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Abstract. The Boundary Element Method (BEM) is used in this work to the analysis of plates 

resting on Pasternak-type foundations, considering Reissner´s theory. The used approach 

considers the fundamental solution already employed in the analysis of plates by the BEM. 

Integral equations that are used to solve the problem are presented, in which domain 

integrals related to soil reactions are included. The region situated over the foundation is 

discretized into constant internal cells and the integrals related to the cells are transformed 

into integrals over the boundary of these cells. Since the soil reactions are also unknowns to 

the problem and these forces are written in terms of transverse displacements and their 

derivatives, additional equations written for domain points situated in the cells are 

considered. In order to define additional equations to the original system, integral equations 

for transverse displacements at internal points and integral equations for the second 

derivatives of these transverse displacements are added to the system and these displacements 

and respective derivatives are also considered as unknowns to the resulting system. 

Continuous and discontinuous quadratic boundary elements are used in the numerical 

implementation. Some numerical examples are presented and results are compared with those 

obtained by other authors with different approaches. 
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1. INTRODUCTION 

Plate bending analysis by the Boundary Element Method (BEM) using Reissner’s 

theory was initially developed by Van der Weeën [9]. Some authors who have studied plates 

on elastic supports with the BEM are: Paiva [4], Rashed et al. [5] and Ribeiro and Karam [8], 

using Winkler’s model; and Jianguo et al. [2], Rashed et al. [6] and Altoé and Karam [1], 

using Pasternak’s model. 

Reissner’s theory [7] allows the analysis of thin and thick plates and considers the 

three physical boundary conditions concerned with the problem, leading to results more 

accurate near edges and corners than those obtained from Kirchhoff’s theory, which considers 

only two boundary conditions in each edge and, in consequence, is limited to thin plates. 
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The Boundary Element Method is used, in this work, to the numerical solution, 

considering Reissner’s theory and also the soil reaction with a Pasternak-type model. 

The approach carried out in this work uses a fundamental solution already employed 

in plate bending analysis by the BEM [3,9] and additional equations to the original system, 

written for points of the contact region. That region is discretized in internal cells and the 

corresponding integrals are transformed into integrals over the boundary of the cells. In 

addition, in this work, quadratic boundary elements and constant triangular internal cells are 

used. 

It is also important to mention that, in this work, Cartesian tensor notation is used, 

with Greek indices varying from 1 to 2 and Latin ones from 1 to 3. 

2. BASIC FORMULATION 

Consider an isotropic, homogeneous and linearly elastic plate, with constant thickness 

h and subjected to a transversal loadind q  per unit area, resting on a Pasternak-type 

foundation. The reaction of the foundation acting on the plate is represented by p  and 

expressed as: 
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22,311,313

uukkup  ,                                                  (1) 

in which: 

 

k  = foundation modulus;  

1k  = shear foundation modulus; 

3
u  = transverse displacement of a point of the plate; 

11,3
u  and 

22,3
u = second derivatives of the transverse displacement in a point of the plate, 

related to the axes 
1

x  and 
2

x , respectively. 

 

 Moments M  and shear forces Q , including the contribution of elastic foundation 

reaction, are given by: 
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where: 

 

  = Poisson’s ratio; 

  = Kronecker’s delta; 

u  = rotations in the planes x – 3x ; 
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D  = flexural rigidity of the plate; 

E  = longitudinal elastic modulus; 

h

10
  = constant of Reissner’s equations. 

 

Equilibrium equations for a domain general point, obtained from the equilibrium of an 

infinitesimal plate element, are written as:  
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For a boundary general point, the following boundary tractions are defined: 
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with n  being the direction cosines of the outward normal to the boundary. 

In addition, the following boundary conditions are considered: 

          

,in

,in

pkk

ukk

pp

uu





                                                              (5) 

with 
u

  being the part of the boundary where the generalized displacements are prescribed 

and 
p

  being the part of the boundary where the generalized tractions are prescribed. The 

total boundary is defined as: 

pu  .                                                               (6)                                                                              

3. INTEGRAL EQUATIONS 

From a Weighted Residual Procedure and Reissner’s plate bending theory, including 

the contribution of the elastic foundation reaction, and after performing the limits of the 

integrals as the source point tends to the boundary, the following integral equation can be 

obtained, which is valid for points situated in the domain   or at the boundary  :  
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where ),(* xuij   and ),(* xpij   represent components of the displacement tensor of the 

fundamental solution for the problem and components of the corresponding traction tensor, 

respectively, in the direction j of the field point x  corresponding to the action of a unit  

concentrated generalized force applied in the direction i  of  the source point  . 

The coefficient  ijc  depends on boundary geometry at point   and one has: 

 

ijijc    if   is a domain point; 

2ijijc   if   is a smooth boundary point. 

 

The domain integrals can be transformed into boundary integrals for several kinds of 

loading. In the present work, the load )(xq  is considered as a uniformly distributed load, so 

that qxq )( = constant. In addition, the region over the elastic support is considered divided 

into constant triangular cells and it is admitted that )(xp is uniformly distributed in each cell, 

so that pxp )( = constant. 

In this case, using the divergence theorem in order to transforme domain integrals into 

boundary integrals, one obtains: 
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Displacements at an internal point   are obtained from Eq. (8), with ikikC  , so that: 
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For calculating moments and shear forces at an internal point  , the following 

boundary equations are obtained: 
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Expressions for the tensors corresponding to the fundamental solution are found in 

Van der Weeën [9] and Karam and Telles [3]. 

4. NUMERICAL IMPLEMENTATION 

For the numerical solution of Eq. (8), the boundary   is divided into elements, in 

which ju  and jp  are calculated by interpolating the nodal values. Then, this equation is 

written in discretized form for each nodal point   at  , by substituting the integrals in   by 

summations of integrals in j , with j  being the boundary of the element j. Then, a system 

of N algebric equations is obtained that contains N displacement nodal values and N traction 

nodal values. 

So, Eq. (8) can be written in the following discretized form: 
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where: 

 

i
C
~

= matrix which contains the coefficients ijc  of  Eq. (8); 

i
U
~

= vector with source point displacements; 

e  = number of boundary elements; 



 

~
N = matrix that contains the interpolation functions; 

*

~ i
U and 

*

~ i
P = matrices that contain the components of tensors of the fundamental solution 

related to displacements and tractions, respectively; 
n

U
~

and 
n

P
~

= vectors that contain the components of displacements and tractions, 

respectively, related to the nodal points of the considered element; 

eN = number of boundary elements of each internal cell; 

cN  = total number of cells; 
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S = vector with components expressed as: 
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By applying Eq. (12) for all nodal points   of the boundary, one obtains a system with 

a number of equations three times the number of nodal points, in the form: 

   
~~~~~~

MBPGUH  ,                                                           (14) 

where: 

 

~
U and

~
P = vectors that contain the nodal values of displacements and tractions, respectively; 


~
B vector that contains the distributed load contribution; 


~

M vector that contains the soil reaction contribution; 

~
H and 

~
G = matrices that contain the integrals over the boundary elements. 

 

The system of equations (14) admits as unknown displacements or tractions at 

boundary nodes. Since the reactions of the elastic support represent additional unknowns to 

this system, integral equations for transverse displacements of points situated in the geometric 

centre of internal cells and integral equations of the second derivatives of these transverse 

displacements are also added to this system.  

By applying the integral equations of second derivatives of the transverse 

displacements relative to the axes 1x  and 2x  and the third of the equations represented in the 

expression presented in Eq. (8) to all cell points in which there exist contact with the elastic 

foundation, one has, after the discretization and combining with Eq. (14): 
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where index i indicates that the vectors and matrices are related to internal points. 
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The values of displacements and tractions at boundary nodes are given, respectively, 

by vectors 
~

U  and 
~
P . For each nodal generalized direction, one must have the displacement 

or the traction with prescribed value and the other as unknown. In addition, the values of the 

transverse displacements and of the second derivatives of transverse displacements at internal 

cell points, contained in 
2

~ i
U  , are also unknowns.  

One can reorder the system represented by Eq. (16), so that all unknowns in 
~

U , 
~
P  

and 
2

~ i

U  be allocated in a vector 
~
X  and all known values be allocated in a vector

~
F . So, one 

obtains a system of the form: 

~~~
FXA  .                                                           (17) 

By solving this system, the unknown values of displacements, tractions and second 

derivatives are obtained. 

For calculating displacements at internal points, Eq. (9) is discretized and, for each 

point i  of  region  , one obtains: 
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For the calculation of moments and shear forces at internal points, Eqs. (10) and (11) 

are discretized and, for each internal point i , one has: 
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5. NUMERICAL EXAMPLES 

2.1. Example 1: Clamped circular plate 

A circular plate with ratio a , clamped at the boundary and layed on elastic support in 

the domain is analysed in this example. Two discretizations are considered: the first one with 

128 constant triangular cells and the second one with 200 constant triangular cells, according 

to Fig. 1. This plate is supposed to have a/h  = 0.005 and   = 0.3.  It is also considered that 
4a/Dkk  , with k  = 200; and 

1
k = 2

1 a/Dk , with 1k = 5 and  1k = 20. 

In order to prove the validity of the formulation, the results obtained in the present 

example are compared to numerical results of Jianguo et al. [2] and also with the analytical 

solution for thin plates obtained by Yu [10] and presented in Jianguo et al. [2], as they can be 

seen in Table 1, which presents the values obtained for the transverse displacements 
4

3

2

3 10 qa/Duu   and for the moments 2222 /10/10 qaMMqaMM ttttrrrr   at the plate 

centre. It can be verified that the results are in accordance. 

In Fig. 2, one can observe the variation of the transverse displacements along a ratio of 

the plate and in Figs. 3 and 4, considering 1k  = 5 and 1k  = 20, respectively, one can observe 

the variation of moments Mrr, also in radial direction.  

  

 

 

 

Figure 1. Boundary and domain discretization of a circular plate 

 



 

Table 1. Results for displacements and moments at the centre of the circular plate 
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Present work 

128 cells 
0.4490297 1.720840 0.3426192 1.185250 

Present work 

200 cells 
0.4474958 1.707700 0.3410063 1.180700 

Jianguo et.al. [2] 
0.4447239 1.676206 0.3383348 1.162126 

Analytical 

solution for thin 

plates [10] 

0.4448609 1.675682 0.3384423 1.161785 
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Figure 2. Variation of transverse displacement 3u  along 1x  
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Figure 3. Variation of moment rrM  along 1x , considering 1k =5 
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Figure 4. Variation of moment rrM  along 1x , considering 1k =20 

2.2. Example 2: Simply supported rectangular plate 

In this example, a rectangular plate simply supported at the boundary is considered, 

having total or parcial elastic support in his domain. The foundation modulus, k , and the 

shear foundation modulus, 
1

k , vary in the plate domain (Fig. 5). The boundary is discretized 

into 12 quadratic elements and the domain into 32 constant triangular cells (Fig. 6). It is 

admitted that h/a = 0.05 and   = 0.3. In addition, it is considered that )/( 4aDkk  , with k  

= 100 and k  = 200; and 
1

k = (
1

k D/a
2
), with 1k = 20 and 1k  = 50. 

In Fig. 7, one can observe the variation of the transverse displacement along 2/
2

ax   

and, in Fig. 8, the variation of flexural moments M11 and M22 along the same line. 

  

 

Figure 5. Rectangular plate simply supported at the boundary 

 

 

 



 

 

Figure 6. Boundary and domain discretization of a rectangular plate 
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Figure 7. Variation of transverse displacement u3 along 22 /ax   
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Figure 8. Variation of moments M11 and M22 along 22 /ax    



 

6. CONCLUSIONS 

A formulation for analysis of plates resting on elastic foundation using the BEM was 

presented in this work, with Pasternak’s foundation model and considering Reissner’s theory 

for plate bending. A procedure that considers the transverse displacements and their second 

derivatives as unknowns at cell points was used. The obtained results were compared with 

those obtained from the literature. It was observed that they are in accordance and this allows 

for one to verify the validity of the presented formulation. It is also important to observe that 

this approach allows the analysis of plates with modulus of foundation varying in the domain. 
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