
NONLOCAL DAMAGE MODEL USING THE MESHLESS FINITE POINTS
METHOD

F. Chacana Yorda1, L. Pérez Pozo2
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Abstract. We present the formulation and application for a nonlocal model with gradi-

ent type regularization incorporated into the model by means of non-local displacements.
The strong formulation of the FPM allows the use of high-order differentially shape

functions with which we can approximate directly the fields of the nonlocal displacements, for
that this technique is very attractive for a computational viewpoint.

For the numerical implementation we used a fully explicit integration scheme and for
the nonlinear problem the Newton Raphson iterative scheme. The validation of the obtained
results is made starting from typical benchmark problems and available results on associated
literature.
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1. INTRODUCTION

The finite points method (FPM) was proposed by Oñate et al [5, 6] initially with the
purpose of solving convective transport and fluid flow problems. Later, its application was
extended to advection-diffusion transport [7] and incompressible flow problems [8]. In the
context of solid mechanics, FPM has been applied successfully in elasticity [9, 20, 10, 21],
solid dynamics [11] and non-linear material behavior problems [13]. The non-dependence on
a mesh or integration procedures is an important aspect which transform the FPM in a truly
meshless method.

The continuous damage models may be employed to describe the evolution of fail-
ure processes between the undamaged state and macroscopic crack initiation [23]. Regarding
numerical simulations, this presents pathological mesh sensitivity, in that way different solu-
tions have been proposed in the literature to remedy this physically unrealistic behavior by
means cohesive crack models [24], Crack bands model [25] and regularized models[26]. In
this work we focus on the regularized models via non-local effects, incorporated a material
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characteristic length and the implicit gradient-enhanced continuum model based on non-local
displacements [27].

For the gradient-enhanced model the strong formulation of the FPM allows the use of
high-order differentially shape functions with which we can approximate directly the fields of
local and non-local displacements [28].

This paper contains: Section 2, The basic formulation of the FPM is presented. Section
3 The nonlocal damage model via nonlocal displacements. Section 4 describe the numerical
implementation. Section 5 show the clasic numerical examples, this examples are in 1D and
2D.

2. The finite points method

Although the FPM introduced by Oñate et al. was originally formulated for the nu-
merical solution of convective transport and fluid flow problems, it can be easily adapted to
the Stress equation. In this section, we review the basic formulation of the FPM and provide
a brief overview of its main features. In order to obtain the final system of discrete equations,
the FPM approximates the local solution of a partial differential equation in each point of the
discretized domain by means of a weighted least squares technique and a point collocation
procedure. Due to the local character of the approximation procedure used by this method, it
is necessary to define a sub-domain for each node, Ωk, that contain neighboring nodes selected
by a suitable criterion [18, 9]. This collection of points is called a cloud, and its referential
central point is the star node. For example, a relevant aspect in the definition of clouds is that
their superposition must produce the whole domain, Ω.

Np∪
k=1

Ωk = Ω , (1)

where Np is the total number of nodes. Note that the definition of clouds is the basic, initial
step in implementing the FPM approximation using fixed weighted least squares. With the
discretized domain defined, let us define a function u(x), which is locally approximated by
û(x) only valid in the cloud Ωk associated with the star node xk as a linear combination of
known functions ppp(x).

u(x) ∼= û(x) = ppp(x)αkαkαk ∀x ∈ Ωk , (2)

where ppp(x) is the vector that represents the basis of m linearly independent functions, and αkαkαk

is a vector of constant parameters only valid in Ωk. The elements of the interpolation base may
belong to any function family. Nevertheless, for simplicity, the m first monomial polynomials
are used. Since Eq. (2) is valid for all Nc points of the k-th sub-domain, the approximations
û(XXX) conform to a Vandermonde system given by the following relation.

uuu(XkXkXk) ∼= û̂ûu(XkXkXk) = PPP (XkXkXk) ·αkαkαk , (3)

where

XkXkXk = [xk,1 . . . xk,Nc ]
T , uuu(XkXkXk) = [u(xk,1) . . . u(xk,Nc)]

T ,

û̂ûu(XkXkXk) = [û(xk,1) . . . û(xk,Nc)]
T , αkαkαk = [αk,1 . . . αk,Nc ]

T ,



and

PPP (XkXkXk) =

 ppp(xk,1)
...

ppp(xk,Nc)

 .

In general, the number of points Nc that conform to the cloud is greater than the
number of functions m that define the basis; hence, the matrix PPP (XkXkXk) is usually rectangular.
This means that the property of interpolation is lost, and the problem must be addressed with
numerical approximation. The coefficients of the vector αkαkαk must be determined in such a
way that the weighted sums of the squared differences between the exact values u(x) and the
approximated values û(x) of each point is minimized according to the following equation.

min

{
Nc∑
j=1

w(xj) · (u(xj)− û(xj))
2

}
, (4)

where w(xj) is a fixed weighting function defined in Ωk and evaluated for the node xj . See
refs. [5, 6]. The minimization process described by Eq. (4) leads to the following expression
for vector αkαkαk.

αkαkαk = AAA−1(XkXkXk)BBB(XkXkXk)λλλ(XkXkXk) , (5)

where λλλ(XkXkXk) is a vector that represents the unknown parameters sought on the cloud Ωk

defined as follows.
λλλ(XkXkXk) = [λ(xk,1) . . . λ(xk,Nc)]

T , (6)

Additionally, matrix AAA(XkXkXk), BBB(XkXkXk) and W (Xk)W (Xk)W (Xk) are given as follows.

AAA(XkXkXk) = PPP (XkXkXk)WWW (XkXkXk)PPP T (XkXkXk), BBB(XkXkXk) = PPP T (XkXkXk)WWW (XkXkXk),

and W (Xk)W (Xk)W (Xk) is an Nc ×Nc diagonal matrix defined by:

W (Xk)W (Xk)W (Xk) = [diag (w(xk,1) . . . w(xk,Nc))] , (7)

where the weighting functions w(xj) are derived in order to have unit values near the star
node and zero values outside the Ωk sub-domains. Under the FPM, the common selection is
the normalized Gaussian given as follows.

w(xj) =


exp(−(hj/ζ))− exp(−(r/ζ))

(1− exp(−(r/ζ))
if hj ≤ r

0 if hj > r

, (8)

where hj is the distance between the star node, the point xj , r = q · hmax (max. of hj)
is a reference distance, and ζ = β · r. A detailed description of the effects of the constant
parameters q and β on numerical approximation as well as guidelines for setting their values
are presented in [19]. Other considerations in selecting the function w(xj) can be found in
refs. [6, 5, 20, 22]. Finally, replacing Eq. (5) in (2), the next relation is obtained.

û(x) =NNNT (x)λλλ(XkXkXk) , (9)



where NNN(x) is a matrix called shape function defined by:

NNN(x) = pppT (x)CCC(XkXkXk), (10)

with CCC(XkXkXk) = AAA−1(XkXkXk)BBB(XkXkXk). Note that according to the least square nature of the approx-
imation, u(x) ∼= û(x) ̸= λ(x). That is, the local values of the approximating function do not
fit the nodal unknown values. Indeed, û(x) is the true approximation, which we will use to
satisfy the differential equation and the boundary conditions; in this context, λ(x) are simply
the unknown parameters we aim to determine. According to the concepts described above and
Eq. (9), it is possible to obtain the following expressions.

ûx(x) =NNNT
x (x)λλλ(X

kXkXk) and ûxx(x) =NNNT
xx(x)λλλ(X

kXkXk) , (11)

where (·)x and (·)xx denote the first and the second space derivatives, respectively. Note that
these derivatives are computed by taking the derivative of the basis functions ppp(x) in Eq. (2).

3. The nonlocal damage model

The so called continuum damage model have been used thoroughly to simulate the be-
havior of materials that present degradation of the mechanical properties due to small fissures
that appears during the loading process. To characterize this, the concept of effective stress σ
is introduced. In one dimension we can write

σ = (1− d)σ̄ (12)

Where σ̄ is the effective stress and d is the damage parameter between 0 ≤ d ≤ 1.
The stress with the effective deformation ε can be related by Hooke’s law:

σ̄ = Eε (13)

Where E is the elastic modulus of the material, then replace (12) in (13) we have:

σ = (1− d)Eε 0 ≤ d ≤ 1 (14)

for the nonlocal damage model based on non-local displacements [26], equation 14
takes the following form

σ(εa, εg) = (1− d(εg))C : εa (15)

where εg = ∇ug is the gradient-enriched strain and εa = ∇ua is the strain associ-
ated to the local displacement field ua. also the displacement field ug is the solution of the
diffusion-reaction equation (16) in which ua is the source term

ug − l2∇2ug = ua (16)

with the folllowing boundary conditions

ug · n = ua · n on Γu (17)

∇(ug · t) · n = ∇(ua · t) · n on Γt (18)



the damage parameter d(εg) ,depends on the non-local strain εg via the history variable
κ, defined as

κ(t) = max
τ≤t

Y (t) (19)

where Y is a scalar state variable. In one dimensional setting , Y is simply the scalar strain εg.
In a milti-dimensional setting , Y is defined either as

Y =

√∑
i

max (0, εi) (20)

where εiare the principal strains of εg or as

Y =
k − 1

2k(1− 2v)
I1 +

1

2k

√( k − 1

1− 2v
I1
)2

+
12k

(1 + v)2
J2 (21)

where I1 and J2 are the first invariant and the second desviatoric invariant respectively,
v the Poisson’s ratio and k the ratio of compressive to tensile strength.

In this work we use a linear evolution law for the damage parameter

d(κ) =


0 if κ ≤ ki

ku(κ−ki)
κ(ku−ki)

if ki < κ ≤ ku

1 if κ > ku

(22)

where ki is the damage initiation strain and ku is the ultimate strain. This model is
suitable for quasi-brittle materials.

4. Numerical implementation

Considerer the system of differential equations which governs the behavior of a solid

∇σ(x) + ρb(x) = 0 ∀x ∈ Ω (23)

σ(x) · n̂ = t̄(x) ∀x ∈ Γt (24)

u(x) = û(x) ∀x ∈ Γu (25)

using the point collocation method, we can obtain a discrete system of equations [20]

LTσ + ρb = 0 ∀x ∈ Ω (26)

nTσ = t̄ ∀x ∈ Γt (27)

u = û ∀x ∈ Γu (28)

where L is an operator that defines the differential equation, n contains the normal
direction on the external contour, σ is the stress vector, u is the displacement vector, ρb the
body forces, t̄ and û prescribed force and displacement on the external contour.

To obtain an equivalent system in term of displacement, use the stress-strain relation
and the strain-displacement relationships as follows [29].

σ = (I− d(εg))Cεa en donde εa = Nxua (29)



[
(I− d)LTCLN+ (I− d)(LN)TCLN− (LNd)TCLN

]
uh = −ρb∀x ∈ Ω(30a)

[
nTCLN

]
uh = t ∀x ∈ Γt (30b)

[N]uh = u ∀x ∈ Γu (30c)

with its compact form

KdIu
h = fI I = 1, ....., N (31)

Where Kd is the stiffness matrix in FPM and f contain the equilibrium and boundary condi-
tions.

4.1. Approximation of diffusion-reaction equation

consider the numerical implementation obtained in (31) and the diffusion-reaction
equation (16), to approximate the diffusion term, we used the second-order shape function
directly in the same way as in the lineal elastic behavior, then we can write the following
stiffness matrix equation for the non-local problem

KNLI =

(
KdI 0
−N (N− l2cD)

)
where D is the diffusivity matrix defined as

D =
i∑

k=1

∂2()

∂k2
=

i∑
k=1

Nkk() (32)

and the compact form
KNLIu

h = fI (33)

In this case uh = (uh
a uh

g)
T and f contain the conditions for the equilibrium and the diffusion-

reaction equation.

5. Numerical examples

For the examples to develop we considered a regular points discretization. The number
of points in the interpolation clouds will be specific to each problem.



Table 1. Uniaxial tensile test
Description Symbol Value
Length of the bar L0 100
Length of weaker part li 10
Cross-section of bar A 1
Youn’s modulus E 20000
Damage threshold ϵ0 10−4

Final strain ϵf 1.25 · 10−2

Figure 1. One dimensional rod model

5.1. Uniaxial tensile test

The example consists of a rod subjected to uniaxial tensile load by displacement con-
trol as show fig. 1. The central tenth of the bar is weakened 10% by a reduction in Young’s
modulus to force the localization . The dimensionless geometrical and mechanical parameters
are summarized in Table1.

In the first analysis a fixed internal length lc =
√
5 and five different discretization are

used, in a second analysis a fixed number of nodes and four different internal length are used.
The results in fig. 2 indicates that discretization dependency is removed and fig. 3 show the
effects of the internal length size. These results are equivalent to those reported by [26].
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Figure 2. Influence of discretization size on uniaxial tensiale test: a) force-displacement curve
. b) damage profile .
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Figure 3. Influence of the internal lenght size on uniaxial tensile test: a) force-displacement
curve . b) damage profile .
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Figure 4. Evolution of the reaction force and internal damage parameter: a) force-
displacement curve . b) damage profile .



The final analysis is made with 81 nodes and a internal lenght l =
√
2. The goal is

show the evolution of the reaction force, the internal damage parameter and the stress-strain
curves for different points.
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Figure 5. Evolution of the Stress vs Strain at sample points and internal damage parameter:
a) x = 0. b) x = 40.
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Figure 6. Evolution of the Stress vs Strain at sample points and internal damage parameter at
x = 50

5.2. Elastic damage tensile specimen with symmetric imperfection

A rectangular specimen is subjected to uniform displacements at the two ends. In
order to trigger localization from a homogeneous state of deformation, symmetric material
imperfection with weakened material properties are introduced as show in fig. 7, fig. 8 show
the results for different discretizations, these results are equivalent to those reported by [30].



The dimensionless material parameters are E = 2e6 ν = 0.18 ki = 10−4 ku = 0.00625 and
l =

√
4.5.

Figure 7. Elastic damage test specimen with symmetric imperfection
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Figure 8. Reaction force vs displacement for various discretizations.



a) b)

Figure 9. a) analysis model 6x12 nodes . b) strain localization using MPF.

a) b)

Figure 10. a) analysis model 9x18 nodes. b) strain localization using MPF.

a) b)

Figure 11. a) analysis model 12x24 nodes . b) strain localization using MPF.



5.3. Elastic damage tensile specimen with asymmetric imperfection

The principal goal in this example is the study of the shear band formation, an asym-
metric imperfection is introduced as show in fig. 12. In this only a refined model is used to
examine the proposed method. The material parameters are the same as those used in example
5.2, except ν = 0.3 and the internal length l =

√
0.01.

Figure 12. Elastic damage test specimen with asymmetric imperfection
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Figure 13. Reaction force vs displacement

Figure 13 show the result with the proposed method, this results is similar to the re-
ported by [30] and fig. 14 shows the shear band formation.



a) b)

Figure 14. a) analysis model 18x36 nodes . b) strain localization using MPF. deformation
scale x100.

6. Conclusion

Has been implemented a isotropic damage model based on nonlocal displacements in
strong form by the meshless finite points method to simulate the non-linear material behavior.
As the results demonstrate the FPM is able to approximate the localization phenomena with
fracture energy regularization by the consideration of characteristic material length and the
diffusion-reaction equation. This works concludes the opening of a new alternative viewpoint
to the classical weak formulation based on MEF. For a computational aspect, the use of the
shape function to approximate all the fields and the simplicity of the development algorithm
can be highly attractive.
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[19] E. Ortega, E. Oñate, S. Idelsohn, An improved finite point method for three-dimensional
potential flows, Computational Mechanics 40 (2007) 949–963.
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