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Abstract. A formulation for local skin buckling of cylindrical shells is presented, where

just a skin portion between adjacent stringers and frames is considered. The skin panel is

subjected to both axial compressive and pressure loads. A buckling problem is formulated

by a simplified linearization approach and its solution is obtained by a Galerkin procedure.

A simple buckling formula is then derived and its accuracy is compared with finite element

results.
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1. INTRODUCTION

Stiffened panels are widely employed in aeronautical industry, when light weight as-

pects are essential, e.g. aircraft fuselages. Such structures are usually circular cylindrical and

thin-walled susceptible to buckling.

A stiffened shell panel, depending on its geometry and stiffness, can exhibit different

buckling modes which are neither mutually exclusive nor independent. For a panel subjected

to uniaxial compression, like the ones found on the lower fuselage belly of commercial trans-

port aircraft, the overall (global) buckling and the skin (local) buckling modes are usually

distinct to each other. As sudden global buckling is undesirable at design limit load, typical

designs exhibit skin buckling first, followed by load re-distribution to the stiffeners. Since

the preliminary design phases where optimization iterations are performed, it is required the

prediction of buckling load of the fuselage panels. For this purpose, the use of finite element

method is usually avoided due to simulation time costs. Simple analytical buckling solutions

provide, therefore, an important initial design tool.

In general, the buckling strength of a panel is evaluated assuming that the panel is

simply supported or clamped on fuselage stiffeners (stringers and frames). However the local

buckling strength should increase under the influence of the stiffener torsional rigidity. Since

the stiffeners provide a continuous torsional rigidity along panel edges, they could be modeled

as torsion bars. Such assumption seems to be correct if the stiffeners do not buckle before the

skin buckling takes place, which is the case of a typical aeronautical design. Bearing this

in mind, the stability behavior of the complete structure can be studied considering only the

portion of a skin panel between adjacent stringers and frames, converting the complex original

problem to the study of stability behavior of an individual skin panel elastically restrained

along the edges.
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This key idea is exploited by several authors. For instance, Paik and Thayamballi

[11] have employed the Lévy method to develop design formulations for buckling strength as

a function of the torsional rigidity of support members that provide the rotational restraints

along edges. In a simple manner, Bisagni and Vescovini [2] present an analytical formula-

tion for the study of linearized local skin buckling load where the skin is modelled as a thin

plate described by von Kármán theory and applying classical lamination approach, while the

stringers are considered as torsion bars. Only axial compressive loads are involved.

A fast semi-analytical model for the postbuckling analysis of stiffened cylindrical

panels is presented in [4]. The formulation includes both stringer and frames as structural

elements, and captures their instabilities. It is an excelent study that leads to a consistent

postbuckling behavior within an inherently complicated formulation. In a different pathway,

following a simpler engineering approach, Pevzner et al. [13] develop some analytical for-

mulae for calculating the collapse load of an axially compressed laminated curved panel,

where torsional buckling and combined bending and torsion buckling of the stringers are in-

cluded. However, in their approximate solution, the panel is assumed to be simply supported

on stringers and clamped on frames. Therefore, the stringer torsional rigidity is not taken into

account and the predicted buckling load may be somewhat inaccurate. A simple and accu-

rate formulation for the buckling analysis of stiffened cylindrical panels have recently been

proposed by [9] that extent the work of [2] to shell panels.

An extension of our previous formulation [9] is herein presented where the skin panel

is now subjected to both axial compressive and pressure loads. It is assumed that the structure

exhibits skin buckling first, which enables the local instability to be analyzed considering

only a portion of a skin between two adjacent stringers and frames that give it support. Elastic

rotational restraint is only provided by stringers. The equations to determine the bifucation-

point load is obtained through a simplified linearization of Donnell theory [3]. Based on

appropriated trial mode functions of a single degree of freedom, the Galerkin type procedure

is employed to seek a simple formula to estimate the local skin buckling load of stiffened

cylindrical shells. The accuracy of the results is compared with those obtained using finite

element models.

2. PROBLEM FORMULATION

Consider the circular cylindrical stiffened shell shown in Fig. 1, that represents a sec-

tion of a traditional fuselage of commercial aircraft. It is assumed that:

• stringers are equally spaced;

• axial compressive loading N̄ and lateral pressure p̄ (difference between external and

internal pressures) are uniformly applied;

• skin buckling occurs first.

Therefore, to access the fuselage buckling strenght it suffices to determine the critical

buckling load of an individual panel, like the one highlighted in Fig. 1. The analyzed panel

has length a, width b, thickness h, radius of curvature R (R � h), and its middle surface

is referred to a set of curvilinear coordinates xyz. It is considered that frames give simply

support condition to the panel, while stringers provide some rotational restraint along edges.

Figure 2 presents a schematic view of the assumed boundary conditions.
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Figure 1. Circular cylindrical fuselage.

2.1. Kinematic relations

Consistent with the Kirchhoff-Love assumptions of a thin-shell theory, the following

displacement field is assumed

ux (x, y, z) = u (x, y)− zw,x

uy (x, y, z) = v (x, y)− zw,y

uz (x, y, z) = w (x, y) (1)

in which u, v, w are the displacements of a point (x, y, 0) on the shell midsurface. The deriva-

tives with respect to x and y coordinates are, respectively, denoted by ( ),x and ( ),y.
Substituting the displacement field into the von Kármán-Donnell strain-displacement

relations, we obtain the associated nonzero strains

εx = εmx + zκx εy = εmy + zκy γxy = γmxy + zκxy (2)

where

εmx = u,x +
1

2
w2,x εmy = v,y +

w

R
+
1

2
w2,y γmxy = v,x + u,y + w,xw,y

κx = −w,xx κy = −w,yy κxy = −2w,xy. (3)

Note that the use of the circumferential coordinate y instead of an angular coordinate facili-

tates comparisons between the shell and the equivalent plate expressions [5].
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Figure 2. Panel boundary conditions.

2.2. Equilibrium equations

The use of the kinematic relations in the principle of virtual work yields the following

Euler-Lagrange equations

Nx,x +Nxy,y = 0

Nxy,x +Ny,y = 0

Mx,xx + 2Mxy,xy +My,yy +Nxw,xx + 2Nxyw,xy +Ny

(
w,yy −

1

R

)
+ p̄ = 0. (4)

The panel boundary conditions are set in the form

Nx = N̄ v = 0 w = 0 Mx = 0 : x = 0, a

u = 0 Ny = p̄R w = 0 My = M̄ : y = 0, b (5)

with

M̄ (x, 0) =
GrJr
K

w,xxy (x, 0) M̄ (x, b) = −
GrJr
K

w,xxy (x, b) (6)

where GrJr represents the stringer torsional rigidity and K is a distribution factor. Since the

stringers are equally spaced and all of them have the same geometry, it is straightforward to

take K = 2. The chosen boundary conditions Eq. (5) correspond to realistic support condi-

tions, because the support given by the frames and stringers obviously prevent, respectively,

circumferential and longitudinal displacements. However, the null moment conditionMx = 0
is rather difficult to realize [7].

2.3. Linearized buckling equations

In the solution of equilibrium equations of a perfect shell panel subject to compressive

stress state, it is observed the existence of an equilibrium path bifurcation in the vicinity of the

undeformed configuration. To investigate the possible existence of adjacent-equilibrium con-

figurations, it is common to give an arbitrarily small increments u1, v1, w1 to the displacement

variables and, then, examine equilibrium configuration represented by the displacements after

the increment:

u→ u0 + u1 v → v0 + v1 w → w0 + w1. (7)



Fields (u0, v0, w0) and (u, v,w) describe adjacent-equilibrium configurations associated with

the primary (before increment) and secondary (after increment) equilibrium paths, respec-

tively. In stability applications the displacement (u0, v0, w0) is called the prebuckling defor-

mation and (u1, v1, w1) is called the buckling mode.

Accordingly, let
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where the terms with 0 superscripts are associated to u0, v0, w0 displacements, and the terms

with 1 superscripts represent a portion of the incremental generalized stress that are linear in

u1, v1, w1.
Substitution of Eq. (8) into Eq. (4) yields two sets of equilibrium expressions. One of

them is the nonlinear prebuckling problem:

N0

x,x +N
0

xy,y = 0

N0

xy,x +N
0

y,y = 0

M0

x,xx + 2M
0

xy,xy +M
0

y,yy +N
0

xw0,xx + 2N
0

xyw0,xy +N
0

y

(
w0,yy −

1

R

)
+ p̄ = 0 (9)

N0

x = N̄ v0 = 0 w0 = 0 M0

x = 0 : x = 0, a

u0 = 0 N0

y = p̄R w0 = 0 M0

y = 0 : y = 0, b. (10)

The other defines the so-called linearized buckling problem:

N1

x,x +N
1

xy,y = 0

N1

xy,x +N
1

y,y = 0

M1

x,xx + 2M
1

xy,xy +M
1

y,yy −
N1

y

R
+ F0 (w1) + F1 (w0) = 0 (11)

N1

x = 0 v1 = 0 w1 = 0 M1

x = 0 : x = 0, a

u1 = 0 N1

y = 0 w1 = 0 M1

y = M̄ : y = 0, b (12)

where F0 and F1 are given by

F0 (w1) = N0

xw1,xx + 2N
0

xyw1,xy +N
0

yw1,yy

F1 (w0) = N1

xw0,xx + 2N
1

xyw0,xy +N
1

yw0,yy. (13)

Note that lateral pression p̄ is positive inward and, from boundary conditions Eq. (12) of the

linearized problem, that stringers apply a torsional moment M̄ to panel edges immediately

after the onset of local buckling.



2.4. Constitutive relations

Let skin material be defined by the elastic constants E and ν. The generalized stress-

strain equation of the skin panel is defined by



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Nx
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Nxy



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
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
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(14)

The constitutive relations presented herein are specialized to isotropic materials. How-

ever, they could be easily adapted for specially orthotropic laminates, e.g., regular symmetric

cross-ply laminates.

2.5. Simplified linearized buckling equations

The extraction of the portion of the incremental generalized stress that are linear in

u1, v1, w1 could be obtained from the associated generalized stress increment as follows.

Substituting Eq. (7) into Eq. (3) and considering the constitutive relations (14)

Nx = A11

(
u0,x +

1

2
w2
0,x

)
+A12

(
v0,y +

w0
R
+
1

2
w2
0,y

)

+A11

(
u1,x + w0,xw1,x +

1

2
w2
1,x

)
+A12

(
v1,y +

w1
R
+ w0,yw1,y +

1

2
w2
1,y

)
(15)

from which

N1

x = A11 (u1,x + w0,xw1,x) +A12

(
v1,y +

w1
R
+ w0,yw1,y

)
. (16)

In a similar manner, it could be derived N1

y , M1

x , M1

y and M1

xy, namely,

N1

y = A12 (u1,x + w0,xw1,x) +A22
(
v1,y +

w1
R
+ w0,yw1,y

)

N1

xy = A66 (v1,x + u1,y + w0,yw1,x + w0,xw1,y)

M1

x = −D11w1,xx −D12w1,yy

M1

y = −D12w1,xx −D22w1,yy

M1

xy = −2D66w1,xy. (17)

Substituting Eqs. (16) and (17) into Eq. (11) and considering arbitrarily small incre-

ment displacements (u1, v1, w1)� 1,

A11u1,xx +A12
(
v1,xy +

w1,x
R

)
+A66 (v1,xy + u1,yy) + θu (w0, w1) = 0

A66 (v1,xx + u1,xy) +A12u1,xy +A22
(
v1,yy +

w1,y
R

)
+ θv (w0, w1) = 0

D0 (w1) +
A12
R
u1,x +

A22
R

(
v1,y +

w1
R

)
− F0 (w1) + θw (w0, w1) = 0 (18)



where D0, θu, θv and θw are given by

D0 (w1) = D11w1,xxxx + 2 (D12 + 2D66)w1,xxyy +D22w1,yyyy

θu (w0, w1) = A11 (w0,xw1,x),x +A12 (w0,yw1,y),x +A66 (w0,yw1,x + w0,xw1,y),y
θv (w0, w1) = A66 (w0,yw1,x + w0,xw1,y),x +A12 (w0,xw1,x),y +A22 (w0,yw1,y),y

θw (w0, w1) =
1

R
(A12w0,xw1,x +A22w0,yw1,y)− F1 (w0) . (19)

The quantities θu, θv, θw are prebuckling rotation terms.

In order to solve the linearized buckling problem Eq. (18), in a practical manner, we

make the following simplifications. Firstly, the prebuckling problem defined by Eqs. (9) and

(10) is solved disregarding all flexural effects (the well-known linear membrane solution):

N0

x = N̄ N0

xy = 0 N0

y = p̄R. (20)

Thus,

F0 (w1) = N̄w1,xx + p̄Rw1,yy (21)

or

F0 (w1) = λ (w1,xx + ηw1,yy) (22)

where η = p̄R/N̄ is a nondimensional load parameter. When the panel is subject only to

axial compression loading η = 0, and when it is subject only to lateral pressure η →∞. The

symbol λ represents a load parameter which takes the value λ← N̄ when N̄ �= 0 and λ← p̄R
when N̄ = 0.

Secondly, the influence of rotation terms are thought negligible:

θu → 0 θv → 0 θw → 0. (23)

After having applied these assumptions the simplified linearized buckling equations,

also known as Donnell stability equations in coupled form, is finally obtained

A11u1,xx +A12
(
v1,xy +

w1,x
R

)
+A66 (v1,xy + u1,yy) = 0

A66 (v1,xx + u1,xy) +A12u1,xy +A22
(
v1,yy +

w1,y
R

)
= 0

D0 (w1) +
A12
R
u1,x +

A22
R

(
v1,y +

w1
R

)
− F0 (w1) = 0 (24)

or

([E]− λ [E0]) {u} = {0} (25)

where

[E] =




E11 (·) E12 (·) E13 (·)
E12 (·) E22 (·) E23 (·)
E13 (·) E23 (·) E33 (·)



 [E0] =




0 0 0
0 0 0
0 0 E00 (·)



 {u} =






u1
v1
w1






(26)

with

E11 (·) = A11 (·),xx +A66 (·),yy E12 (·) = (A12 +A66) (·),xy E13 (·) =
A12
R
(·),x

E22 (·) = A22 (·),yy +A66 (·),xx E23 (·) =
A22
R
(·),y E33 (·) = D0 (·) +

A22
R2

E00 (·) = (·),xx + η (·),yy . (27)

It is important to note that for a general investigation of influence of boundary conditions the

set of Donnell equations in coupled form Eq. (24) should always be used [3].



3. BUCKLING SOLUTION

Longitudinal edges of the panel shown in Fig. 2 are elastically restrained, which can

be considered as an intermediate condition between the simply supported and the clamped

condition. Bearing this in mind, let the following trial mode function set:

{u} =






u1
v1
w1





≈




XuYu 0 0
0 XvYv 0
0 0 XwYw










U1
V1
W1





= [Φ] {D} = {U} (28)

with

Xu (x) = cosλax Xv (x) = sinλax Xw (x) = sinλax

Yu (y) = sinλby Yv (y) = cos λby Yw (y) = Yw,s (y) + ϑYw,c (y) (29)

where λa = mπ/a and λb = nπ/b. The quantities U1, V1,W1 are unknown displacement

amplitudes whereas m,n represent the number of half waves in buckling mode in the longitu-

dinal and in the circumferential direction, respectively. The transversal buckling shape along

y-direction, namely, Yw is commonly described by the portions Yw,s and Yw,c that correspond

to the limit cases of a simply supported stringer on the one hand (given by Yw,s) and a rigidly

clamped stringer on the other hand (given by Yw,c). Of course, the actual situation of a stringer

attached to skin will be found somewhere in between these two limit cases. The stringer tor-

sional rigidity is introduced by ϑ parameter: when the stringer has no torsional rigidity ϑ = 0,
and when it has infinite torsional rigidity ϑ→∞.

It has been a common practice in literature to adopt Yw as superposition of a sine

term with an undefined number of half waves and a cosine term with a single half wave

[2,6,9,12]. However, this procedure lead to erroneous buckling solutions when pressure loads

are involved due to use of a single half wave mode related to clamped conditions. To remedy

this, the shape functions Yw,s and Yw,c are chosen as follows:

Yw,s (y) = sinλby Yw,c (y) = sinλby sin
πy

b
. (30)

The former mode function describes the well-known pure rotational mode of the stringer

cross-section. The latter mode function is picked from the hierachical set of trigonometric

functions proposed in [1] that provides a physically meaningful buckling shape of a clamped

stringer. From substitution of the trial function set Eq. (28) into the boundary conditions of

the linearized buckling problem Eq. (12), considering Eq. (6) and Eq. (17) relations, a trial

function set satisfying all boundary conditions are obtained if we establish

ϑ←
GrJr
2D22K

b

π
λ2a. (31)

Now we substitute Eq. (28) into Eq. (25), and then we apply the Galerkin procedure

to obtain ∫ a

0

∫ b

0

{U}T ([E]− λ [E0]) {U} dxdy = 0 (32)

or

{D}T
∫ a

0

∫ b

0

[Φ] ([E]− λ [E0]) [Φ] dxdy {D} = 0. (33)



Since components of {D} are arbitrary and independent,

([G]− λ [G0]) {D} = {0} (34)

where

[G] =

∫ a

0

∫ b

0

[Φ] [E] [Φ] dxdy =




G11 G12 G13
G12 G22 G23
G13 G23 G33





[G0] =

∫ a

0

∫ b

0

[Φ] [E0] [Φ] dxdy =




0 0 0
0 0 0
0 0 G00



 . (35)

The load parameter λ corresponds to the eigenvalue of standard buckling eigenproblem de-

fined by Eq. (34), whose third equation has been multiplied by −1 for symmetry purpose.

Using a symbolic mathematical tool and after some algebra we achieve:

G11 = −
ab

4

(
A11λ

2

a +A66λ
2

b

)
G12 = −

ab

4
(A12 +A66)λaλb G13 = A12

b

π
λaξ1

G22 = −
ab

4

(
A66λ

2

a +A22λ
2

b

)
G23 = A22

b

π
λbξ1

G33 = −

(
A22
R2

+D11λ
4

a

)
b

π
ξ2 − 2 (D12 + 2D66)

π

b
λ2aξ3 −D22

π3

b3
ξ4

G00 =
b

π
λ2aξ2 + η

π

b
ξ
3

(36)

where

ξ
1
=

a

4R

(
8n2

4n2 − 1
ϑ+ π

)

ξ
2
=
a

8

(
πϑ2 +

32n2

4n2 − 1
ϑ+ 2π

)

ξ3 =
a

8

[(
n2 + 1

)
πϑ2 +

32n4

4n2 − 1
ϑ+ 2n2π

]

ξ4 =
a

8

[(
n4 + 6n2 + 1

)
πϑ2 + 16

(
2n4

4n2 − 1
+ 1

)
n2ϑ+ 2n4π

]
. (37)

From the assumption that a nontrivial solution of Eq. (34) exist, the critical buckling

load λcr is finally derived in the form

λcr = min
m,n

λ (m,n) = min
m,n

‖[G]‖

(G2
12
−G11G22)G00

m,n = 1, 2, . . . (38)

For particular values of a, b, h andR, the pair (m,n) corresponding to the smallest eigenvalue

λ may be determined by trial. The resulting minimum eigenvalue is an upper bound to the

actual critical-load parameter. The derivation of the linear critical load shown above is not of

a general validity. Within the framework of a classical theory, the proposed buckling formula

were derived assuming (i) shallowness of the shell surface; (ii) null torsion rigidity of frames.

Inclusion of such features will be a meaningful improvement for current formulation.



4. RESULTS AND DISCUSSIONS

The buckling load expression Eq. (38) is implemented in a MATLAB language com-

puter program obtaining a fast design tool. A series of one-bay stiffened cylindrical shells

with different number of equally spaced stringers are modeled and analyzed using solution

SOL 105 (eigenvalue buckling analysis) of the finite element commercial code NASTRAN

[10]. In the finite element modelling one considers that boundary edges of the stiffened cylin-

drical shell are simply supported by the frames. Also, no initial imperfections are introduced

into the models.

Computations are carried out for 12 stiffened cylindrical shells as reported in Table 1,

considering different geometries to evaluate the effect of different number of stiffeners nr and

different aspect ratios a/b, with b = 2πR/nr.

Table 1. Panel geometry

Panel ID a (mm) R (mm) h (mm) n◦ stringers

1 400 2000 1 24
2 400 2000 1 12
3 400 1000 1 24
4 400 1000 1 12
5 600 2000 1 24
6 600 2000 1 12
7 600 1000 1 24
8 600 1000 1 12
9 800 2000 1 24
10 800 2000 1 12
11 800 1000 1 24
12 800 1000 1 12

Table 2. Stiffener cross-sectional dimensions

Width (mm) Thickness (mm)

wa 19.05 ta 1.27
wb 19.05 tb 1.27
wc 5.50 tc 3.00

w

w
t

t

h
t

wc

c

b

b

a

a

s

Figure 3. Stiffener section.

It is considered only stiffeners with Z cross-section type connected to the skin by fric-

tion stir welding process. Table 2 presents the cross-sectional dimensions of the Z-stiffener



shown in Fig. 3. The stringer has a torsional constant Jr = 57.412 mm4. Panel skin and

stringers are made of aluminum alloys commonly used in aeronautical applications, with me-

chanical properties described in Table 3. Finite element modeling follows the recommenda-

tions presented in [7]. Except the stringer upper flange, which is modeled using the simple

beam element CBAR, the rest of panel structure are meshed with quadrilateral plate elements

CQUAD4. The stiffened panel is discretized into sufficient number of elements to catch buck-

ling modes correctly. A quadrialteral 4×40 element mesh is employed along the stringer web

connected flange and at the underneath skin, whereas a 16 × 40 element mesh is employed

between stringers. No attempt was made to optimise the mesh.

Table 3. Material properties

Material Type E (N/mm2) ν
Skin AL 2024-T3 72400 0.33
Stiffener AL 7050-T3511 71020 0.33

So far we have assumed that stiffeners remain straight until the skin buckles. This

assumption is normally appropriate for practical purpose, but they may in some cases distort

before the buckling onset so that the stringers will not fully contribute to the rotational re-

straints along the edges. The effective torsional rigidity GrJr/K should then be corrected by

means of the related reduction factor

GrJr
K

← C
GrJr
K

, (39)

where C is the reduction constant accounting for the distortion of stringers. For instance, Paik

and Thayamballi [11] assume thatC is constant during the loading process and is proportional

to the relative torsional rigidity between stringer and panel skin, as follows

C =
3Jr
bh3

if Jr ≤
bh3

3
or C = 1.0 if Jr >

bh3

3
(40)

whose validity will to some extent be confirmed by comparison with finite element solutions.

4.1. Axial Compression

As a first example let us consider a stiffened cylindrical shell that is simply supported

at its ends and subjected to uniformly distributed compressive load N̄ = 1.0/2πR [N/mm],

applied over skin panel. This case implies p̄ = 0 and λ← N̄ . The load parameter η is null and

the component G00 reads (b/π)λ2aξ2. The critical values predicted by the proposed formula

Eq. (38) are compared with those obtained from the finite element analysis (FEA) in Table 4.

It can be observed that average difference from finite element results are 5%, approximately.

4.2. Uniform Lateral Pressure

As a second example we consider a stiffened cylindrical shell that is simply supported

at its ends and subjected to uniform lateral pressure p̄ = 1.0 [N/mm2], positive inward. In this

case N̄ = 0 and λ← p̄R. The load parameter η takes an undefined value and the component

G00 symplifies to (π/b) ξ
3
. The critical values predicted by the proposed formula Eq. (38)

are compared with those obtained from the FEA in Table 5. It can be observed that average

difference from finite element results are 3%.



Table 4. Comparison between analytical formulation and FEA: axial compression

Panel ID (m,n) N̄cr |Diff.|%

Eq. (38) FEA Eq. (38) FEA

1 (5, 1) (5, 3) 21.96 23.18 5.29
2 (5, 1) (5, 1) 21.85 22.39 2.43
3 (7, 1) (7, 1) 44.34 49.21 9.91
4 (7, 1) (7, 1) 43.61 45.68 4.53
5 (7, 1) (1, 2) 22.11 23.51 5.93
6 (8, 1) (8, 1) 21.93 22.51 2.56
7 (10, 1) (2, 2) 44.25 48.51 8.79
8 (11, 1) (1, 3) 43.66 44.05 0.88
9 (10, 1) (1, 2) 21.96 21.37 2.75

10 (10, 1) (10, 1) 21.85 22.42 2.56
11† (13, 1) (3, 2) 44.33 49.69 10.78
12† (14, 1) (14, 1) 43.61 47.18 7.58

† Panels for which the first buckling mode is of global type: tabled

results are concerned to the first local mode.

5. CONCLUSIONS

An approximated analytical solution for local skin buckling load of stiffened cylin-

drical shells is obtained based on Galerkin method. The strucure is subjected to both axial

compressive and pressure loads. Analytical solutions are compared with those obtained using

finite element models. For the analyzed shells it was found that:

• differences between FEA and proposed formula are, in an average sense, lower than

5% or 3% if the shell is subjected to axial compression or to uniform lateral pressure,

respectively;

• number of half waves obtained analytically and numerically are almost identical.

The proposed solution gives a first insight on local skin buckling and could be easily imple-

mented in a computer program. It seems to provide an effective preliminary design tool, when

the analysis of different configurations is necessary.
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Table 5. Comparison between analytical formulation and FEA: uniform lateral pressure

Panel ID (m,n) p̄crR |Diff.| %

Eq. (38) FEA Eq. (38) FEA

1 (1, 3) (1, 3) 4.77 4.87 2.09
2 (1, 7) (1, 6) 4.64 5.08 8.52
3 (1, 2) (1, 2) 6.55 6.54 0.10
4 (1, 4) (1, 4) 6.40 6.44 0.74
5 (1, 3) (1, 3) 3.00 3.11 3.66
6 (1, 5) (1, 5) 2.93 3.12 6.26
7 (1, 2) (1, 2) 4.78 4.85 1.49
8 (1, 3) (1, 3) 4.11 4.15 1.03
9 (1, 2) (1, 2) 2.41 2.46 2.09

10 (1, 5) (1, 5) 2.09 2.26 7.13
11† (1, 2) (1, 2) 4.33 4.40 1.63
12 (1, 3) (1, 3) 2.94 3.00 2.22

† Panels for which the first buckling mode is of global type: tabled

results are concerned to the first local mode.
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