
A Feed Forward Neural Network in CUDA for a Financial Application

Roberto Bonvallet1, Cristián Maureira1, César Fernández1, Paola Arce1, Alejandro
Cañete2.

1 Informatics Department, Universidad Técnica Federico Santa Marı́a. Correspond-
ing address: (roberto.bonvallet@usm.cl).
2 IFITEC, Financial Technology.

Abstract. Feed forward neural networks (FFNs) are powerful data-modelling tools which
have been used in many fields of science. Specifically in financial applications, due to the
number of factors affecting the market, models with a large quantity of input features, hid-
den and output neurons can be obtained. In financial problems, the response time is crucial
and it is necessary to have faster applications which respond quickly. Most of the current
applications have been implemented as non-parallel software running on serial processors. In
this paper, we show how GPU computing allows for faster applications to be implemented,
taking advantage of the inherent parallelism of the FFN in order to improve performance and
reduce response time. The problem can be conveniently represented by matrix operations im-
plemented using the CUBLAS library. It provides highly optimized linear algebra routines
that take advantage of the hardware features of the GPU. The algorithm was developed in
C++ and CUDA and all the input features were received using the ZeroMQ library, which
was also used to publish the output features. ZeroMQ is an abstraction over system sockets
that allows chunks of data to be efficiently sent minimizing the overhead and system calls.
The algorithm was tested on an NVIDIA M2050 graphics card with a Intel Xeon X5650
2.67GHz CPU for a neural network of 1000 input features, 2000 hidden neurons and 500
output neurons. Response times of the order of 900 µs were obtained.

Keywords: high-frequency trading, GPU programming, neural networks.

INTRODUCTION

The quick development of computational power has allowed markets to speed up
the number of transactions executed every day in the electronic markets, generating
a huge amount of intraday financial data. As a consequence, the study of High-
Frequency Trading (HFT) algorithms [2, 5, 6] has risen to become one of the main
tools for quantitative analysts. HFT is the use of technological tools to trade all kind
of securities in a short period of time, from seconds to milliseconds.
Nowadays, trader strategies are based on complex quantitative models which pro-
vide useful information to make a decision about when to enter or exit the market.

Blucher Mechanical Engineering Proceedings
May 2014, vol. 1 , num. 1
www.proceedings.blucher.com.br/evento/10wccm

Because of the large amount of information and complex algorithms to be executed,
High-Performance Computing (HPC) provides tools (hardware and software) that
are indispensable to accelerate computation.
In particular, GPU computing [9] has become the industry standard for fast options
pricing, risk analysis and algorithmic trading. GPUs provide massive parallelism and
high memory bandwidth at a affordable cost, practically turning a standard compute
server into a supercomputer. Furthermore, the architecture of the GPU maps well to
the kind of computations that are usually needed by HFT algorithms.
One of the most used learning algorithms in HFT are Feed Forward Neural Networks
(FFNs), which are a widely-used frameworks for learning tasks such as regression,
classification and clustering problems [7, 3]. Due to the volatile behavior of the finan-
cial time series, the models generated using neural networks are usually large and
require lots of calculation.
The use of large amounts of data, calculations and response time needed are more
than sufficient reasons to use GPU computing to achieve responses in a short period
of time. Moreover, the use of the ZeroMQ library allows the sending and receiving
of data efficiently.
In the next sections we will present a literature review, details of the FFN represen-
tation and the architecture of the solution. Also, technical details of the application,
experimental results and our final conclusions are given.

LITERATURE REVIEW

Neural networks algorithms have been extensively used in many fields of science:
forecasting, image processing, pattern recognition, etc. When the models generated
have a large number of neurons and connections, the number of calculations increase
and also the time needed to obtain an answer. In order to achieve better response
time of the network output, some approaches has been proposed taking advantage
of how easy it is to parallelize them [1, 4] and specifically some of them have been
applied to financial applications [12, 11, 8].
Recently, some of neural networks parallel algorithms have been implemented using
GPU [10].

MODEL FORMULATION

Feed Forward Network Architecture

Feed Forward neural networks (FFN) have three layers: input, hidden and output
layer. A graphical representation of the FFN can be seen in figure 1:

Figure 1. Feed Forward Network diagram.

Each layer of the FFN has a set of neurons and the connections between them will be
conveniently represented as matrices:

W: This matrix stores all the weights between the input and the hidden neurons, i.e.
wi,j is the weight between the hidden neuron i and the input neuron j:

Wh×n+1 =

 w1,1 · · · w1,n w1,n+1
...

...
wh,1 · · · wh,n wh,n+1

 ,

where h is the total number of hidden neurons, n is the number of inputs (num-
ber of features) and the last column has the biases of the hidden neurons.

∆: This matrix stores the weights between the input and the hidden layer, i.e. δi,j is
the weight between the output neuron i and the hidden neuron j:

∆m×h+1 =

 δ1,1 · · · δ1,h δ1,h+1
...

...
δm,1 · · · δm,h δm,h+1

 ,

where m is the number of outputs, h the total number of hidden neurons and
the last column has the biases of the output neurons.

Therefore, the input ηi of every hidden neuron i can be obtained as:

ηi = Φ

(
n

∑
j=1

wi,j xj + biasi,1

)
,

where wi,j is the weight of the link between the hidden neuron i and the input xj. The
function Φ is the activation function. In this work the hidden and output layer have
the logistic sigmoid function defined as:

Φ(x) =
1

1 + e−x

The input γi of every output neuron i is:

γi = Φ

(
h

∑
j=1

δi,j ηi + biasi,2

)
,

where δi,j is the weight of the link between the output neuron i and the hidden neuron
output j.

Procedure

The output of the FFN is obtained through matricial representation of the problem.
The input of the problem is a vector with n features:

X =


x1
...

xn
1


In order to simplify the implementation, a feature with value 1 is added at the end of
the vector in order to account for the biases that are stored in the last column of each
weight matrix.
The following steps explain in detail our implementation:

Step 1: the input of the hidden layer inputs is computed as the linear combination
between weights and inputs, i.e:

ηi =
n+1

∑
j=1

wi,j xj

In matricial form:

H =

η1
...

ηh

 = Wh×n+1 =

 w1,1 · · · w1,n w1,n+1
...

...
wh,1 · · · wh,n wh,n+1

×


x1
...

xn
1


Step 2: the activation function of hidden neurons is applied to every component of

H:

H =

Φ(η1)
...

Φ(ηh)



Step 3: in order to account for the bias in the output layer a new component with
value 1 is added to vector H:

H =


η1
...

ηh
1


Step 3: the input of output neurons is computed as the linear combination between

weights and vector H from step 2. Let us define:

γi =
h

∑
j=1

δi,j ηj

in matricial form:

Γ =

γ1
...

γm

 =

 δ1,1 · · · δ1,h δ1,h+1
...

...
δm,1 · · · δm,h δm,h+1

×


η1
...

ηh
1


Step 4: the activation function of output neurons is applied to every component of

Γ:

Γ =

Φ(γ1)
...

Φ(γm)


The vector Γ is the output we are looking for.

Pseudocode

The algorithm 1 shows the representation of the problem using matrices. This algo-
rithm is executed for each arriving input vector.

Algorithm 1 Get Output of FFN

Require: X, W, ∆
Ensure: Γ

H←W × X
H← Φ(H)
Γ← ∆ × H
Γ← Φ(Γ)

IMPLEMENTATION DETAILS

CUBLAS

CUBLAS is the CUDA library which implements BLAS (Basic Linear Algebra Sub-
programs), and provides several optimized algebra routines. In the present study,
the Matrix-Vector multiplication operation is used (cublasSgemv).

Considering that the two stages of the algorithm generates the hidden and the output
vector consists in a Matrix-Vector multiplication, it is necessary to use the GPU in the
most efficient way, and CUBLAS provides such a scenario.

ZeroMQ

The current message-passing implementation based on the ZeroMQ library has the
following details.

Transport: TCP transport is used because it is one of the best transport methods im-
plemented in the last version of ZeroMQ.

Infrastructure: The Queue infrastructure is used to implement a client/server model.

Messaging pattern: The Request/Response model was selected, which is a unidirec-
tional communication from a client to servers. This model implies synchroniza-
tion between the send() and the recv() method, ensuring that no messages
will be lost.

Figure 2. ZeroMQ interaction diagram.

The current version uses some default values to make the connection between the
clients and servers.

EXPERIMENTAL RESULTS

All the experiments were performed on a computer with the following technical de-
tails:

• Intel Xeon CPU E5520 @ 2.27GHz

• 12 GB RAM

• nVidia Tesla C1060.

• OS: Scientific Linux SL release 5.6 (Boron)

We present the results of a set of experiments which aims to describe the performance
associated with different sizes of the Input Layer (N), the Hidden Layer (H) and the
Output Layer (O) of the neural network.
Each configuration was executed 1000 times, and the table information consist in:

• Average time (x̄)

• Standard deviation (σ)

• Best time (xbest)

• Worst time (xworst)

There are two important times measured in this experiments, the Message time and the
GPU time, which are represented in the interaction diagram (figure 2). The Execution
time represent the Message time, and the GPU calculation represent the GPU time.

Configuration Message measures [sec]
ID N H O x̄ σ xbest xworst

1 1000 1000 1000 0.00026 7.706e-05 0.00020 0.00126
2 1000 1000 2000 0.00022 8.335e-05 0.00017 0.00090
3 1000 1000 3000 0.00020 3.545e-05 0.00020 0.00070
4 1000 2000 1000 0.00023 9.410e-05 0.00018 0.00107
5 1000 2000 2000 0.00021 5.426e-05 0.00016 0.00101
6 1000 2000 3000 0.00024 7.083e-05 0.00018 0.00105
7 1000 3000 1000 0.00025 7.974e-05 0.00020 0.00148
8 1000 3000 2000 0.00025 5.646e-05 0.00020 0.00091
9 1000 3000 3000 0.00022 5.065e-05 0.00018 0.00071

10 2000 1000 1000 0.00017 2.287e-05 0.00016 0.00047
11 2000 1000 2000 0.00072 4.565e-05 0.00067 0.00158
12 2000 1000 3000 0.00086 5.293e-05 0.00081 0.00167
13 2000 2000 1000 0.00113 9.086e-05 0.00097 0.00216
14 2000 2000 2000 0.00118 5.286e-05 0.00109 0.00202
15 2000 2000 3000 0.00153 8.577e-05 0.00141 0.00220
16 2000 3000 1000 0.00145 8.497e-05 0.00130 0.00219
17 2000 3000 2000 0.00180 8.466e-05 0.00167 0.00257
18 2000 3000 3000 0.00215 7.700e-05 0.00206 0.00344
19 3000 1000 1000 0.00088 6.053e-05 0.00077 0.00171
20 3000 1000 2000 0.00103 9.117e-05 0.00091 0.00233
21 3000 1000 3000 0.00127 0.0001020 0.00110 0.00252
22 3000 2000 1000 0.00134 8.465e-05 0.00124 0.00224
23 3000 2000 2000 0.00178 9.634e-05 0.00162 0.00233
24 3000 2000 3000 0.00189 9.211e-05 0.00172 0.00252
25 3000 3000 1000 0.00195 8.170e-05 0.00185 0.00257
26 3000 3000 2000 0.00228 6.506e-05 0.00210 0.00300
27 3000 3000 3000 0.00258 5.440e-05 0.00245 0.00327

Table 1. Message measure information

Configuration GPU measures [sec]
ID N H O x̄ σ xbest xworst

1 1000 1000 1000 3.786e-05 1.216e-05 3.219e-05 0.00027
2 1000 1000 2000 3.525e-05 8.488e-06 2.672e-05 9.226e-05
3 1000 1000 3000 3.303e-05 2.607e-06 2.733e-05 9.436e-05
4 1000 2000 1000 3.797e-05 1.201e-05 2.943e-05 0.00026
5 1000 2000 2000 3.324e-05 3.784e-06 2.871e-05 9.327e-05
6 1000 2000 3000 3.473e-05 6.405e-06 3.064e-05 9.392e-05
7 1000 3000 1000 3.179e-05 3.728e-06 2.874e-05 9.912e-05
8 1000 3000 2000 3.571e-05 5.986e-06 3.172e-05 9.323e-05
9 1000 3000 3000 3.927e-05 8.036e-06 2.691e-05 0.00010

10 2000 1000 1000 3.013e-05 4.261e-06 2.693e-05 7.310e-05
11 2000 1000 2000 0.00051 8.916e-06 0.00049 0.00063
12 2000 1000 3000 0.00061 7.287e-06 0.00059 0.00068
13 2000 2000 1000 0.00072 1.768e-05 0.00069 0.00083
14 2000 2000 2000 0.00089 1.069e-05 0.00087 0.00097
15 2000 2000 3000 0.00111 1.782e-05 0.00108 0.00121
16 2000 3000 1000 0.00106 1.872e-05 0.00103 0.00129
17 2000 3000 2000 0.00140 1.999e-05 0.00135 0.00149
18 2000 3000 3000 0.00173 2.181e-05 0.00169 0.00183
19 3000 1000 1000 0.00059 6.893e-06 0.00057 0.00066
20 3000 1000 2000 0.00070 1.921e-05 0.00065 0.00092
21 3000 1000 3000 0.00078 1.540e-05 0.00076 0.00090
22 3000 2000 1000 0.00101 1.222e-05 0.00098 0.00113
23 3000 2000 2000 0.00121 2.250e-05 0.00116 0.00134
24 3000 2000 3000 0.00142 2.285e-05 0.00137 0.00156
25 3000 3000 1000 0.00151 1.862e-05 0.00148 0.00161
26 3000 3000 2000 0.00184 2.624e-05 0.00178 0.00200
27 3000 3000 3000 0.00218 2.682e-05 0.00213 0.00231

Table 2. GPU calculation measures information

(a) Message time average (b) Message time standard deviation

(c) Message time best (d) Message time worst

Figure 3. Message time figures

(a) GPU time average (b) GPU time standard deviation

(c) GPU time best (d) GPU time worst

Figure 4. GPU time figures

Considering the Average plots 3a 4a, we can predict the results due the amount of
operation in the current implementation:
The Input vector has N values, the Input-Hidden matrix has NxH elements, the Hid-
den vector has H values, the Hidden-Output matrix has HxO elements, and finally

the Output vector has O values, so the total amount of operation is H · (N2 + H ·O).
A more explicit idea of the operations amount of each configuration is described in
the following plot.

Figure 5. Amount of operation of each configuration experiment

The only difference is the first nine experiments, which consist in a certain amount of
operations but distributed in a similar way, which give us a similar execution time.
Considering the Standard deviation, we can observe in the case of the message time 3b,
almost all the experiments has a similar behavior, but taking into account the last
set of experiments, increasing the operation numbers, the time is close to the mean.
In the other hand, the GPU time 4b, which consist in the GPU calculation process,
increasing the operation numbers, the obtained values are increasingly distant from
the mean.

CONCLUSION

The present work presents a simple but efficient approach to parallel neural pro-
cessing by means of GPU computing. The forward pass processing was mapped to
matrix-vector multiplications in order to increase the performance and response time
based on the CUDA implementation of the BLAS interface.
In virtue of the nature of matrix-vector multiplication algorithm (fine-grained), the
GPU computing is suitable to perform the computations on large size problems.
Thanks to ZeroMQ library, the network message passing does not become a criti-
cal factor given his performance, therefore, it delivers us an efficient communication
library for high frequency data.
Despite of low communication network performance (Ethernet) and to use the same
machine for the sending and receiving financial informacion, the approach takes ad-
vantages in large scenarios, for instance, when N, H and O have the same value, of
3000, the difference between the message time and the gpu time is about 0.00040[sec],
an interesting result taking on account the problem sizes. The previous facts reveal
that an approach based on GPU and ZeroMQ could become in a framework for neu-
ral processing on high frequency data.

1. REFERENCES

References

[1] S.W. Aiken, M.W. Koch, and M.W. Roberts. A parallel neural network simulator.
In Neural Networks, 1990., 1990 IJCNN International Joint Conference on, pages 611
–616 vol.2, jun 1990.

[2] Irene Aldridge. High-Frequency Trading: A Practical Guide to Algorithmic Strategies
and Trading Systems (Wiley Trading). Wiley, 2009.

[3] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Univer-
sity Press, USA, 1996.

[4] Alexandra I. Cristea and Toshio Okamoto. A parallelization method for neural
networks with weak connection design. In Proceedings of the International Sym-
posium on High Performance Computing, ISHPC ’97, pages 397–404, London, UK,
UK, 1997. Springer-Verlag.

[5] M. M. Dacorogna, R. Gencay, U. Muller, R. B. Olsen, and O. V. Olsen. An intro-
duction to high frequency finance. Academic Press, New York, 2001.

[6] Michael Durbin. All About High-Frequency Trading (All About Series). McGraw-
Hill, 2010.

[7] Kevin Gurney. An Introduction to Neural Networks. CRC Press, 1997.

[8] Wei Huang, Kin Keung Lai, Yoshiteru Nakamori, Shouyang Wang, and Lean
Yu. Neural networks in finance and economics forecasting. International Journal
of Information Technology & Decision Making (IJITDM), 06(01):113–140, 2007.

[9] David B. Kirk and Wen mei W. Hwu. Programming Massively Parallel Processors:
A Hands-on Approach (Applications of GPU Computing Series). Morgan Kaufmann,
2010.

[10] KS Oh and K Jung. GPU implementation of neural networks. PATTERN RECOG-
NITION, 37(6):1311–1314, JUN 2004.

[11] Rashedur M. Rahman, Ruppa K. Thulasiram, and Parimala Thulasiraman. Per-
formance analysis of sequential and parallel neural network algorithm for stock
price forecasting. International Journal of Grid and High Performance Computing
(IJGHPC), 3(1):45–68, 2011.

[12] Ruppa K. Thulasiram, Rashedur M. Rahman, and Parimala Thulasiraman. Neu-
ral network training algorithms on parallel architectures for finance applica-
tions. Parallel Processing Workshops, International Conference on, 0:236, 2003.

