allow 

its use in future work on reinforced concrete prestressed beams. 
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