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Abstract.  The study of the dynamic properties of framed structures is extremely impor-

tant in the field of structural engineering. In this paper the first natural frequencies of 

transverse vibration of frames are determined. The elastic structural system consists of 

a beam supported by a column. The presence of an internal hinge located in different 

positions of the beam is considered. The hinge is elastically restrained against rotation 

and translation. Attention is given to the way in which supports are modeled. It is 

known that ideal supports used in many structural models do not fit exactly with the real 

supports. Here the column is considered not rigidly connected to the foundation. The 

displacement of the component elements are assumed to be described by the theory of 

Euler-Bernoulli. The governing equations of the system, together with the boundary and 

compatibility conditions are obtained using the technique of variational calculus. Ap-

plying the method of separation of variables, the exact values of the natural frequencies 

of the model are obtained. Results are given for different cases, which arise from com-

bining different magnitudes in the internal elastic hinge. These results are compared 

with those obtained using the finite element method, and in particular cases they are al-

so compared with values available in the literature. Finally, an experimental device al-

lows verifying the procedure. 
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1. INTRODUCTION 

As Laura et al. pointed in [1], many excellent books and technical papers deal with vi-

brating frames, such as Warburton [2], Blevins [3], Clough and Penzien [4], Timoshenko and 

Young [5], Karnosky and Lebed [6], among others. The title problem is of importance in 

practically all fields of engineering given that frame structures resist by virtue of its geometry, 

ranging from big scale like bridges and buildings placed in seismically active regions, to mi-

cro-frames used in modern electronic equipment subject to vibratory environments. 

Many researchers have analyzed the vibration of frames. Lin and Ro [7] proposed a 

hybrid analytical/numerical method to do dynamic analysis of planar serial-frame structures. 

Wu [8] presented an elastic-and-rigid-combined beam element to determine the dynamic cha-

racteristics of a two-dimensional frame composed of any number of beam segments. In his 

paper Mei [9] considered the vibration in multi-story planar frame structures from the wave 

Blucher Mechanical Engineering Proceedings
May 2014, vol. 1 , num. 1
www.proceedings.blucher.com.br/evento/10wccm



 

 

vibration standpoint. Laura et al. [1] determined the in-plane vibration of frames with concen-

trated masses attached and Filipich and Laura [10] analyzed in-plane vibrations of portal 

frames with elastically restrained ends. An approximate solution is obtained by means of a 

variational method.  

In the particular case of L-frame structures, early studies have been done by Bang 

[11], Grügöze[12] and  Oguamanam et al. [13]. In 2003 Heppler et al. [14] extend the pre-

vious paper [13] by relaxing the restrictions on the motion of the open frame. In 2005 Abar-

racín and Grossi [15] determined natural frequencies and mode shapes of elastically restrained 

L-frames. They applied the separation of variables method for the determination of the exact 

eigenfrequencies and mode shapes and calculated the eigenvalues numerically by applying the 

Newton method strategy to the corresponding frequency equation. Lee and Ng [16] used a 

formulation by the Rayleigh–Ritz method together with the introduction of artificial linear 

and torsional springs for computing the natural frequencies and modes for the in-plane vibra-

tions of complex planar frame structures. 

The presence of an internal hinge in beams has been treated in several papers by Wang 

and Wang [17], Lee et al. [18], Chang et al. [19], Grossi and Quintana [20], Quintana  et al. 

[21]. Here, we deal with the vibration of L-frames assuming an internal hinge in different po-

sitions of the horizontal part of the frame. The two members of the L-shaped geometry are 

joined at right angle, with the end of one of them clamped and the end of the other elastically 

restrained. Figure 1 depicts the structure under study.  

The presence of the hinge allows the simulation of a crack model as developed by 

Chondros et al. [22], and some numerical experiments are included. It is assumed that the 

beams are adequately modeled using Euler -Bernoulli theory and the method of separation of 

variables is used to obtain the exact values of the natural frequencies of the model.  

Numerical results are obtained for different magnitudes of the internal elastic hinge 

and the boundary conditions by means of MATHEMATICA [23] code. These results are 

compared with results obtained with the finite element method in ALGOR [24].  Additionally, 

some particular cases are compared with values available in the literature and experimental 

results. 

2. THEORY AND FORMULATIONS 

The L-frame under study has elastic restrain and clamped ends as shown in Figure 1. 

The structure is composed of three members, a vertical beam (column) of length l1 and two 

consecutive horizontal beams of lengths l2 and l3 respectively (see Figure 1). At the interme-

diate point, the horizontal beams have an internal hinge elastically restrained against rotation 

between them and the hinge is externally restrained by translational and rotational springs.  
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Figure 1. L-frame structure. 

 

 The rotational restraints are characterized by the spring constants rxy, r and rm. and the 

translational restraints by the spring constants tx, ty and tr. The behaviors of the individual 

members of the frames are assumed to be governed by Euler-Bernulli beam theory and the 

axial deformation effects are also included. 

For this case let us consider a three-element frame, i=1, 2, 3. The transverse and axial 

displacements are described by the functions: 

 

( , ); 1,2,3i i iW W X t i= = .  

( , ), 1, 2,3i i iU U X t i= = .  

 

The kinetic energy of the mechanical system, at time t, is given by: 
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where (ρ A)i  denotes the mass per unit length of the members of the frame. 



 

 

On the other hand, the potential energy of the mechanical system is given by: 
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where li, (ρA)i and (EI)i denote the length, the flexural rigidity and the axial rigidity that cor-

respond to each member i of the frame. 

 It is convenient to introduce dimensionless variables: 

 

; 1, 2,3i
i

i

X
x i

l
= = ; with [ ]0,1 1, 2,3

i
x i∈ ∀ = .  

Wi and Ui may be expressed in terms of the dimensionless coordinates:  
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and it is useful to define the following dimensionless parameters: 
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with 1 1 1 1 1; ; ; ;l l E E A A I Iρ ρ= = = = = ;  

where l, (ρA) and (EI) correspond to the characteristics of the member 1 of the frame. 



 

 

2. 1 Expression of the functional 

Hamilton’s principle requires that between times ta and tb, at which the positions of the 

mechanical system are known, the system should execute a motion which makes the function-

al stationary on the space of admissible functions 

( ) ( )
b

a

t

t
J T U dt= −∫w  ,  

 where w= (wi, ui). 

The stationary condition required by Hamilton’s principle is given by: 

( ) 0, 0,J v v Dδ = ∀ ∈w ;  

where D0 is a space of admissible direction at w for the domain D of the functional. 

 Then, the expression of the functional is: 
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where 
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Taking into account the boundary conditions at the ends, the compatibility and equili-

brium conditions at the joints between column and beam,  and the compatibility and equili-

brium conditions at the two horizontal beams, and applying the procedure of calculus of var-

iations in Eq. 3, the following boundary and eigenvalue problem is obtained: 
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2.2. Determination of the exact solution  

Using the well-known separation of variables method, solution of Eqs. (4) to (9) are as-

sumed to be of the form: 
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The functions w1, w2, w3, u1, u2  and  u3  represent the corresponding transverse and longi-

tudinal modes of natural vibration of each member and are given by: 
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Finally the natural frequency coefficients of the vibrating system in the adimentional 

form is expressed: 
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2.3. Finite element method 

Numerical examples are solved by means of the finite element method, using the soft-

ware ALGOR 23.1 [24]. The column and the beam are divided into 100 beams elements re-

spectively, each beam element with three degrees of freedom.  

The internal hinge elastically restrained was modeled by a very small beam element, 

300 times smaller than the length of the beam. The moment of inertia of the section was va-

ried in order to obtain stiffness values that are equivalent to the stiffness constants of the 

spring connecting the two sections of the lintel. 

 

2.4. Experimental model 

An experimental device was built to verify the analytical and numerical models devel-

oped. A frame of two uniform members of equal length l (Figure 2) was tested under different 

boundary conditions (clamped and free) at the lower end of its vertical member (x1 =0). The 

other end (x3 =1) is clamped. The presence of internal hinge is not considered. 

The magnitudes of the frame are: l=0.50 m, A= 4.064×10
-5

 m
2
, I= 3.468×10

-11
m

4
 and 

E=2.1×10
6
kg/cm

2
.  

 

 
Figure 2. Experimental set-up for clamped-free model. 

 

 In order to measure the natural frequencies, an optical proximity sensor was used. 

Figure 3 shows the spectrum of the first natural frequency of the frame clamped-

clamped and clamped-free respectively.  

 



 

 

 
Figure 3. Spectrum of the first natural frequency. 

 

3. NUMERICAL RESULTS 

3.1. Validation of the model 

 The proposed approach allows solving many special cases. Some numerical examples 

are developed. In all of them it is supposed that the whole frame is of the same material and 

have equal stiffness: 
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A
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A
ρ
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ρ
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The relation between lengths is constant, l1=l2+l3, while the relative lengths of the lintel, 

l2 and l3  may change. 

. 

Table 1 presents the first three coefficients of natural frequency of vibration of a frame 

clamped-clamped without internal hinge. Both members of the frame have the same length l. 

The values without internal hinge were obtained by the finite element method (FEM) [24] and 

were compared with those calculated by Albarracín and Grossi [15]. 

 



 

 

Table 1. Frequency coefficients: λi
24
na ω= , 4 4( )a A EI lρ= , clamped-clamped frame 

without internal hinge 

 λ1 λ2 λ3 

Analytical 3.9234 4.6605 7.0430 

FEM 3.9248 4.7239 7.0574 

[15] 3.9225 4.7142 7.0376 

 

Figure 4 shows the first three mode shapes for an L-frame clamped-clamped without in-

ternal hinge. They correspond to the frequency coefficients presented in Table 1. 

 

 
 

Figure 4. Mode shapes of clamped-clamped frame without internal hinge. 

 

Table 2 shows the frequency parameters of an L-frame without internal hinge, when the 

spring constants at the outer end Tx, Ty and Rxy take three different values: 0, 10000 and → ∞ .  

 

Table 2. Frequency coefficients for L-frame without hinge (Tx,= Ty = Rxy) 

 (f1)  λ1  λ2  λ3 

Tx,= Ty 

= Rxy 

Experimental 
4 2

1 1aλ ω=  
Analytical MEF  Analytical MEF  Analytical MEF 

0 
(3.51 

Hz ) 
 1.0960 1.0919 1.0890  1.8609 1.8612  3.9057 3.9059 

10000 --  -- 3.3980 3.4089  3.7011 3.7120  4.4729 4.4838 

→∞ 
(45 

Hz) 
  3.9123 3.9234 3.9248  4.6603 4.7239  7.0430 7.0574 

 

As it can be seen in the Tables, all the results are consistent. 

 

3.2. Analysis of the model in presence of a crack 

For further analysis, the presence of a crack in the lintel is introduced. The crack is 

modeled as a hinge with a rotational spring using the formula proposed by Chondros et al. 

[22] for the crack flexibility. These authors proposed to model a crack as a continuous flex-

ibility using the displacement field in the vicinity of the crack, found with fracture mechanics 

methods. The crack flexibility is assumed as: 

Second frequency Third frequency First frequency 



 

 

 
26 (1 )

( )c
C C

h h
I

hEI

π − ν
α = ; 

 

where h is the height of the cross-section, ν is the Poisson ratio and hc is the crack depth. Ic is 

defined by the expression: 

  

( ) 2 3 4 5 6

7 8 9 10

0.6272 1.04533 4.5948 9.973 20.2948

33.0351 47.1063 40.7556 19.6 ;

cI z z z z z z

z z z z

= − + − + −

− + − +
 

with .ch
z

h
=  

Assuming like [22] that the effect of the supposed crack affects only in its neighbor-

hood, the lintel can be treated as two uniform beams of length l2 and l3, connected by a rota-

tional spring of local rigidity 1
m

C

R =
α

 at the crack position. 

Table 3 depicts values of coefficients λi, obtained by the analytical procedure, when the 

same type of the crack is considered in different positions of the lintel beam for a clamped-

clamped frame. The assumed value for hc  is 2/3h. 

 

Table 3. Frequency coefficients λ i of the frame for different positions of the crack. 

1liv = , Tx Ty Rxy= = → ∞ , (2) (3) 1EI EIv v= = , (2) (3) 1A Av vρ ρ= =  y 0; 0T R= = 700Rm = . 

2

1

l
l

 λ1 λ2 λ3 

1
3

 3.5154 4.4646 5.9115 

1
2

 3.9179 4.6653 6.1562 

2
3

 3.8811 4.5467 6.7124 

 

As it can be observed, the position of the crack in the middle of the lintel influences 

very little the first two frequencies of vibration. That is expectable, since the solid undamaged 

model has an inflexion point near this position in its two first modes of vibration (See Figure 

4). 

 

Figures 5, 6 and 7 show the modal shapes for the first three frequency of vibration for dif-

ferent positions of the crack (the arrow indicates the position of the crack). 

 



 

 

 
 

Figure 5. Mode shape of the frame with varying elastically hinge on the lintel, for 1liv = , 

2 1
1

3
l l= ; 1liv = , Tx Ty Rxy= = → ∞ , (2) (3) 1EI EIv v= = ; (2) (3) 1A Av vρ ρ= = ; 0T R= = ; 700Rm = . 

 

 

Figure 6. Mode shape of the frame with elastically hinge on the lintel, for for 1liv = , 

2 1
1

2
l l= ; 1liv = , Tx Ty Rxy= = → ∞ , (2) (3) 1EI EIv v= = ; (2) (3) 1A Av vρ ρ= = ; 0T R= = ; 700Rm = . 

 

 

Figure 7. Mode shape of the frame with elastically hinge on the lintel, for for 1liv = , 

2 1
2

3
l l= ; 1liv = , Tx Ty Rxy= = → ∞ , (2) (3) 1EI EIv v= = , (2) (3) 1A Av vρ ρ= = ; 0T R= = ; 700Rm = . 

Second frequency Third frequency First frequency 

Second frequency Third frequency 
First frequency 

Second frequency Third frequency 
First frequency 



 

 

4. CONCLUSIONS 

In this paper the method of separation of variables combined with the variational calcu-

lation technique is used to deal with a difficult elastodynamics problem: the vibration of a 

plane frame with additional complexities as elastic external and internal elastic supports. The 

Euler-Bernoulli beam theory including the axial deformation is considered for each member 

of the structure. The values obtained with the proposed analytical approach are satisfactorily 

compared with particular cases available in the literature and with those acquired by means of 

a MEF code. In some cases, an experimental verification is performed. Values of the first nat-

ural frequencies of vibration and the corresponding modal shapes are presented. The model, 

also allows analyzing the influence of a crack in the dynamical behavior of the frame. 
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