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Abstract. An explicit Finite Volume method for solving hydrodynamic flows is presented in 

this paper. These developments are based on an explicit cell-centered scheme solving the 

compressible fluid equations in a pseudo-compressible strategy where second-order accuracy 

is provided by using a MUSCL scheme together with various limiters for the hyperbolic part. 

In this recent model, boundaries are handled through a Cut-Cell method, so that solids as 

well as fluid interfaces are explicitly moved in a non-diffusive way, ensuring local mass 

conservation within fluids. An improved cut-cell algorithm based on the Voxel traversal 

algorithm coupled with a local Floodfill Scanline has been developed, in order to handle 

boundaries of arbitrary geometrical complexity. To cope with small cells instability problems 

near the boundaries, a fully conservative merging method is implemented. In this paper, this 

solver is validated on 2-D hydrodynamic test cases, such as flows past obstacles. Test cases 

involving large body movement are then performed and discussed. The latter test cases are 

performed both in the frame of the body and in a fixed frame where the body is moving across 

the grid. Then, a two-fluid formulation is introduced in the model and described in detail in 

the present paper. First validations of this two-fluid formulation are eventually presented.  
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1. INTRODUCTION 

Numerical simulation is more and more widely used in hydrodynamics. Limited to simplified 

models of the flow around a body in frequency domain two decades ago, it now deals with the 

temporal modeling of complex unsteady phenomena. In particular, models based on the 

Navier-Stokes equations in Reynolds averaging (RANS) are now used routinely in applied 

research to solve complex realistic problems. Meanwhile, the commercialization of general 

codes of this kind knows an increasing success in the industry, starting to replace the previous 

empirical solutions. The RANS models based on volume mesh implicit methods still do not 

respond to all situations encountered in naval hydrodynamics and offshore. One can give as 

examples the simulation of two-phase phenomena caused by the progression of a ship at sea 

with its propeller (air entrainment in the jet bow, bubbles in the wake), violent sloshing 

impacts on long duration, etc. These examples raise the problem of safety of floating 

structures, their staff, their passengers and their cargo (often polluting) but they also concern 

energy reduction, ship signature, etc. The main limitations faced by standard solvers based on 

implicit methods on body-fitted unstructured meshes are: the presence of multiple bodies of 
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complex geometry in arbitrary motion in the flow, non-diffusive interfaces between several 

fluids, multi-physics within the solver, automatic mesh refinement, mesh adaptation in the 

frame of fluid-structure coupling. Here, we develop a different model based on a fixed 

Cartesian grid, an explicit resolution based on compressible Finite Volumes enabling easy 

inclusion of multi-physics. Arbitrary complex geometries can be embedded in the fixed grid 

and move freely thanks to a cut-cell technique. Fully-conservative treatment of interfaces is 

presently being implemented. In the present paper, these different components are first 

presented, and followed by validation test cases. 

2.  EXPLICIT FINITE VOLUME SOLUTION FRAMEWORK 

2.1.  Navier-Stokes & Inviscid Euler Equations 

We model 3-D Navier-Stokes equations for viscous compressible flow: 
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which can be written in conservative form as 
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(2) 

The internal energy is linked to the total energy per unit volume and the kinetic energy by 

 

                                                   (3)                                                    

An additional equation is needed to close the system by coupling the pressure with 

conservative variables EOS(ρ,ρU,ρE) = 0. We use either an ideal gas assumption or a 

barotropic fluid. On the one hand Tammann-Gibson’s equation of state expresses the pressure 

P as a function of the density ρ, the internal energy E and the polytrophic constant γ. 

 

 

 (4)                                   

On the other hand Tait’s equation writes the pressure as a function of the density, the 

polytrophic constant γ, a reference pressure P0, the nominal density ρ0 and the nominal speed 

of sound c0  

 

 
                                                   (5)  

The viscosity terms in Navier-Stokes equation can be represented in terms of the viscous 

stress tensor components as : 



 

 

 
                                         (6) 

 

3.  FINITE VOLUME CHARACTERISTIC FLUX (FVCF) SCHEMES 

The FVCF scheme, proposed by Ghidaglia et al [1] in 1996, is a finite volume scheme with 

cell centered variables, including the kinetic vector. The conservation laws are discretized by 

calculating numerical sum fluxes FVCF  through cell edges. These fluxes are expressed in 

terms of cell defined physical fluxes F, G and H in 3-D, and not cell variables W as classical 

Godunov scheme. Introducing the flux of conservative variables in normal direction n   as 
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Let us define V(t) a volume and its boundary δV(t) which can be decomposed in time 

independent edges Γ and moving edges Ξ(t) with local velocity intU . 

 

Introducing (7) one gets 
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The integrated system becomes: 

 
(9)             

In the finite volume framework we obtain: 
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where dt is the timestep, superscripts n and n+1 indicate the time levels, n   is the unit normal 

vector to the face, and A the face area. We discretize the Navier-Stokes equation as a 

hyperbolic part plus some viscosity terms. We use the Jacobian matrix J  associated to the 

hyperbolic system and the Tait’s equation of state to build a flux solution FVCF . For this study 

we can rewrite (2): 
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We then need to multiply (11) by the same Jacobian matrix expressed at the mid interface of 

the two cells. MUSCL method can be used here to improve the reconstruction of the new 

interface conservative variables that will be explained later with more details. We use simple 

linear interpolation as follows, where L and R refer respectively to the left and right states of 

the mid interface. 
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For barotropic fluids, hyperbolic conservation law Jacobian’s is:  
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With energy conservation equation Jacobian’s matrix becomes: 
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The next step consists in computing eigensystem see in [2] for more details.  

 

We recall here two classical forms of calculation fluxes: 

 

The Godunov flux [15] reads: 

( [ , ], )Godunov e l rW W W n   
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where [ , ]e l rW W W  is the exact solution of a Riemann problem between left and right states.  

 

The Roe flux [16] reads: 

 
 

                   (16) 

 

The algebraic reduction provides us with everything to work in the characteristic basis. The 

FVCF flux FVCF  can then be written in physical space in the following form 
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That can be sum up in general upwind equation 
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Remark 1. FVCF method has a close definition with the Roe method, nonetheless the Roe 

matrix ROEA

 

is not always calculable in complex cases as multiphase flows unlike
( )sign D

Matrix . 

Remark 2. FVCF method remains consistent in any linearization case of the left and right 

states. 

Remark 3. FVCF method naturally translates interface exchange between adjacent cells. 

 

The timestep is defined by the following CFL condition: 
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where int is the area of the interface between two adjacent cells. 

 

4.  CHARACTERISTIC BOUNDARY CONDITIONS 

Inlet-Outlet boundary conditions are written into the characteristic space, see [1]. Inflow 

velocity is imposed at the inlet boundary, which allows calculating density and then pressure 

through the EOS.  
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The outlet boundary condition relies in the imposition of the outflow pressure from which we 

calculate the density. 
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At a wall, where reflecting boundary conditions should be imposed, we consider the normal 

velocity to be equal to zero. As a result, the numerical flux at a wall is simply defined using 

the characteristic the pressure as 
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4.1  Characteristic hybrid cut-cell method 

Flow simulation around moving complex bodies is a challenging problem, especially when a 

fixed Cartesian grid is used. We have to find local grid modification on body surface, without 

significant increasing computational cost. We present here a new implementation of an 

existing two-dimensional cell-merging method to overcome the problem of conservation 

laws. The present method may have a better potential for 3-D extension. The first step relies 

in immersing a 2-D or 3-D complex geometry in a Cartesian grid and to provide volumes, 

intersection coordinates and solid edge normals for each intersected cell. Instead of using a 

polygon clipping algorithm [3] we use the Voxel traversal algorithm [10] coupled with a local 

floodfill scanline to intersect 2-D or 3-D complex surface meshes with fix Cartesian grids. 

The second step consists in defining the cut-cell topologies which can be found in 2-D/3-D 

[7], and to define a modified FVCF scheme. Considering the 2-D problem for simplicity, 12 

configurations exist which can be viewed as 6 symmetric configurations [2]. These cell 

configurations modify the discretized scheme since 3 to 5 flux calculations should now be 

performed for each cell on specific non-equal edges. The finite volume scheme becomes:  
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where dt is a timestep, superscripts n and n+1 indicate the time levels, edges is the total 

number of cell faces in the cell under consideration, k is the face number, and  is the face 

area.  

 

(1) Computing the total flux of all cells at time level n; 

(2) Merging the cut cells; 

(3) Moving the body to the next time level, n + 1; 

(4) Computing cell geometrical properties; 

(5) Computing the solution; 

(6) Separating the merged cut cells. 

 

Cell merging treats very small cut cells, which can greatly reduce the size of a timestep. 

Furthermore, it has been shown by Coirier et al.[17] that cell merging affects only the local 

computational accuracy, not its global value. However Cut-Cell configurations induce the 

presence of small volume cells leading to low local timesteps imposed by the CFL criterion. 

A fully conservative cell-merge method is thus added to avoid this difficulty. We thus define 



 

 

a minimum volume under which a small cell is merged with it closest neighbor cell. This 

technique results in a lower local accuracy but has no significant effect on global accuracy, 

see [11]. Since van Leer’s work [4], the MUSCL scheme (Monotonic Upstream-Centered 

Scheme for Conservation Laws) has been studied and widely used in compressible fluid 

simulations. In MUSCL schemes, the conservative solution vectors are described as piecewise 

linear polynomials for recovering second-order accuracy. A gradient ratio is introduced in 

each direction. We write a new conservative vector at the edge between two conform 

Cartesian cells using the two closest neighbor cells. A monotonic slope limiter is used to 

forbid non realistic or inversion reconstruction. The Minmod slope limiter function preserves 

a strict monotonic reconstruction but in practice we use the Monotonized Central (MC) 

limiter, which we consider it provides better results.  

4.2  Validations 

As a first validation test case, we study an inviscid flow past a fixed cylinder, with an 

imposed incident velocity of 1m/s (Figure 3). This cylinder is located in the center of a 20 

meter long infinite tank. As a second step of this study, the solution obtained on this fixed 

cylinder is then compared to the case of a cylinder moving with an imposed velocity of 1 m/s 

in a zero velocity flow field. Such conditions are equivalent, so that identical solutions can be 

expected. In both cases we use potential flow result as an analytical solution. 

 

 

 
 

Figure 1. Force X and Y history on the fixed cylinder. 

 

After a convergence study, all present results converge through 0 on X and Y direction, in 

respect of inviscid flow hypothesis. We now compare the angular local pressure on the 

cylinder once the steady flow reached with a generate potential reference solution (Figure 2). 

 



 

 

 
Figure 2. Local steady pressure around the cylinder. 

 

 
Figure 3. Local pressure comparison between fixed and moving cylinder 

 

Figure 3 illustrates that a fully validated 2-D 2
nd

 order scheme is obtained with this cut-cell 

based wall boundary condition algorithm. 

 

 

 



 

 

5. TWO-FLUID CARTESIAN-GRID FINITE-VOLUME CHARACTERISTIC FLUX 

MODEL 

Linearizing perfect fluid equation to obtain compressible jump condition for two fluids 

interface: 
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After time derivation: 
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Pressure and velocity zero order jump condition become: 
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first order jump condition becomes : 
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second order jump condition becomes : 
2 2

2 2

2 2
______ ____0 __ 0

p u
c et c

x x

    
    

      
(29) 

We use here the first order scheme, using zero order compressible jump condition. Our 

hyperbolic system respects Riemann invariant p cu    . By advecting these terms with a 

celerity ±c, we obtain: 
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After linearization: 

int int int int int

int int int intint

r l l l l

r r r rl

p c u p c u

p c u p c u

   

  

 

 

    
 

     
(31) 

 

 

The central wave in this study is necessarily a shock discontinuity leading to the following 

results: 



 

 

 
(32) 

Following pressure out the left or right characteristic wave, we will have shock or rarefaction 

waves, with continuity of transversal velocity:  
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So, 

int

int int

int int
int

l l r r r l l r
l l r r

l l l l l l l l r r l l r r

r r r r r r l l l r r r l r

l l r r l l r r

c u c u u u
p c c

p c u p c u c c c c

p c u p c u c u c u p p
u

c c c c

 
 

     

   

   

 
      

 
       

  

 

(34) 

6. VALIDATIONS 

6.1  2-D biphasic hydrostatic case 

 

We consider here the two-dimensional case and we seek a solution to the following system: 
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which defines a new initial problem: 
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Figure 4. Pressure field at t=0s (left) and t=20s (right). 

 

 
 

Figure 5. Pressure field comparison between 0s and 20s (left). Velocity field comparison 

between 1
st
 and 2

nd
 order MUSCL scheme at t=20s (right). 

 

A good agreement is observed between the analytical and the numerical solution. The 

presence of a low velocity gradient is explained by the error of the MUSCL extrapolation of 

the pressure on the walls of our tank. Indeed the whole field is initialized at the cell center. 

The treatment of boundary conditions, requiring a calculation projected on the border of 

approximation error, induces a very weak stationarity in vertical velocity. Nevertheless the 

pressure oscillations measured are negligible (Figure 4-5). 

 

6.2  2-D low-Mach biphasic linear slohing 

 

We now consider a two-dimensional test case to assess the correct behavior in low-Mach 

regime in the case of a linear biphasic sloshing tank, which solution can be compared with a 

generate potential solution.  This sloshing tank is a rectangular domain, filled with water and 



 

 

air under the action of both the gravity g  and a transverse acceleration of modulus g/100, as 

follows:  
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Water and air are initialized with their nominal physical properties, the dimensions of the 

sloshing tank are specified in figure 6 below, with Hwater / L = 1 and Htank / L = 2.25. The 

elevation of the free surface can be evaluated analytically by potential theory as follows [17-

18]: 
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Figure 6. Initial configuration 

 

A convergence study was carried out in grids: three discretizations applied on uniform grids 

were chosen: 40x20, 90x45 and 180x80 cells. The displacement of the interface (about 1 cm 

on each side) is completely included in the two cells for finer grid while the interface moves 

in a half cell of the coarser grid. 

 

The results are presented (Figure 7), when the rise of the free surface on both sides is 

compared with the analytical potential solution. The results show a good agreement on fine 

grids and a significant dissipation on coarse ones, nevertheless it should be emphasized that a 

low Mach number (around 6.10
-4

) is observed here, explaining the results obtained. These 



 

 

results can be compared with those obtained with a Godunov type solver. One way around 

this limitation is to artificially increase the Mach number by decreasing the speed of sound in 

the EOS, here taken as 30 m/s.  

 

 
Figure 7. Linear slohing Ma= 10-5 with 2nd order FVCC on uniform grid from top 40*20, 

90*45, 180*80. 
 



 

 

7. CONCLUSION 

 

A new solver based on an explicit Finite Volume solution of hydrodynamic equations is 

developed. It is based on an explicit solution relying on a fixed non-conform Cartesian grid 

into which bodies can freely move thanks to a dedicated cut-cell technique. First validations 

are presented showing encouraging results in the case of a body freely moving in the fixed 

grid. The solver is now being extended to handle interfaces by means of a fully conservative 

technique. First tests prove the effectiveness of the conservative technique developed. It will 

now be compared to other method results on representative marine applications. Further 

developments will deal with automatic refinement of the mesh which will be eased by the 

Cartesian nature of the grid. 
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