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Abstract. This paper presents a computational method to predict gas-liquid-solid multiphase
phenomena. In addition to the mechanical interactions between the different phases, their
thermal interactions are taken into account in the present multiphase modeling. The phase-
averaged governing equations, including the energy equation to predict temperature distribu-
tions, are discretized with a finite volume method and calculated with the numerically stable
and accurate algorithms. The numerical procedures are parallelized with flat MPI so that it
can be executed on recent large-scale distributed memory systems. It was applied to basic
engineering problems and its validity was discussed.
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1. INTRODUCTION

It is essential to predict accurately the interactions between gas-liquid flows and solid
objects in many engineering subjects. In this paper, a computational method is investigated to
predict gas-liquid-solid multiphase phenomena, in which thermal interactions become impor-
tant in addition to the mechanical effects among the phases.

The governing equations for a multiphase field, in which each phase is incompressible
and immiscible, are derived taking account of the energy equations among different phases
like a one-fluid model [1]. Since the derived multiphase model is applicable to the free-surface
flows including complicated-shaped solid objects with structured grid system, the numerical
procedure becomes robust and simple. The governing equations are discretized with a finite
volumemethod and the numerical solutions are obtained with an SMACmethod. In particular,
a collocated grid system is utilized so that the parallel computational method can be easily
implemented on the basis of the 3D domain decomposition method using flat MPI.

The computational method was applied to the natural convection around a rectangular
fin and the predicted fin efficiency was compared with the theoretical values. In addition, nu-
merical experiment was conducted for the non-isothermal gas-liquid-solid multiphase field,
in which gas and liquid flows are caused by the initial temperature difference in the computa-
tional area including a vertical cylinder with heat conduction. As a result, it was demonstrated
that the present method is applicable to the multiphase field including thermal interactions.
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2. NUMERICAL PROCEDURES

2.1. Governing equations

As shown in Fig.1, we consider the multiphase field consisting of gas, liquid and solid
phases, where each phase is incompressible and they are immiscible. In Fig.1,Ω and Ωk stand
for the volumes in the whole area and the phase-k, respectively, where Ω is equal to

∑
k Ωk.

Figure 1. Multiphase field including different phases

Assuming that the internal energy U is given by CvT , whereCv and T are specific heat
under constant volume and temperature, the governing equation for T can be derived from the
law of energy conservation using Fourier’s law of heat conduction. It is assumed that there are
no heat sources or sinks. Taking account of the incompressibility and neglecting the change
of energy due to fluid viscosity, a set of averaged governing equations for the non-isothermal
multiphase field can be obtained in the similar way to one-fluid model. They consist of mass
conservation equation in Eulerian description, incompressible condition, momentum equation
and energy equation given by
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where t is time, xi is the i-th component of three-dimensional orthogonal coordinates and
gi is the acceleration of external force in xi direction. While the velocity component ui is



the mass-averaged value in the mixture of fluids, volume-averaged variables are defined for
density ρ, pressure p, viscosity μ, temperature T and thermal diffusivity α. For example, ui

and α are defined as
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In the actual computation, Ωk is estimated with the sub-cell method [2].
The density in the above equations is a function of temperature ρ = ρ(T ). In case that

the density differences are sufficiently small, on the other hand, the Boussinesq approximation
is applicable to Eq.(3); ρ and gi in Eq.(3) are expressed as ρ0 and giβ(T − T0) respectively,
where subscript ′′0′′ means reference constant values and β is the volume coefficient of ex-
pansion.

2.2. Computational method

The numerical procedures of the incompressible fluid-mixture consist of three steps:
prediction, pressure-computation and correction stages. In the prediction stage, the tenta-
tive velocity component u∗

i is calculated at the center of the fluid-cells with a finite-volume
method. In this procedure, Eq.(3) is discretized with the C-ISMAC method [3], which is
based on the implicit SMAC method [4]. The equation discretized with respect to time by the
C-ISMAC method is given by
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where γ1 and γ2 are parameters whose ranges are 0 ≤ γ1, γ2 ≤ 1. The tentative velocity
component u∗

i can be written as the following relationship:

u∗
i = un

i + ũi (7)

With Eq.(7), we can transform Eq.(6) to the following equation:
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(μũi) +

∂

∂xi
(μũj)
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where ũi becomes nearly zero when the flow field is almost steady or the time-scale of the
flow field is sufficiently larger than the time increment Δt. Thus, we can apply a simple
first-order spatial discretization method to the left-hand side of Eq.(8), while a higher-order
scheme to the right-hand side. The convection terms are evaluated with a fifth-order TVD
scheme [5]. The C-ISMAC method enables us to derive easily the simultaneous equation
system from the implicit form of the left-hand side of Eq.(8) as well as to preserve numerical
accuracy by applying a higher-order scheme to the explicit form on the right-hand side of the
same equation.



After solving the equation system of ũi, which is derived from the discretized equation
of Eq.(8), u∗

i is determined with Eq.(7). The u∗
i located at the center of the fluid-cell is then

spatially interpolated on the cell boundary. Before this interpolation, pressure-gradient term
evaluated at the cell center is removed from u∗

i in order to prevent pressure oscillation as
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The cell-center velocity ûi, which is evaluated without the pressure-gradient term, is spa-
tially interpolated on the cell boundaries by a suitable function fb. After this procedure, the
pressure-gradient terms, which are estimated on the cell boundaries, are added to the interpo-
lated velocity, fb(ûi). Thus, we obtain the cell-boundary velocity component ub,i as follows:
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Subtracting Eq.(18) from Eq.(11), we have
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where φ = pn+1 − pn. Substitution of Eq.(12) into Eq.(2) yields the following equation of φ :
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At the pressure-computation stage, Eq.(13) is solved with the C-HSMAC method [1].
The relationships in the C-HSMAC method are given by
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where the superscript k stands for the iteration step-number of the C-HSMAC method. The
C-HSMAC method enables us to obtain the pressure and cell-boundary velocity components,
which satisfy the incompressible condition |D| < εD in each computational cell, where εD

is a given threshold. While the final results of the C-HSMAC method are similar to those of
the SOLA method [6], it has been proved that the computational efficiency of the C-HSMAC
method is largely improved [7].



The discretization of Eq.(14) yields simultaneous linear equation system of φ, which
is solved with the BiCGSTAB method [8]. The iterative computation using the above three
equations is continued until |D| < εD is satisfied in all fluid-cells.

A parallel computational method is employed on the basis of the 3D domain decompo-
sition method. All procedures shown above are parallelized with flat MPI (Message-Passing
Interface) [9] in order to utilize the recent large-scale distributed-memory system. Since the
convection terms included in the governing equations are solved with a higher-order scheme,
the overlapping cells having necessary width are placed around each sub-domain. The mes-
sage passings are conducted mainly in the implicit computations for the C-ISMAC method
and pressure computations with the C-HSMAC method.

3. APPLICATION OF PREDICTIONMETHOD

The above computational method was applied to two phenomena. The first one is the
natural convection around a straight fin of rectangular profile on a plane wall with 2D model
using Boussinesq approximation. The second example is the 3D thermal and mechanical
interactions among gas, liquid and solid phases, which was predicted by parallel computations
without Boussinesq approximation.

3.1. Natural convection around a rectangular fin

Figs. 2 and 3 show the computational area and a rectangular fin. The lengths l1 and l2
are 40 mm, the half thickness yb of the fin is 1 mm and the initial temperature T0 of the liquid
around the fin is fixed at 273 K, while the base temperature T1 and the length of the fin W

vary among T1 = 283, 373, 773 K and W = 6, 16, 32 mm independently. The materials of
fin and surrounding fluid are assumed to be aluminum and water. Their approximate physical
properties actually used in the calculations are listed in Tables 1 and 2. On the wall boundary,
adiabatic and non-slip conditions are imposed. The numbers of fluid cells are 100 × 100.

T0

l2

l1

T1

Figure 2. 2D computational area

W

yb

Figure 3. Rectangular fin



Table 1. Physical properties of fin

density thermal diffusivity
(kg/m3) (m2/s)
2.69× 103 9.77× 10−5

Table 2. Physical properties of surrounding fluid

density viscosity thermal diffusivity volume coefficient of expansion
(kg/m3) (Pa·s) (m2/s) (1/K)
0.998× 103 1.03× 10−3 1.44 × 10−5 2.07× 10−4

Fig.4 shows the predicted results in case thatW = 15 mm. Only the base temperature
of the fin is kept at T1 = 373 K in Fig.4 (a), whereas the entire temperature of the fin is fixed
at T1 = 373 K in Fig.4 (b). The calculations are performed until the heat per unit time Q,
transferred between the fin and the fluid, becomes nearly constant. As shown in Fig.4, it can
be seen that the heat conduction in the fin and surrounding natural convection are reasonably
predicted with the present method.

(a) Heat-conduction fin (b) Isothermal fin

Figure 4. Temperature distribution in fin and surrounding fluid
(number of color bar = T − T0)

The predicted results are quantitatively compared with the theoretical solution in terms
of the fin efficiency η [10] defined by

η =
Q1

Q2
(17)



where Q1 is the actually transferred heat per time, whereas Q2 is the one which would be
transferred if entire fin area were at base temperature. Thus, η corresponds to the ratio of the
heat per time shown in Fig.4 (a) to that shown in Fig.4 (b). The fin efficiency depends on ub

which is determined by the shape and physical properties of the fin as follows:
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with

hm =
Q2

A(T1 − T0)
(19)

where hm corresponds to the heat transfer coefficient averaged over the perimeterA of the fin.
The theoretical relationship between ub and η is given by the following equation [10]:

η =
tanh ub

ub
(20)

The above equation is derived assuming that the end of the fin is insulated so that ∂T/∂x = 0.
Fig.5 shows the comparison between the predicted results and Eq.(20). As shown in

Fig.5, the predicted results are almost in good agreement with theoretical solutions.

Figure 5. Relationship between fin efficiency η and ub

(Three predicted results in each group are rangedW = 6, 16 and 32 (mm) from left to right.
T in the legend = T1 − T0.)

3.2. Thermal interaction in 3D multiphase field

The computational method was applied to the gas-liquid-solid multiphase field having
temperature distributions. As shown in Fig.6 (a), the cubic computational area (l1 = l2 =



l3 = 3.0m and h1 = h2 = 1.5 m) consists of gas and liquid phases including a vertical cylinder
with d = 1.0 m. Since the shape of a solid object is represented with multiple tetrahedron
elements to deal with complicated-shaped objects, the cylinder is treated with such elements
in this calculation as well.

l2

l1

l3
d

h2

h1

(a) 3D computational area

TG

TL

TG

TL

(b) Initial temperature distribution

Figure 6. 3D computational area and initial temperature distributions

In the initial condition, the gas and liquid phases are in a static state. Hereafter, the
subscripts G, L and S stand for the variables of gas, liquid and solid phases respectively.
In the present calculations, the Boussinesq approximation is not used and the density ρ in
Eq.(3) is represented as a linear function of temperature with a constant volume coefficient of
expansion β as

ρ = ρ0 [1 + β(T − T0)] (21)

where T0 = 273 (K), ρ0G and ρ0L are 1.0 and 103 (kg/m3), βG and βL are 1.0 × 10−3 and
1.0×10−4 (1/K). In addition, the thermal diffusivitiesαG, αL and αS are 1.0×10−5, 1.0×10−7

and 1.0 × 10−4 (m2/s) respectively.
The initial temperatures of gas and liquid phases are set as TG = 273.0 (K) and TL =

283.0 (K). In the cylinder, the vertical distribution of the initial temperature is same as those of
the gas and liquid phases as shown in Fig.6 (b). Since the initial conditions for gas and liquid
phases are unstable in terms of the temperature distribution, the buoyancy-driven downward
flow arises in the liquid phase when it is cooled on the free surface by the lower-temperature
gas. Due to the large thermal diffusivity in the cylinder, its initial temperature distribution is
diffused rapidly in the vertical direction.

The parallel computation is conducted with 3D domain decomposition. The predicted
results are shown in Figs.7 and 8. The temperature of the liquid phase near the free surface
decreases due to the cold gas. The cooled liquid moves downward to the bottom surface. This
flow pattern is observed away from the high-thermal-diffusivity cylinder. One of the factors
that cause this flow pattern is the fact that the temperature difference between gas and liquid
phases is decreased by the thermal interaction with the cylinder in the horizontal direction.



(a) t = 0.0 (s) (b) t = 10.0 (s)

(c) t = 15.0 (s) (d) t = 30.0 (s)

Figure 7. Predicted temperature distributions on vertical sections

(a) t = 0.0 (s) (b) t = 10.0 (s)

(c) t = 15.0 (s) (d) t = 30.0 (s)

Figure 8. Predicted isothermal surfaces (Temperature of surface = 278 K)



4. CONCLUSIONS

In this paper, a computational method was investigated to predict gas-liquid-solidmul-
tiphase phenomena taking account of their thermal interactions. The phase-averaged govern-
ing equations, including the energy equation, are discretized with a finite volume method and
solved with the SMAC algorithm in which some new techniques have been implemented. To
deal with large-scale problems, the computational method was parallelized with the flat MPI.

The computational method was applied to the natural convection around a rectangular
fin and the predicted fin efficiency was compared with the theoretical values. In addition,
numerical experiment was conducted for the gas-liquid flows having different initial tempera-
tures in the computational area including a vertical cylinder with heat conduction. As a result,
it is demonstrated that the present method is applicable to the multiphase field including ther-
mal interactions.
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