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Abstract. This paper presents an analytical model for size effects on the longitudinal tensile
strength of composite fibre bundles. The strength of individual fibres is modelled by a Weibull
distribution, while the matrix (or fibre–matrix interface) is represented through a perfectly–
plastic shear–lag model. A probabilistic analysis of the failure process in hierarchical bundles
(bundles of bundles) is performed, so that a scaling law relating the strength distributions of
consecutive bundle levels is derived. An efficient numerical scheme (based on asymptotic
limits) is proposed, hence coupon–sized bundle strength distributions are obtained almost
instantaneously. Parametric and sensitivity studies show that both fibre and matrix properties
are critical for bundle strength; model predictions at different scales are validated against
experimental results available in the literature.
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1. INTRODUCTION

Size effects on the strength of composite materials are widely reported in the literature,
but an universally accepted modelling strategy is still to be developed [1]; this represents a
significant challenge for the design of large structures. This paper presents a model for size
effects on the longitudinal tensile strength of UniDirectional (UD) Fibre–Reinforced Polymers
(FRPs), based on the stochastic variability of fibre strength and the definition of hierarchical
fibre–matrix bundles.

Several theories have been proposed to model the relation between size and strength of
structures. The stochastic approach, based on the Weakest Link Theory (WLT) and formalised
by Weibull [2], has been extensively applied to FRPs [1]. Deterministic size effects have
also been studied by several other authors, e.g. Bazant et al. [3] (on the energy dissipated
during failure of quasi-brittle materials), Carpinteri et al. [4] (on the fractal self–similar failure
process of heterogeneous materials), and Wisnom et al. [5] (on the change of failure mode in
scaled laminated composites). These authors acknowledge nevertheless that stochastic size
effects play a major role in the strength of FRPs.

The WLT states that a chain withstands an external load only if all its elements survive
the resulting stresses. Let XU,r be the stochastic strength of the elements (with reference
length lr, all statistically identical and independent) under an uniform (subscript U) stress σ;
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Nomenclature
Uppercase variables
A cross sectional area
C perimeter
CK stress–concentrations strength parameter
CoVX coefficient of variation of strength
Γ shear–lag boundary
F failure probability (strength distribution)
S survival probability
T shear strength
V volume fraction
X longitudinal tensile strength
Lowercase variables
f strength probability density function
φ diameter
i bundle level
k stress concentrations factor
l length
m Weibull shape parameter
n number of elements
s interfibre spacing
σ longitudinal stress
τ shear stress

Superscripts
f fibre
[i] bundle level
∞ remote

Subscripts
0 Weibull scale parameter
B free edges boundary
c control length
e effective recovery length
H hexagonal configuration
I interface failure path
K linear stress concentrations state
L pure linear stress state
M matrix failure path
m mean value
n chain of elements
Q quadrangular configuration
r reference length / element
S smallest failure path
SL shear–lag
U uniform stress state

the survival probability for each element is SU,r(σ) = Pr(XU,r > σ). Therefore, the survival
probability of a chain (length ln = n·lr) with n elements is:

SU,n(σ) =
[
SU,r(σ)

]n ⇒ ln
[
SU,n(σ)

]
= n·ln

[
SU,r(σ)

]
=
ln
lr
·ln
[
SU,r(σ)

]
. (1)

Weibull [2] then proposed a new distribution for the strength of brittle materials, so that sur-
vival and failure probabilities of a chain under uniform stresses σ are:

SU,n(σ) = exp

[
− ln
lr

(
σ

σ0

)m]
and FU,n(σ) = 1− exp

[
− ln
lr

(
σ

σ0

)m]
, (2)

where m and σ0 are respectively the shape (size independent) and scale (measured at lr)
parameters of the distribution. A true Weibull distribution FU,n(σ) is linear in Weibull coordi-
nates, defined as ln(σ) vs. ln[− ln(1− FU,n)].

Equation 2 has been widely used to model the length effect on the strength of tech-
nical fibres, e.g. glass or carbon [5–7]. While alternative strength distributions have been
proposed [8, 9], a good agreement between Weibull’s theory and experimental measurements
can be achieved if the spurious effect of fibre gripping and testing variability is taken into
account [10].

At the FRP level, the parallel fibre arrangement and the presence of matrix result
in a quasi-brittle failure process; this hinders the applicability of Weibull’s theory to model
size effects on the longitudinal tensile strength of FRPs [1, 3], especially when scaling the
cross–section or filament count. Beyerlein and Phoenix [9] and Kazanci [11] tested different
micro–bundles (with 4 and 7 fibres) and found that bundle strengths deviated significantly
from Weibull distributions; moreover, the mean strength of some bundles (depending on the
resin) was higher than that of the fibres, while variability was considerably lower. At the



macroscopic scale, Okabe and Takeda [12] and Scott et al. [13] reported the formation of
several clusters of fibre breaks before final coupon failure. It has also been suggested that both
the magnitude of size effects and the variability of strength decrease for larger specimens [1].
All these observations at the FRP level are incompatible with the WLT.

The asymptotic behaviour for the tensile strength of FRPs has been successfully mod-
elled in the literature [1, 3]. However, the recent development of high–performance com-
posites with discontinuous reinforcement — with individual fibres and bundles of various
sizes [14, 15] — requires developing and validating full scaling models. It has been sug-
gested [1] that most of the physics involved in longitudinal tensile failure of FRPs are cap-
tured by fibre bundle models, first developed by Daniels [16]; however, and despite many
developments [7], no single approach has surfaced as providing simultaneously a definitive
explanation for the micromechanics and statistics of fibre–dominated tensile failure, as well
as validated quantitative predictions for size effects over a complete range of scales.

Pimenta et al. [15] and Laffan et al. [17] reported self–similar or quasi-fractal features
on the fracture surface of thin (under 0.5 mm) UD laminas and fibre bundles, which sug-
gests a hierarchical failure process. Such features had already been proposed in Newman and
Gabrielov’s model [18] for dry fibre bundles. Considering that a bundle of hierarchical level
[i+ 1] is composed by two sub-bundles of level [i], the following recursive relation for bundle
strength distributions was derived [18]:

F [i+1](σ) = F [i](σ)·
[
2·F [i](2·σ)− F [i](σ)

]
, (3)

where F [i](σ) is the failure probability of a level–[i] bundle under an applied stress σ. Newman
and Gabrielov’s model provides a physically sound and computationally robust alternative to
the WLT. However, it does not consider the effect of an embedding matrix, and does not
include any characteristic length governing the failure process (which is paramount for quasi-
brittle materials [3]); moreover, the model is inconsistent with the WLT for length scaling,
and no alternative is proposed.

This paper presents the development, implementation and validation of a fibre–bundle
model for predicting size effects on the longitudinal tensile strength of FRP (embedded) bun-
dles. Following Newman and Gabrielov’s work [18], bundles are hierarchically organised
and scaling is based on the single–fibre strength distribution. However, the role of the ma-
trix (or fibre–matrix interface) is now considered through a simplified shear–lag model, with
substantial implications on the derivation of the scaling law and its implementation.

This paper is organised as follows: Section 2 presents the development of the ana-
lytical model for predicting strength distributions of FRP bundles of different dimensions.
Section 3 explores modelling results (including sensitivity studies and experimental valida-
tion), which are subsequently interpreted and discussed in Section 4. Finally, Section 5 draws
the main conclusions.

2. MODEL DEVELOPMENT

2.1. Methodology and definitions

This model is based on hierarchical fibre–matrix bundles (Figure 1(a)). Their geome-
try is defined in Section 2.2, with particular emphasis on the shear–lag boundary (ΓSL), over
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Figure 1. Hierarchical bundles in quadrangular fibre arrangement.

which a shear–lag model will include the effect of the matrix or fibre–matrix interface on the
failure process. The in-situ mechanical response of the matrix in a composite is difficult to
represent accurately; for instance, epoxy is usually brittle in bulk, but actually ductile and
much stronger in-situ [19,20]. A perfectly–plastic constitutive law, with shear strength TSL, is
adopted for the sake of simplicity.

Considering that this shear–lag model yields non-uniform stress fields near fibre breaks
(with linear stress concentrations), the corresponding failure probabilities are derived in Sec-
tion 2.3. The amplitude of true stress concentrations near clusters of fibre breaks is still an
unsolved issue [20–22]; in this model, the stress concentrations factor k is a parameter as-
sumed to be constant throughout bundle hierarchy.

Section 2.4 derives the hierarchical law for bundle failure. This requires (i) identifying
the stress fields and sequences of events leading to failure of a 2–fibres bundles, and (ii)
calculating the respective bundle strength distribution. A self–similar failure process is then
assumed [15, 17], so the previous result is used recursively throughout bundle hierarchy. The
numerical implementation of the model is described in Section 2.5.

This paper expresses longitudinal stresses (σ) as fibre stresses (i.e. normalised by the
area of fibres in the cross section). The concept of stochastic strength under uniform stresses
will be extended to proportional non-uniform stress fields, characterised by a shape function
Φ and remote stress σ∞. Under such stress field, the strength of an element E with length ` is
represented as XEΦ,`, and failure occurs if XEΦ,` ≤ σ∞.

The failure probability (cumulative distribution function) of the element E of length `
under the stress field Φ · σ∞ is F EΦ,`(σ

∞) = Pr(XEΦ,` ≤ σ∞); this corresponds to the traditional
strength distribution for uniform stresses. The associated survival probability is SEΦ,`(σ

∞) =

1− F EΦ,`(σ∞), and the probability density function is fEΦ,`(σ
∞) = dF EΦ,`(σ

∞)/ dσ∞.

2.2. Fibre bundle geometry and shear–lag boundary

Figure 1(a) illustrates the generation of hierarchical fibre bundles; this consists on
pairing individual fibres (level–[0]) into level–[1] bundles, and then sequentially grouping two
level–[i] bundles into one level–[i + 1] bundle [18]. The number of fibres (nf) in a level–[i]

bundle is therefore:
nf = 2i ⇔ i = log2 n

f . (4)

The fibres (superscript f) in bundles are assumed to be arranged in a quadrangular
architecture (subscript Q). The composite is characterised by the fibre diameter φf (circum-
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Figure 2. Shear–lag boundary.

ference Cf and area Af) and fibre volume fraction V f; the side length of the unit cell (lQ) and
interfibre spacing (sQ) are (Figure 1(b)):

lQ =

√
π ·φf

2·
√
V f

and sQ =

( √
π

2·
√
V f
− 1

)
·φf . (5)

Considering now a level–[i] bundle embedded in a larger composite bundle (Figure 2),
it is possible to define a level–[i] shear–lag boundary (Γ[i]

SL). Physically, Γ
[i]
SL corresponds to

the surface at which shear–lag stresses will be transferred between the (unbroken) surrounding
material and a broken level–[i] bundle.

Table 1 presents the perimeter of the shear–lag boundary (C [i]) as function of nf,
for three simplified geometries (corresponding to different relations between the strengths of
matrix and fibre–matrix interface). The expressions shown are strictly valid only for even
values of i, but used for any bundle size so that C [i] is a smooth function of nf.

Alternative configurations for the shear–lag boundary can also be defined [23]. Table 2
takes into account the effect of free boundaries in the large embedding bundle (level [i =

imax]), by defining edge and corner boundaries with reduced effective perimeters. In addition,
considering a hexagonal fibre packing generates fractal shear–lag boundaries (Table 3).

2.3. Survival probabilities under several loading conditions

2.3.1 Generalisation of the weakest link theory for non-uniform stress fields

The WLT (Equation 1) can be generalised to non-uniform chain stresses. Consider that
each reference element j = {1 . . . n}, of length lr, is under a uniform tensile stress σj . The
chain (of length ln = n · lr) is subjected to a piecewise constant but otherwise generic stress
field with shape function Φ, with a log-survival probability related to that of the uniformly
loaded chain (subscript U):

SΦ,n =
n∏
j=1

SU,r

(
σj
) Eq. 1

==⇒ ln
[
SΦ,n

]
=

n∑
j=1

lr
ln
·ln
[
SU,n

(
σj
)]
. (12)

This relation will be applied to chains under linear stress fields (Figure 3).



Table 1. Shear–lag perimeter in quadrangular arrangement, derived for even values of i.

Matrix
failure

(subscript
QM)

C
[i]
QM = 4·

√
nf ·lQ (6)

Interface
failure

(subscript
QI)

C
[i]
QI = 3·Cf + 4·

[(√
nf − 1

)
·sQ +

(√
nf − 2

)
·C

f

2

]
(7)

Smallest
boundary
(subscript

QS)

C
[i]
QS = Cf + 4·

(√
nf − 1

)
·lQ (8)

Table 2. Shear–lag perimeter considering boundary effects, derived for even values of imax.

Interface
failure

(subscript
QB)

C
[imax−1]
QB,edge =

√
2·nf ·

(
sQ +

Cf

2

)
(9)

C
[imax−2]
QB,corner =

Cf

4
+ 2·

(√
nf − 1

2

)
·
(
sQ +

Cf

2

)
(10)

Table 3. Shear–lag perimeter in hexagonal arrangement, derived for nf = {1, 7, 49, . . . }.

Interface
failure
(subs.
HI)

lH

sH

Áf

C
[i]
HI = 3·

(
log3 7
√
nf − 1

)
·sH

+
(

3· log3 7
√
nf − 1

)
·C

f

2
(11)
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Figure 3. Stress fields analysed through a generalised weakest link theory.



2.3.2 Pure linear loading

Consider a chain of length l under a pure linear tensile stress field (subscript L, Fig-
ure 3(b)):

σL(x) =
σ∞

l
·x , x ∈ [0, l] . (13)

Dividing the linearly–loaded chain into n → ∞ links of individual length ∆x = l/n,
and following Equation 12, the survival probability (SL) of the chain under σL(x) relates to
that of an uniformly loaded chain (SU) by:

ln
[
SL

]
= lim

n→∞

n∑
j=1

∆x

l
·ln
[
SU

(
σL(xj)

)]
. (14)

From Riemann’s integral definition, and changing the integration variable from x to σL,

ln
[
SL

(
σ∞
)]

=
1

σ∞

∫ σ∞

σL=0

ln
[
SU(σL)

]
dσL . (15)

Equation 15 is valid regardless of the shape of the material strength distribution. For
the particular case of a Weibull distribution (Equation 2),

ln
[
SL(σ

∞)
]

=
1

σ∞

∫ σ∞

σL=0

−
(
σL
σ0

)m
dσL = − 1

m+ 1

(
σ∞

σ0

)m
=

1

m+ 1
·ln
[
SU(σ

∞)
]

⇒ FL(σ
∞) = 1− exp

[
− 1

1 +m

(
σ∞

σ0

)m]
. (16)

2.3.3 Linear stress concentrations

Consider a chain of length l under a linear stress concentrations field with factor k
(subscript K, Figure 3(c)):

σK(x) = σ∞ +
σ∞ ·(k − 1)

l
·x , x ∈ [0, l] . (17)

Using the same procedure followed for the pure linear stresses case, the survival prob-
ability (SK) of the chain loaded with linear stress concentrations is defined as:

ln
[
SK(σ

∞)
]

=


1

σ∞ ·(k − 1)

∫ k·σ∞

σK=σ∞
ln
[
SU(σK)

]
dσK if k > 1

ln
[
SU(σ

∞)
]

if k = 1 .

(18)

Equations 15 and 18 can be combined to establish a relation between survival proba-
bilities of chains under pure linear stresses and under linear stress concentrations:

ln
[
SK(σ

∞)
]

=


k ·ln

[
SL(k ·σ∞)

]
− ln

[
SL(σ

∞)
]

k − 1
if k > 1

ln
[
SU(σ

∞)
]

if k = 1 .

(19)



Equations 18 and 19 are valid regardless of the shape of the material strength distribu-
tion. For the particular case of a Weibull distribution (Equation 2):

ln
[
SK(σ

∞)
]

=
1

σ∞ ·(k − 1)

∫ k·σ∞

σK=σ∞
−
(
σK
σ0

)m
dσK = −CK

(
σ∞

σ0

)m
= CK ·ln

[
SU(σ

∞)
]

⇒ FK(σ
∞) = 1− exp

[
− CK ·

(
σ∞

σ0

)m]
, where CK =

km+1 − 1

(m+ 1)(k − 1)
. (20)

2.4. Hierarchical law for bundle failure

2.4.1 Stress field around a fibre break and definition of the control region

Consider a level–[1] bundle of reference length lr (subscript r), composed by two
level–[0] fibres — A and B— embedded in a soft matrix (Figure 1(a), i = 1). The bundle is
loaded in tension by a progressively increasing remote stress σ∞, so that each fibre undergoes
a uniform stress state σA(x) = σB(x) = σ∞.

Assume that, for a given σ∞, fibre A is failed at the location x = 0 (Figure 4(a)).
Following a perfectly–plastic shear–lag model (with strength TSL and shear–lag perimeter
C [0], defined in Tables 1–2), fibre A will recover linearly the longitudinal remote stresses
within the level–[0] effective recovery length (subscript e), defined as:

l[0]
e (σ∞) = 2· Af

C [0] ·TSL
·σ∞ . (21)

Conversely, fibre B will undergo linear stress concentrations (k = 2 from equilibrium) within
the length l[0]

e (Figure 4(a)).
Bundle failure requires that both fibres A and B break in nearby locations, so as to

promote complete yielding of the shear–lag boundary (representing the matrix or interface)
as shown in Figure 4(b). Therefore, once fibre A fails, the level–[1] control region — within
which a break in fibre B leads to bundle failure — is confined to the control length (subscript
c), defined by:

l[1]
c (σ∞) = 2·l[0]

e (σ∞) = 4· Af

C [0] ·TSL
·σ∞ . (22)

The control region (centred at the first fibre break) is partitioned into 4 fibre segments
(A1, A2, B1 and B2) of equal length l[0]

e (Figure 4(c)). Fibre strength under uniform stresses
is assumed to follow a Weibull distribution, with parameters m and σf0 at lr, and survival
probability S[0]

U,r. Scaling for the segments A1, A2, B1 and B2 of length l[0]
e , under uniform

(S[0]
U,e) or stress concentrations (S[0]

K,e) fields, can be done through Equations 2 and 20, leading
to:

S
[0]
U,r = exp

[
−
(
σ∞

σf0

)m]
, S

[0]
U,e = exp

[
− l

[0]
e

lr

(
σ∞

σf0

)m]
, S

[0]
K,e = exp

[
−CK

l
[0]
e

lr

(
σ∞

σf0

)m]
.

(23)

The stochastic strength of each element is represented following a similar notation (e.g. XB1K,e
is the strength of element B1 of length le under linear stress concentrations).
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Figure 4. Stress fields and length scales in a level–[1] fibre bundle.



2.4.2 Recursive law for bundle failure

Considering the bundle analysed in Figure 4 and assuming that:

(i) at each remote stress σ∞, the bundle is represented by a chain of independent control
regions of length l[1]

c (Equation 22).

(ii) within each control region, each fibre can break only once (equivalent to the WLT),

the bundle survival probability is defined as:

S
[1]
U,c(σ

∞) = S
[0]
U,e(σ

∞)
4

+ 2·
[
1− S[0]

U,e(σ
∞)

2
]
·S[0]

U,e(σ
∞)·S[0]

K,e(σ
∞) . (24)

Physically, Equation 24 states that the bundle survives either if all its 4 segments sur-
vive, or if the weakest fibre fails and the strongest one survives the resulting stress field. It can
be demonstrated [23] that Equation 24 considers three possible failure modes: (i) unstable
bundle failure, (ii) stable bundle failure due to stress concentrations, and (iii) stable bundle
failure due to independent fibre flaws.

Assuming a self–similar hierarchical failure process, Equation 24 can be extrapolated
to any bundle level. The survival function of a level–[i + 1] bundle (under uniform stresses
and within a control length, omitting σ∞ for readability) is thus calculated as:

S
[i+1]
U,c =

(
S

[i]
U,e

)4
+ 2·

[
1−

(
S

[i]
U,e

)2
]
·S[i]

U,e ·S
[i]
K,e . (25)

Level–[i] survival probabilities are defined at the effective recovery length l[i]e (σ∞) (the shear–
lag perimeter C [i] can be calculated from Equations 6–10), while S[i+1]

U,c is defined at the level–
[i+ 1] control length:

l[i]e (σ∞)
Eq. 21
= 2· n

f ·Af

C [i] ·TSL
·σ∞ , l[i+1]

c (σ∞)
Eq. 22
= 2·l[i]e (σ∞) . (26)

Equation 25 can be scaled to the reference length (following Equation 1 and 26) and
written in both the following logarithmic forms:

ln
(
S

[i+1]
U,r

)
= 2·ln

(
S

[i]
U,r

)
+

lr

2·l[i]e
·ln

(
1 + 2·

[
S

[i]
K,r(

S
[i]
U,r

)3

]l
[i]
e /lr

− 2

[
·
S

[i]
K,r

S
[i]
U,r

]l
[i]
e /lr)

=

=
ln
(
S

[i]
U,r

)
+ ln

(
S

[i]
K,r

)
2

+
lr

2·l[i]e
·ln

(
2 +

[(
S

[i]
U,r

)3

S
[i]
K,r

]l
[i]
e /lr

− 2·
[(
S

[i]
U,r

)2
]l

[i]
e /lr
)
.

(27)
The stress concentrations survival probability S[i]

K,r is calculated from Equation 18:

ln
[
S

[i]
K,r(σ

∞)
]

=


1

σ∞ ·(k − 1)

∫ k·σ∞

σ=σ∞
ln
[
S

[i]
U,r(σ)

]
dσ if k > 1

ln
[
S

[i]
U,r(σ

∞)
]

if k = 1 .

(28)

Equations 25–28 are valid for Weibull and non-Weibull strength distributions.



2.5. Asymptotic limits and numerical implementation

Equations 27 and 28 show that, in order to calculate S[i+1]
U,r (σ∞), it is necessary to

define S[i]
U,r(k ·σ∞), and thus (following a recursive procedure down to the single–fibre level)

calculating S[0]
U,r(k

i+1 ·σ∞). This quickly becomes intractable as bundle level increases, thus
making a relevant case for an asymptotic simplification.

It can be demonstrated [23] that, if CK > 3 (which is verified for m & 2.6 considering
k = 2, valid for most technical fibres), then Equation 27 is equivalent to the WLT (Equa-
tion 1). Each level–[i] Right Tail Asympote (RTA) is defined from the single–fibre strength
distribution (Equation 23) as:

S
[i]
u,r,RTA(σ∞) = exp

[
−
(

σ∞

σ
[i]
0,RTA

)m[i]
RTA
]

, with

{
m

[i]
RTA = m

σ
[i]
0,RTA = 2−(i+1)/m ·σf0

, if CK ≥ 3 .

(29)
A comprehensive analysis of the asymptotic limits of the hierarchical scaling law can

be found elsewhere [23].
An overview of the numerical implementation of the present model, which makes use

of the asymptotes identified in Equation 29, is shown in Figure 5 [23]. Using array program-
ming (e.g. MATLAB) greatly simplifies the implementation and reduces running time.

3. RESULTS

3.1. Analysis of model predictions

Figure 6 summarises the results of the model for nominal input parameters (Table 4),
highlighting the size effect on bundle strength statistics in Figure 6(a). Contrarily to Newman
and Gabrielov’s model (Equation 3 [18]), the present one predicts an initial strengthening
through bundle hierarchy (as observed experimentally [9, 11]), and a steeper reduction of
variability (Figure 6(a)).

The Weibull plot of bundle strength distributions in Figure 6(b) evidences a concave–
down curvature for all i > 0, although the single–fibre strength (i = 0) follows a Weibull
distribution; this curvature initially increases for small bundles, but is progressively reduced
for larger bundles within a 0.01–99.99% probability range. It is also shown that the model
does converge to the WLT for large stresses, considerably before the asymptotic behaviour is
mathematically imposed (Equation 29 for σ∞ > σmax/k).

3.2. Convergence study

Figures 7 and 8 present convergence studies on the numerical variables σmax and ∆σ.
Errors are relative to nominal inputs (Table 4), and run times were obtained with an Intel(R)
Core(TM)2 Quad CPU @ 2.50 GHz, for imax = 20 (nf ≈ 106). It is shown that a fully
converged set of strength distributions (from the single–fibre to a standard coupon–size FRP)
is computed in less than a second.
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Figure 5. Numerical implementation.

Table 4. Nominal inputs for parametric studies (nominal outputs to be highlighted as �).
Numerical parameters Mechanical properties Geometry Load

σmax (GPa) ∆σ (MPa) Xf
m (GPa) CoVf

X (%) TSL (MPa) φf (µm) V f (%) ΓSL k

50 1 4.5 25 70 5 60 QI 2
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3.3. Parametric study

The relation between single–fibre strength variability and bundle strength distributions
is shown in Figure 9. For a deterministic fibre strength, the model predicts no size effects; for
a small CoVf

X , the model converges to the WLT (Equation 29).
Figure 10 shows that increasing the shear–lag strength strengthens the bundles and

reduces their variability. For very low TSL values, size effects converge to the WLT (Equa-
tion 29) and, therefore, mean bundle strength decreases monotonically with bundle level.

Matching several ΓSL geometries (Section 2.2, Figure 11(a)) with the corresponding
mean bundle strength (Figure 11(b)) reveals that the largest shear–lag boundary at low–level
bundles (QM geometry) yields the strongest bundles throughout the whole hierarchy; the same
is not verified for the largest shear–lag boundary at high–level bundles (HI geometry). Free–
boundary effects (QB vs. QI geometries) affect small bundles only.

3.4. Validation against experimental results

Beyerlein and Phoenix [9] and Kazanci [11] measured the strength distributions of
several micro–composites (detailed description in Tables 5 and 6). Figure 12 compares exper-
imental results to model predictions; each plot shows the strength distribution of the single–
fibre and the two corresponding bundles (manufactured with different resin systems), as well
as predictions from the present and Newman and Gabrielov’s [18] models.

Okabe and Takeda [12] analysed size effects on the strength of a Toray T800H/3631
(carbon–epoxy) system (Tables 5 and 6) by testing 10 mm long bundles with 104− 106 fibres.
Figure 13 shows the experimentally measured bundle strengths, together with the strength
probability map predicted by the model for two values shear–lag strengths; Newman and
Gabrielov’s [18] mean bundle strengths are shown for comparison.

Table 5. Description of composites for model validation.
Composite ref. Fibre ref.(?) nf Matrix ref.(†) TSL (MPa) V f Reference

A4S A 4 S 46.6(§) 70% [9]
A4F A 4 F 10.3(§) 70% [9]
I7S I 7 S 46.6(§) 56% [11]
I7F I 7 F 10.3(§) 56% [11]
TnT T 104−106 T 52.4 60% [12]

(?) See Table 6 for detailed description.
(†) Epoxy resins. Standard (S): DER 331, Dow Plastics; Flexible (F): DER 331 + DER 732 (50:50), Dow

Plastics; Toughened (T): 3631, Toray Composites.
(§) Drucker–Prager’s criterion, using tensile and compressive strengths [24].

Table 6. Carbon–fibre data for model validation.
Fibre ref. Fibre type (?) φf (µm) lfr (mm) m (†) σf0

(†) (GPa) Reference
A AS4 6.85 10 4.8 4.493 [9]
I IM6 5.63 10 5.4 5.283 [11]
T T800 5.00 50 3.8 3.570 [12]

(?) AS4 and IM6 fibres provided by Hercules / Hexcel; T800 fibres provided by Toray.
(†) From the respective Reference, originally calculated through the maximum likelihood method.
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4. DISCUSSION

4.1. Features captured by the model

The model captures many characteristic features of strength size–effects in FRPs:

a. Size effects result from fibre strength variability (Figure 9), which leads to the WLT for
damage initiation. Damage propagation is arrested by the presence of the matrix / interface,
which limits stress concentrations and coalescence of fibre–breaks.

b. Both the magnitude of the size effect and the variability of tensile strength decrease with
increasing specimen size (Figure 6(a)) [1].



c. The presence of matrix / interface is most relevant for micro–bundles (i . 3, Figure 11),
resulting in the latter being stronger than their constituent fibres (for reasonably strong
matrices). The effect of fibre strength variability is dominant in large bundles (nf & 50).

d. Predicted large–bundle strength distribution appear quasi-linear in a Weibull plot within a
0.01–99.99% probability range (Figure 6(b), i = 15), which explains the good agreement
usually reported between the Weibull–based WLT and experiments [1].

4.2. Relation between proposed model and WLT

The present model’s formulation differs from the WLT by considering stable modes of
bundle failure; these are mathematically represented in the strength scaling law (Equation 25)
by the second term on the right hand side. Consequently, the model degenerates into the
WLT whenever these failure modes cannot take place (i.e. for low CoVf

X (Figure 9), TSL → 0

(Figure 10), and k → ∞). A comprehensive discussion on the asymptotic limits of bundle
strength distribution for extreme values of these variables is presented elsewhere [23].

Figure 14 compares bundle strength statistics obtained by either (i) running the full
model for all bundle levels i, or (ii) running the model up to level iWLT followed by the WLT
(Equation 1) for each level i > iWLT. Although the WLT applied directly from the single–fibre
(iWLT = 0) severely underestimates mean strengths and overestimates CoVs, both approaches
converge if applied from a certain bundle level onwards (iWLT & 5 in this case). This indicates
that the model captures the quasi-brittle nature of FRPs [1, 12, 13].

4.3. Effect of the shear–lag boundary and relation to Newman and Gabrielov’s model

By comparing the present model and Newman and Gabrielov’s one [18] (Figure 6(a)),
it is highlighted that considering the matrix / interface significantly increases mean bundle
strength and reduces variability. As shown in Figure 11, this affects directly small bundles
(i . 3) only, but the effect propagates throughout bundle hierarchy.
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Including the effect of the shear–lag boundary results in considering the length of
the damage process zone (l[i]c ), which is fundamental for defining size effects in quasi-brittle
materials [3]. Such feature not only improved the accuracy of model predictions (Figures 12
and 13), as it makes bundle strength scaling independent of the reference length lr used in the
calculations [23].

4.4. Model inputs and experimental validation

Despite the difficulties associated with determining correct input properties (espe-
cially regarding single–fibre strength distributions [10] and in-situ matrix properties [19]),
the comparison between model predictions and experimental data available in the literature
(Figures 12 and 13) is extremely encouraging.

In Figure 12, the model evidences its ability to reproduce quantitatively the effect of
different fibres and resins on micro–bundle strength distributions; this offers a strong sup-
port to the shear–lag approach used. The model reproduces the concave–down curvature of
bundle strength distributions, the different slopes and locations of the four data sets, and the
relative orientations within each pair of data for the same fibre type (converging right tails in
Figure 12(a), nearly parallel distributions in 12(b)).

Figure 13 considers bundles with cross sections up to 30 mm2 (larger than the stan-
dard UD FRP specimen for characterisation of tensile properties). A very good agreement
between predicted and measured strengths is obtained when increasing the input value of
shear–lag strength (Figure 13(b)), which is likely to be more representative of the true in-situ
matrix behaviour. The reduction of strength variability for larger bundles is captured as well,
and nearly all the experimental scatter is covered within the predicted 5–95% percentiles for
bundle strength distributions.

5. CONCLUSIONS

An analytical model for size effects on the longitudinal tensile strength of FRP bundles
was developed, implemented and validated. The model is based on the stochastic analysis of
the failure process in hierarchical fibre bundles, considering Weibull fibres and a simplified
shear–lag model to represent matrix effects.

The model predicts full strength distributions and statistics for bundles of any size.
The matrix (or fibre–matrix interface) was shown to have a significant strengthening effect,
which supports the present model over others not including this feature [2, 18]. An efficient
numerical scheme was proposed, leading to full–model running times below one second.

The model was validated both at the micro and macro scales, showing a remarkable
agreement with experimentally measured bundle strengths in a large range of sizes. The quasi-
brittle nature of composites is reproduced; the model also illustrates many experimentally ob-
served trends, such as the tensile strength of FRPs appearing to follow a Weibull distribution,
and large–scale size effects consistent with the WLT.

Predictive models for size effects in composite materials are paramount for scaling
small–coupon experimental results to the design of large structures. In addition to such quan-
titative predictions, the present work provides insight on the longitudinal tensile failure pro-



cess. The model’s ability to compute strength distributions for small bundles (rather than only
for asymptotically large ones) makes it particularly suitable for state–of–the–art multiscale
discontinuous–fibre composites. Further developments will include predicting the shape of
fracture surfaces and the corresponding fracture toughness for FRPs under longitudinal ten-
sile failure.
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