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Abstract. Availability of accurate and objective landslide susceptibility maps depicting zones 

defined on the basis of probability of occurrence of landslides is one of the critical inputs in 

assessing risk to property and lives in any mountainous region, particularly in the Himalayas. 

The aim of this study is to assess the utility of soft computing tools, namely, neural network, 

fuzzy and neuro-fuzzy approaches for for landslide susceptibility zonation and risk assessment 

in a rigorous mountainous terrain in India.   
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1. INTRODUCTION 

Landslides in the Himalaya are one of the major and widely spread natural hazards 

that often strike life and property and are a major concern. One of the requirements for 

effective landslide mitigation and management programme is the availability of an accurate 

Landslide Susceptibility Zonation (LSZ) map.  LSZ maps categorize a region according to 

their potential stability or instability, based on geological, geomorphological and 

topographical factors. The need for LSZ maps at different scales has increased in recent past 

to support decision makers at various levels of the territorial planning management.  

Preparation of LSZ maps requires evaluation of the relationships between various 

terrain conditions and instances of landslide occurrence. A skilled earth scientist, through his 

vast experience based on the assessment of the overall terrain conditions usually identifies the 

causative factors affecting the occurrence of landslides in a region. On their assessment, these 

factors and their categories are assigned weights and ratings respectively as per their 

importance in landslide occurrences. The knowledge in the form of weights and ratings is 

typically input to any LSZ process in several different ways.  

In this study, a landslide susceptibility zonation study has been carried out using 

neural, fuzzy and neuro-fuzzy approaches in remote sensing and GIS domain. A set of raster 
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thematic data layers, each pertaining to a selected causative factor, have been created through 

digitization of past maps or derived from remote sensing images using an image processing 

and GIS software. These data have been input to an inhouse developed software namely 

LaSaRiZ (Landslide Susceptibility and Risk Zonation) software. The outputs from this 

software are the landslide susceptibility zonation maps produced from various approaches. 

The evaluation of landslide susceptibility maps derived from the implemented approaches has 

been performed through landslide density analysis and interpretation of Receiver Operating 

Characteristic (ROC) curves. 

 

2. Literature Review 

The data integration for various causative factors and their categories to carry out LSZ 

mapping can either be manual or in a Geographic Information System (GIS) environment as 

is evident from a number of in-house studies (e.g., Gupta et al. 1993, Saha et al. 2002, Saha et 

al. 2005, Pareek et al., 2010, Chauhan et al., 2010a). Thus, in these studies, the weights have 

usually been assigned on the basis of the knowledge domain of the expertise about the subject 

and the area. This weight assignment strategy, at times, may however be highly subjective and 

may therefore contain some implicit biasness.  

Therefore, in order to reduce the subjectiveness in the weight assignment procedure,  a 

number of alternative strategies (e.g., Saha et al. 2005, Mathew et al. 2007, Champati Ray et 

al., 2007, Pradhan et al. 2009) have been attempted in recent years for LSZ mapping in 

Himalaya and other parts of the world. Most of these studies are based on establishing the 

relationships between categories of the causative factors and incidences of the existing 

landslides in a given region through spatial data analyses. Thus, a range of data driven 

approaches have been proposed, which include logistic regression and multivariate statistical 

methods (Dai et al. 2001; Van Den Eeckhaut et al. 2006, Akgun et al., 2008; Mathew et al. 

2009; Akgun and Turk, 2010; Chauhan et al., 2010b), decision tree approach (Nefeslioglu et 

al., 2010), artificial neural network (Arora et al. 2004; Kanungo et al. 2006; Pradhan and Lee, 

2010; Pradhan et al., 2010a), fuzzy relations (Kanungo et al. 2006; Pradhan 2010, 2011) and 

neuro-fuzzy approaches (Kanungo et al. 2006; Pradhan et al., 2010b; Sezer et al., 2011). Each 

approach is based on a different mathematical concept but has been used with an ultimate aim 

to produce an LSZ map in an objective manner thereby reducing the subjectivity in the weight 

assignment procedure.  

For the last one decade, several ANN based LSZ studies have been conducted (e.g., 

Lee et al., 2003; Arora et al., 2004; Kanungo et al., 2006; Nefeslioglu et al., 2008; Pradhan 

and Lee, 2010; Pradhan et al., 2010a, b; Sezer et al., 2011). In these studies, the ability of an 

ANN to learn non-linear functions has been exploited for landslide susceptibility mapping in 



 

 

a region where the data pertaining to causative factors may not be approximated by a normal 

distribution and are non-linearly related.  

In addition, fuzzy set theory has also been found useful for landslide mapping (e.g., 

Chi et al. 2002). Here, a fuzzy set can be utilized to assign varying degree of memberships to 

the categories of causative factors according to their importance in landslide occurrence. 

Recently, attempts (e.g., Kanungo et al., 2006) have also been made to combine the ANN and 

fuzzy set approaches wherein weights to be assigned to causative factors are determined 

objectively through ANN and ratings are assigned to categories of factors using fuzzy set 

theory (e.g., Kanungo et al., 2006; Pradhan et al., 2010b; Sezer et al., 2011).  

In this study, the traditional backpropagation ANN has been implemented for the 

determination of weights of causative factors via a connectionist weighting process (Olden et 

al. 2004). The backpropagation ANN, as implemented in the software, can also be used as a 

black box to independently produce an LSZ map. A fuzzy relation concept based on cosine 

amplitude method has been implemented to determine ratings (equivalent to fuzzy 

membership values) of categories of causative factors. The fuzzy relation concept can be used 

to independently produce a fuzzy-set based LSZ map and can be combined with neural 

network to produced a neuro-fuzzy based LSZ map.  

3. BRIEF ACCOUNT ON LSZ APPROACHES USED 

3.1 Back-propagation neural network (BPNN) approach 

A typical neural network architecture for LSZ mapping may be a three layer design 

with seven input neurons corresponding to seven thematic data layers (one for each causative 

factor affecting landslide) in the input layer and one output neuron corresponding to presence 

or absence of landslide in the output layer. The number of neurons in the hidden layer is 

determined by trial and error. 

The back propagation neural network (BPNN) is based on the mathematical 

background given in Arora et al. (2004) and Kanungo et al. (2006). The flowchart of 

implementing BPNN as black box for LSZ as implemented in LaSaRiZ is given in figure 1.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flow chart to perform LSZ using BPNN 

The network architectural parameters (i.e., number of units in input layer, hidden 

layers and output layer) are given as input. The three stages involved in ANN data processing 

for a classification problem are; the training stage, the weight determination stage and the 

classification stage. The training process is initiated by assigning arbitrary initial connection 
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weights, which are constantly updated until an acceptable training accuracy is attained. While 

developing an ANN, the data are commonly partitioned into two subsets; training for the 

development of the model and testing for the validation of the model. It is expected that the 

training data will represent all the characteristics belonging to the problem domain (e.g., 

LSZ). The training data via input neurons are processed through hidden neurons to generate 

an output at the output neuron. 

In the ANN black box approach, the adjusted weights obtained from the trained 

network are subsequently used to process the testing data to assess the accuracy and 

generalization capability the network. Once the network is trained and tested to the desired 

accuracy, the adjusted weights are used to simulate the complete dataset. In the present 

context, the network output values for the whole dataset has been categorized into one of the 

five landslide susceptible zones to produce the LSZ map from ANN. This approach has been 

referred to as ANN black box approach, since, in this case, the weights remain hidden (Arora 

et al. 2004). 

3.2 Fuzzy set based cosine amplitude approach 

The cosine amplitude approach is a fuzzy relation concept to compute ratings, which 

define the degree of relationship between category of causative factors and landslide 

occurrence.  The flowchart of this approach, as implemented in the software, is shown in 

figure 3.  

 

 

 

 

 

 

 

 

 

 

Figure 2: Flow chart to perform LSZ using fuzzy set based cosine amplitude approach 
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The approach evaluates the relation between the existing landslide occurrence and the 

categories of each causative factor considered. The categories of existing landslide 

distribution layer and categories from each thematic data layer (corresponding to each 

causative factor) taken one at a time have been considered as two binary datasets for the 

computation of ratings or strength of relationship. The ratings, thus obtained, have been 

integrated to estimate the Landslide Susceptibility Index (LSI) values. The LSI values have 

been categorised in an ordinal manner to produce an LSZ map. 

3.3 Combined neural network and fuzzy approach  

  A combined neural network and fuzzy approach takes advantage from both to 

integrate ANN derived weights and fuzzy set derived ratings to produce an LSZ map. This 

map is expected to be more accurate than the LSZ maps produced either from ANN or fuzzy 

relation concept. The implementation of this approach can be understood with the help of the 

flowchart given in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Flow chart to perform LSZ using combined neural network and fuzzy approach 
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  The combined neural and fuzzy approach involves three steps, (i) Determination of 

weights of causative factors through ANN connection-weight approach; (ii) Determination of 

ratings for categories of causative factors using cosine amplitude method; and (iii) The 

integration of weights and ratings to produce the LSZ map. The processing steps in defining 

the architecture of the ANN, its training and testing are similar to those of ANN black box 

approach. The connection weight matrices from the trained two-hidden layer network for 

input-hidden, hidden-hidden and hidden-output layers are extracted. Simple matrix 

multiplications of these weight matrices are performed to achieve a weight matrix 

representing weights corresponding to the causative factors (Olden et al. 2004). The ratings of 

the categories of causative factors are determined from the cosine amplitude method. The 

weights, derived from ANN and ratings computed from cosine amplitude method are 

integrated to compute LSI values, which have been further categorized to produce the LSZ 

map. 

 

4. Study Area and Data 

The study area belongs to parts of Chamoli and Rudraprayag districts of the State of 

Uttarakhand, India, in the Himalayan region and covers about 600 sq km. There are a number 

of thrusts and faults passing through the area which has rendered the rock mass weak. The 

area is also characterized by fragile geology and complex tectonics. The region had also 

witnessed two major earthquakes in the recent past one; Uttarakashi in 1991 and Chamoli in 

1999, which caused extensive damages to the life and property. These seismic ground 

movements make the lithology fragile and cause landslides. 

All these factors along with torrential rainfall make the slopes inherently unstable, 

which lead to occurrences of landsides in the region. Based on the past studies on LSZ in the 

region, seven key causative factors, namely, slope, aspect, relative relief, lithology, structural 

features, land use land cover and drainage density, were considered.  

Spatial data pertaining to these causative factors were collected from satellite remote 

sensing images (IRS-1C and P6 satellite sensors - PAN, LISS-III and LISS IV), Survey of 

India (SOI) topographic maps, Valdiya’s geological map (Valdiya, 1980) and the field 

campaigns. Table 1 provides the details of these data along with their usage in the study.  



 

 

Table 1: Data sources and specific use 

Data types Description Specific Use 

Remote 

Sensing Data 

Satellite/Sensor 
Spatial 

Resolution 

Year of 

Acquisition 
Land use/ Land cover, 

Structural Features 

Landslide distribution 

IRS PAN 5.8m 1999 

IRS LISS-III 23.5m 2001 

IRS LISS-IV 5.8m 2008 

Google Earth 

Data 

Various images of study area 

Google Earth Data 
Landslide distribution 

Topographical 

maps (1963) 
Scale: 1:50000 

DEM: Slope, Aspect, 

Relative Relief 

Drainage network 

Geological map 

(1980)  

Scale: 1:326000 

 

Lithology, 

Structural Features 

Field Data 
GPS Surveys 

 

Landslide distribution, 

Land use/Land cover 

 

These spatial data were appropriately processed and analyzed in an image processing 

and GIS software to prepare seven thematic data layers. Further details on the study area, 

causative factors and their justification, and the process of preparation of thematic data layers 

can be found in Chauhan et al. (2010ab). The seven thematic data layers have been named as 

slope, aspect, relative relief, structural buffer, lithology, drainage density and landuse 

landcover. These layers are stacked as a single database to be input to LaSaRiZ for various 

operations. 

The identification and mapping of existing landslides is a pre-requisite to develop any 

data-driven model for LSZ. Therefore, existing landslide locations have been interpreted 

visually and mapped from high-resolution LISS IV (MX) image and PAN sharpened multi-

spectral image. A total of 154 landslides of varying dimensions have been mapped, which 

were subsequently digitized and rasterized to create a landslide distribution data layer.  From 

this landslide distribution data layer, the pixels of landslide and no-landslide attributes are 

extracted, which are then used for training and testing of the three approaches for LSZ 

mapping implemented in the LaSaRiZ software. 



 

 

5. Creation of LSZ maps 

5.1 LSZ using back-propagation neural network approach 

The database of landslide and non-landslide pixels consist of a total of 2621 pixels 

denoting the presence of landslide and an equal number of pixels denoting the absence of 

landslide. This dataset is divided into two mutually exclusive datasets; 80% for training and 

20% for testing. A number of ANN architectures have been designed, which are trained with 

back-propagation learning algorithm, with learning rate of 0.01 and a momentum factor of 

0.2. The training parameters have been kept fixed across various neural networks for their 

effective comparison. The training process is initiated by assigning arbitrary initial connection 

weights, which are constantly updated until an acceptable training accuracy is achieved. The 

adjusted weights obtained from the trained network are subsequently used to process the 

testing data to assess the accuracy and the generalization capability of each network. The 

training and testing data accuracies of each network are listed in Table 2. 

  

Table 2: Training and testing data accuracies (I: input layer, H1: first hidden layer, H2: second 

hidden layer and O: output layer). Bold values indicate the highest accuracy 

ANN Architecture 

(I×H1×H2×O) 

Training 

Accuracy (%) 

Testing 

Accuracy (%) 

Difference in 

training and 

testing data 

accuracies 

7×4×1×1 64.9 63.2 1.7 

7×5×2×1 67.4 65.0 2.4 

7×6×3×1 68.0 65.3 2.7 

7×7×4×1 71.0 69.3 1.7 

7×8×5×1 73.9 70.0 3.9 

7×9×5×1 75.2 71.7 3.5 

7×9×6×1 75.1 68.0 8.1 

7×10×5×1 74.9 67.6 8.3 

7×10×6×1 73.3 67.1 10.2 

7×11×5×1 72.4 66.8 11.6 

 

From this table, it can be observed that as the neural network architecture changes, the 

training and testing data accuracies increase up to a certain neural network design, after which 

a decrease in accuracy occurs. This shows that there is an optimum ANN architecture for this 



 

 

dataset. Moreover, the training data accuracies differ from testing data accuracies for various 

architectures. Larger is the difference between training and testing data accuracies, lesser may 

be the generalization capability of an ANN. Keeping this in view, an ANN with 7×9×5×1 

architecture, producing a training accuracy of 75.2% and a testing accuracy of 71.7%, which 

not only depicts less difference between the training and testing data accuracies but attained 

high absolute values, has been considered as the most appropriate one for the current dataset.  

Thus, the adjusted weights from this ANN have been used to determine the network output of 

all the pixels of the image. The values of neural network outputs for each pixel have been 

found to vary from 0.01 to 0.998, which reflect the LSI values of pixels. Higher the value of 

LSI, more susceptible is that pixel towards the occurrence of landslide. These LSI value have 

been categorized arbitrarily into five landslide susceptibility zones in an ordinal fashion 

(Table 3) to produce an LSZ map. 

  

Table 3: Classification of LSI values obtained from ANN black box approach into landslide 

susceptible zones 

Range of LSI values 
Landslide Susceptibility 

Zones 

≤0.1 VLS 

>0.1 and ≤0.25 LS 

>0.25 and ≤0.8 MS 

>0.8 and ≤0.9 HS 

>0.9 VHS 

5.2 LSZ using cosine amplitude based fuzzy relation approach 

The categories of landslide distribution layer and categories of a thematic data layer, 

taken one at a time, have been considered as two datasets for the computation of ratings or 

strength of relationship. The pixels in the landslide areas have been assigned a value of 1, 

whereas remaining pixels are assigned a value of 0 in the landslide distribution layer. 

Similarly, a value of 1 has been assigned to a particular category of a thematic layer and a 

value of 0 to remaining pixels. Hence, in total, there are 43 data layers in binary form (i.e., 42 

layers of categories of causative factors and 1 layer of landslide distribution category). With 

the help of these data layers, fuzzy memberships or ratings of all the 42 categories have been 

determined using the cosine amplitude method and are given in Table 4.  



 

 

Table 4: Fuzzy ratings for different categories of causative factors as obtained from cosine 

amplitude approach 

Causative Factors Categories 
Fuzzy Ratings 

(r ij) 

 

 

 

Aspect 

North 0.004 

Northeast 0.013 

East 0.034 

Southeast 0.031 

South 0.023 

Southwest 0.018 

West 0.017 

Northwest 0.002 

Flat 0 

Drainage Density  

 

<3.72 m/m
2
 0.038 

3.72-7.45 m/m
2
 0.029 

7.45-11.17 m/m
2
 0.014 

11.17-14.90 m/m
2
 0.006 

>14.90 m/m
2 

0.003 

 

 

Sructural Features 

(buffer) 

 

  

0-500 m 0.039 

500-1000 m 0.020 

1000-1500 m 0.014 

1500-2000 m 0.012 

2000-2500 m 0.002 

>2500 m 0 

 

 

Land use/ Land 

cover 

 

Sparse vegetation 0.023 

Dense forest 0.001 

Snow  0 

Water  0.006 

Settlement 0.035 

Barren land 0.074 

Fallow land 0.034 

Agriculture 0.013 

 

 

 

Relative Relief 

 

<25 0.004 

25-50 0.023 

50-75 0.025 

75-100 0.020 

100-125 0.017 

>125 0.026 

Slope  0-15
 o
 0.019 



 

 

15-25
 o
 0.025 

25-35
 o
 0.023 

35-45
 o
 0.028 

>45
 o
 0.017 

 

Lithology 

Granite-Grandiorite-Gneiss 0.024 

Granite 0.019 

Quartzite with Slate 0.045 

 

By assigning the ratings of the 42 categories (t) in the corresponding binary layers of 

categories, 42 images of rij have been generated. These 42 rated images (Rl) have been 

integrated to LSI values, which are found to range between 0.045 and 0.274. A probability 

distribution curve with mean (µ0) value of 0.15 and standard deviation (σ0) value of 0.026 of 

these LSI values has been produced. A success rate curve approach, as described in Saha et al. 

(2005), has been adopted to categorize the LSI values into five ordinal landslide susceptible 

zones. Accordingly, the boundaries of landslide susceptible zones have been fixed at LSI 

values of 0.107, 0.136, 0.164 and 0.193 and an LSZ map. 

5.3 LSZ using combined neural network and fuzzy approach 

ANN architecture with one input layer, two hidden layers and one output layer has 

been adopted. Similar to earlier ANN approach, the number of neurons in the hidden layers 

have been varied in this case also by running the networks several times to achieve the desired 

training and testing data accuracies. The training and testing accuracies of 10 networks is 

shown in Table 5.  

Table 5: Training and testing accuracies in combined neural network and fuzzy approach  

ANN Architecture 

Overall Accuracy (%) 

Training Testing 
Difference in 

training and testing 

accuracies 

7×6×5×1 71.2 65.0 6.2 

7×7×6×1 72.5 66.3 6.2 

7×8×7×1 73.8 67.5 6.3 

7×9×8×1 74.0 68.3 5.7 

7×10×9×1 77.3 70.4 6.9 

7×11×10×1 78.8 72.2 6.6 

7×12×10×1 79.3 74.8 4.5 

7×13×9×1 78.6 72.7 6.9 

7×14×10×1 77.0 69.6 5.9 



 

 

7×15×9×1 76.6 68.8 7.8 

 

From this table, a variation in both training and testing accuracies can be noticed as 

the neural network architecture changes. This suggests that there exists optimal neural 

network architecture for a given dataset. An ANN with 7×12×10×1 architecture with training 

accuracy 79.3% and testing accuracy 74.8% has been found to be the most appropriate one, as 

it provides the least difference between training and testing accuracies. The updated weights 

of input-hidden, hidden-hidden and hidden-output connections for this network have been 

captured for further analysis. Simple matrix multiplications of these weight matrices are 

performed to obtain the final weight matrix corresponding to the factors. The weights of the 

causative factors thus obtained after connection weight analysis, are given in Table 6.  

 

Table 6: Weights of causative factors derived through ANN in combined neuro-fuzzy 

approach 

Causative Factors ANN derived Weights 

 

Land use/ Land cover 3.14 

Structural Features 2.07 

Aspect 1.43 

Drainage Density 1.11 

Lithology 0.99 

Slope 0.78 

Relative Relief 0.48 

 

It can be observed from this table that causative factor land use land cover has the 

most influencing effect with highest value of weight as 3.14. This is followed by the structural 

features factor with the value of 2.07. Thus, unlike ANN blackbox approach, the importance 

of each causative factor on the basis of ANN derived weights, can be ascertained in this 

approach. Further, the ratings of each category of the factor have been determined from fuzzy 

relation based cosine amplitude method. The weights are integrated with ratings to compute 

LSI values, which range from 0.0582 to 0.3849 with a mean value of 0.22 and standard 

deviation value of 0.048. These LSI values have been categorized using success rate curve 



 

 

method. Accordingly, the boundaries of landslide susceptible zones were fixed at LSI values 

of 0.148, 0.196, 0.244 and 0.292 to produce the LSZ map.  

6. RESULTS AND DISCUSSION 

The LSZ maps produced from the three approaches through LaSaRiZ software have 

been evaluated with each other in respect of the distribution of existing landslides in the area, 

i.e. on the basis of landslide density, and then through ROC curves. Landslide density has 

been defined as the ratio of the existing landslide area (in percent) obtained from landslide 

distribution layer to the area of each landslide susceptibility zone (in percent) obtained from 

an LSZ map.  The distribution of landslide susceptibility zones and the landslide densities for 

all the three approaches are given in Table 7. 

  

Table 7: Landslide distribution in various landslide susceptible zones  

Landslide 

Susceptible 

Zones 

ANN black box approach Fuzzy set based approach Combined neural 

network and fuzzy 

approach 

% area 

of 

identified 

zones  

(a) 

% area of 

observed 

landslides 

per class 

(b) 

Landslide 

density 

(b/a) 

 

% area 

of 

identified 

zones (a) 

% area of 

observed 

landslides 

per class 

(b) 

Landslide 

density 

(b/a) 

% area 

of 

identified 

zones  

(a) 

% area of 

observed 

landslides 

per class 

(b) 

Landslide 

density 

(b/a) 

VHS 11.60 29.3 2.52 4.0 24.33 6.08 5.1 33.1 6.49 

HS 27.40 42.7 1.56 20.9 40.32 1.93 23.9 41.4 1.73 

MS 46.15 27.4 0.59 41.1 27.62 0.67 41.4 21.9 0.53 

LS 8.80 0.26 0.29 29.3 7.13 0.24 25.9 3.6 0.14 

VLS 6.05 0.34 0.05 4.7 0.6 0.13 3.7 0 0 

 

It can be seen that in case of back-propagation neural network approach, 72% of the 

observed landslides fall in 39% of the total area categorized into very high and high 

susceptibility zone. Also, a very large area of about 29% is obtained as very high 

susceptibility zone in neural network approach, which does not show any defined pattern and 

is found to be distributed overall in the map. In case of the cosine amplitude based fuzzy 

relation approach, 64.65% of observed landslides fall in 24.9% of identified very high and 

high susceptibility zones. However, in case of combined neural network and fuzzy approach, 

74.5% of observed landslides fall in 29.0% of identified very high and high susceptibility 

zones, which in fact should be the case (i.e., areas belonging to very high and high 

susceptibility zones have been further narrowed down). This outcome can also be 



 

 

corroborated from the study of landslide density values. Usually, an ideal LSZ map should 

have the highest landslide density for VHS zone, as compared to other zones and there ought 

to be a decreasing trend of landslide density values successively from VHS to VLS zone. It 

has also been ascertained that the landslide density values for VHS zone of LSZ maps are 

higher than those obtained for other susceptibility zones. There is also a decreasing trend of 

landslide density values from VHS zone to VLS zone. Thus, based on the landslide density 

values of different landslide susceptibility zones and their trend from VHS to VLS zones for 

all the LSZ maps, it can be inferred that the combined neural network and fuzzy approach 

performs significantly better than the other two approaches for LSZ mapping. 

The acceptability of LSZ map produced from the combined neural network and fuzzy 

approach has further been strengthened through ROC curves (Swets, 1988, Mathew et al. 

2009). In the present context, the true positive rate has been defined as the number of 

correctly classified predicted landslide pixels over the total predicted landslides and is 

represented on the Y-axis of ROC curve. The false positive rate was defined as the number of 

incorrectly classified landslide pixels over the total predicted no-landslide pixels and is 

represented on the X-axis of the ROC curve. The area under curve (AUC) constitutes one of 

the most commonly used accuracy statistics for the prediction models in natural hazard 

assessments (Begueria 2006). The minimum value of AUC is 0.5 signifies that the model does 

not accurately predict the occurrence of landslide while a maximum value of AUC is 1 

denotes perfect prediction. 

To assess the performance of all the three LSZ approaches, the ROC curves have been 

generated using the SPSS 16.0 software. For this purpose, a test data set consisting of 

randomly selected pixels from landslide and no landslide pixels has been considered. The 

ROC curves for the LSZ maps from the ANN black box (AUC=0.84), fuzzy relation based 

(AUC=0.86) and combined neural network and fuzzy (AUC=0.92). These curves clearly 

depict that the combined neural network and fuzzy based approach model is the most 

successful one in predicting the probability of landslide susceptibility for the study area, since 

the AUC value for the LSZ map derived from this approach is higher than that obtained from 

other two approaches.  

7. CONCLUSION 

In this paper, a comparative study on landslide susceptibility zonation using three soft 

computing approaches, namely, ANN black box approach, fuzzy relation based approach and 

combined neural network and fuzzy approach was presented. The efficacy of the approaches 

was examined through a case study in the Himalayan region. The LSZ map produced by the 

combined neural network and fuzzy approach showed systematic and a decreasing trend of 

variation in landslide density values from VHS to VLS zones in the region. Thus, for the 



 

 

study area considered, the combined neural network and fuzzy approach provided an accurate 

representation of the actual scenario of landslide occurrences in the region. 
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