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Abstract. This study brings an adaptive mesh strategy applied to the numerical simulation of 

free-surface shallow water problems. In the solver the shallow water equations are integrated 

with the explicit two-step Taylor-Galerkin method. Equations are first discretized in time with 

a Taylor's series expansion and then in space using the Garlerkin technique. The finite ele-

ment method with triangular unstructured meshes is used to solve the problem. An adaptive 

mesh strategy is added to the solver in order to obtain more precise solutions at low computa-

tional costs. The strategy consists in a mesh refinement and smoothing procedure that uses an 

error indicator and an adaptation criterion for the identification of the mesh elements that 

will be refined. The elements identified to be refined are divided in four new elements. Re-

finement closure is also performed to guarantee the integrity of the new mesh. In order to 

ensure a smooth transition among elements of different size, a smoothing procedure is applied 

to the mesh after its refinement. The elements to be refined are identified by error indicators 

that take into account the depth and velocity gradients. The adaptation criterion is defined 

based on these error indicators. The dam-break problem is solved with the proposed method-

ology and results are compared with previous published studies. 
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1. INTRODUCTION 

In recent decades considerable advances benefit the applications of Computational 

Fluid Dynamics (CFD). Therefore several mathematical models based on the Navier-Stokes 

equations have been used to solve problems in the flow of compressible and incompressible 

fluids. Some of these models were developed for the specific purpose of simulating the flow 

in shallow water, characterized by their own equations derived from the Navier-Stokes equa-

tions. The shallow water equations show their application in the study of flow behavior in 

channels, rivers, estuaries and lagoons, encompassing all environmental and artificial coastal 

systems. 

In this context Shallow solver is a finite element, two-dimensional program, with tri-

angular mesh elements, which was developed to simulate the flow of incompressible fluids, 
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based on the shallow water equations. This solver was developed and implemented by Mar-

tinez [5], based on the numerical model to simulate the flow of compressible fluid proposed 

by Vaz dos Santos [12]. Popiolek [9] added to the solver an automatic mesh adaptation to 

provide an improvement through the h-refinement method. Still the Shallow solver was en-

hanced by Garcia [4], who added an alternative subdivision of the refining elements. 

The main objective of this study is to present an adaptive mesh strategy to improve the 

accuracy of shallow water flow simulation, integrating to the solver a refinement scheme, an 

adaptation criterion, and a mesh smoothing technique. This way it is possible to build fixed 

and dynamic meshes. In order to analyze the adaptive mesh strategy, the dam-break problem 

is presented and solved using the integrated shallow water equations with the explicit two-

step Taylor-Galerkin method. 

Section 2 describes the procedures for the mesh adaptation strategy with error indica-

tors, criteria for mesh adaptation, subdivision of elements, and nodal re-allocation. Section 3 

presents the shallow water equations. Section 4 shows the dam-break flow simulation. Con-

clusions are presented in Section 5. 

2. MESH ADAPTATION 

The main objective of the adaptation is to provide a dynamic construction of opti-

mized mesh regarding flow characteristics, in order to improve quality of the numerical solu-

tion with a low computational cost [10]. The main tools of the mesh adaptation include error 

indicators, an adaptation mesh criterion, a refinement scheme and smoothing process. 

In mesh adaptation, error indicators are used for mapping the numerical solution be-

havior and identifying regions of the computational domain where an adaptive scheme is nec-

essary to obtain an accurate numerical solution. Herein, these error indicators take into ac-

count velocity gradients and depth gradients. The error indicator is analyzed by an adaptation 

criterion to identify elements that will be refined in a selective way. In the refinement scheme, 

elements identified to be refined by the criterion adaptation are divided into four new ele-

ments, defined as a regular refinement. Irregular refinements are performed for elements with 

one and two divided edges. In order to improve the geometrical quality of the mesh elements 

and to smooth the transition among refined and non-refined elements, a smart Laplacian 

smoothing technique is applied. 

2.1. Errors Indicators 

Obtaining an accurate solution advocates the use of effective error indicators, capable 

of pointing out clearly the regions of the mesh with low precision solution and applying a 

mesh refinement process to them. 

Error indicators are used depending on the main physical phenomena occurring in 

flows in shallow water bodies, taking into account the gradients of velocity and depth gradi-

ents. Further information can be found in [2]. 

 



 

 

The error indicator which expresses the velocity gradients in the x direction may be 

defined by: 
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where i represents the element number, x is the V gradient direction, u and v are respectively 

the components of velocity vector in the directions x and y, nel is the total number of mesh 

elements, and il  is the arithmetic mean of the length of the sides of the i-th element. 

The error indicator which quantifies the gradients of water depth is defined by the fol-

lowing expression: 
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where h is the water depth and x and y are the principal directions. 

Aimed at identifying the main characteristics of the simulated flow and enabling its ef-

fects to be represented in the numerical solution, the two error indicators defined above are 

used in the application. 

2.2. Mesh Adaptation Criterion 

For an efficient mesh adaptation it is essential that the values of error indicators are re-

viewed by an appropriate criterion. In the literature several mesh adaptation criteria have been 

made based on the error equidistribution, such as those of [6] and [2]. 

This study adopted the error equidistribution methodology based on criteria that calcu-

late the mean value of the error indicators (m) and allow all elements of the mesh showing an 

error indicator (i) greater than αm to be identified and refined. The variable α is an arbitrary 

parameter used for refinement control. 

2.3. Subdivision of Elements 

The subdivision of elements is the main phase of a mesh adaptation process. Special 

care is needed to provide the construction of a consistent mesh, with geometric elements of 

good quality. 

In regular refinement the triangular element is subdivided into four new elements, called 

4T-SS partition (four-triangle self-similar) [7]. In 4T-SS partition the new sides of the element 

are defined by straight line segments joining the midpoints of each side of the element, as 

shown in Figure 1. 

According to Padron [7], 4T-SS subdivision is the most used in adaptations of located 

meshes because of its feature of generating elements similar to the refined one, thus preserv-

ing the mesh quality. 
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Figure 1. Subdivision into four new elements. 

 

In carrying out the mesh closure, three situations may occur with the elements adjacent 

to the regular refinements, which generate irregular refinements. The first situation is when 

the element is adjacent to a single refined element, in which it is subdivided into two new 

elements to construct a consistent mesh [11] (Figure 2). The second situation occurs when the 

element is adjacent to two refined elements, in which it is subdivided into three new elements 

[8] (Figure 3). The third situation is when the element is adjacent to three refined elements, in 

which it is subdivided into four new element elements [3] (Figure 4). 

 
 

   
Figure 2. Refinement of the element adjacent to one refinement. 

 

 

   
Figure 3. Refinement of the element adjacent to two refinements. 



 

 

 

   
Figure 4. Refinement of the element adjacent to three refinements. 

 

2.4. Nodal re-allocation 

In order to improve the geometric quality of the elements in the finite element mesh 

and to smooth the transition among elements of different size, a smart Laplacian smoothing 

technique is used after each refinement. 

Special care must be taken with nodes belonging to external or internal boundary 

when the smoothing process is applied. Some nodes remain fixed and others may have re-

strained displacements, remaining on the boundary. Information referred to nodes that can be 

re-allocated or those that cannot are given in the solver data structure, where the status of each 

node is defined. 

3. SHALLOW WATER EQUATIONS 

For analyzing the efficiency of the mesh adaptation scheme, procedures were incorpo-

rated into the Shallow solver as developed by Vaz dos Santos [12] to simulate flows in shal-

low water bodies. 

The shallow water equations of the mathematical model are obtained through integra-

tion in the depth of equations of mass conservation and momentum, derived from the Navier-

Stokes three-dimensional equations. The shallow water equations are integrated using the 

two-step Taylor-Galerkin explicit method. 

The method is conducted in two steps using the shallow water equation in a compact 

form as: 
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where U  is the vector of independent variables, iF
 
is the convective flow vector in the direc-

tion of i spatial coordinate, sR  is the vector containing the source terms, and diR is the vector 



 

 

containing the diffusive terms in the direction of i spatial coordinate. Each of these vectors is 

defined by: 
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where, h  and H are respectively the total depth and the depth of water at rest, 1U  and 2U  are 

components of the mean velocity which over this study are called u  and v , U  is the result-

ing mean velocity which over this study is called V , S

31  and S

32
 
are the water surface shear 

stress, g is the gravity acceleration,   is the density, C  is the Chezy coefficient, H  is the 

eddy viscosity, ap  is the atmospheric pressure, and f̂  is the Coriolis coefficient. 

4. DAM-BREAK PROBLEM 

In order to validate the mesh adaptation scheme incorporated to Shallow solver, the 

flow from a partial dam-break was simulated and the wave propagation was studied. The ge-

ometry of the computational domain of the problem is a square measuring 200 m in width and 

200 m in length, and a 75 m wide breach, as shown in Figure 5. 

It is an inviscid flow. As shown in Figure 6, the initial velocities are zero and the ini-

tial water depths are given by: 
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Figure 5. Computational domain of the problem. 

 

 
Figure 6. Initial conditions of the problem. 

 

Initially the computational domain was discretized with a non-structured mesh con-

taining 1847 nodes and 3482 elements. However, the numerical simulation was obtained 

through a mesh adapted with three levels of smoothed refinements. Error indicators were used 

for identifying the elements to be refined, as shown in Section 2.1, i.e. the velocity gradients 

in the x direction (Equation 1) and the water depth gradients (Equation 2). For the mesh adap-



 

 

tation criterion, the α values used were 0.6 and 0.1 respectively for the abovementioned error 

indicators. 

Figure 7 shows the mesh adapted with three levels of refinement smoothed, containing 

65548 nodes and 130418 elements, which was used for obtaining the numerical solution of 

the problem. It may be noticed that the refinement scheme used provided the mesh with good 

geometrical quality, smoothed, with no domino effect refinements and with a smooth transi-

tion among different-size elements. 

 

 

 
Figure 7. Refined mesh with 65548 nodes and 130418 elements. 

 

 

Figure 8 shows in 3D the fields of total water depth at the times 1.2s, 2.4s, 3.6s, 4.8s, 

6.0s, and 7.2s after the dam break. 

Figure 9 shows the results of total water depth and velocity in the transversal section 

located along x = 92.5m and at the time 7.2s after the dam break. It also has the results ob-

tained by Akoh et al. [1], which show good compliance with the ones found in this study. 

Figure 10 shows the results of the profile of velocities and total water depths at the 

times 1.2s, 2.4s, 3.6s, 4.8s, 6.0s, and 7.2s in the transversal section, located at y = 132.5 m, in 

the middle of the breach. The charts show the variation in the profiles of velocities and total 

water depths over time after the dam break. 
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Figure 8. Fields of total water depth after the dam break: (a) 1.2s; (b) 2.4s; 

(c) 3.6s; (d) 4.8s; (e) 6.0s; (f) 7.2s. 
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Figure 9. Comparison of results: (a) total water depths; (b) velocities. 
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Figure 10. Results in the transversal section located along y =132.5 m: (a) total water depth; 

(b) velocity in the x direction. 



 

 

5. CONCLUSION 

This study showed results related to a dam break. They were obtained through an ele-

ment subdivision alternative of mesh adaptation strategy used for simulating the flow of free-

surface shallow water.  

Adaptation criterion, error indicators, refinement schemes and smoothing process were 

found to be effective for mesh adaptation, since the refinements were conducted in the areas 

of critical wave flow. Elements of geometrical quality were also generated with no domino 

effect and with a smooth transition among elements of different size. 

Once the mesh was refined, in the areas of wave advance, because of the dam break, it 

was possible to obtain good-precision solution at low computational cost if compared to a 

refined mesh in the whole domain. 

The numerical solution of this study was verified to show agreement with the results 

found in the literature through analysis of the results obtained at the time 7.2s in the transver-

sal section located along x = 92.5 m. 
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