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Abstract. Fluid-Structure Interactions are present in a large number of systems of nuclear
power plants and nuclear on-board stoke-holds. Particularly in steam generators, where tube
bundles are submitted to cross-flow which can lead to structure vibrations. We know that
numerical studies of such a complex mechanism is very costly, that is why we propose the use
of reduced-order methods in order to reduce calculation times and to make easier parametric
studies for such problems. We use the multiphase-POD approach, which is an adaptation of
the classical POD approach to the case of a moving structure in a flow, considering the whole
system (fluid and structure) as a multiphase domain. We are interested in the case of large
displacements of a structure moving in a fluid, in order to observe the ability of the multiphase-
POD technique to give a satisfying solution reconstruction. We obtain very interesting results
for the case of a single circular cylinder in cross-flow (lock-in phenomenon). Then we present
the application of the method to a case of confined cylinders in large displacements too. Here
again, results are encouraging. An on-going work consist in going further testing parametric
studies with POD-Galerkin approach and with POD basis interpolation. A future work will
consist in applications to fluid-structure interactions.
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1. INTRODUCTION

Nuclear power plants and nuclear on-board stokeholds are containing very complex
installations where flow-induced vibrations are present at various levels. Particularly, tube
bundle systems in the steam generator part are prone to fretting-wear or even breaking, mainly
due to transverse flow-induced vibration problems [4, 7, 8, 13, 18, 25, 23, 24]. But, as well
as experiments, numerical simulations of fluid-structure interactions in a tube bundle system
remain very costly [5, 15, 28] : in order to give a relevant description of the flow and of the
structure displacements, it is necessary to construct a system with a large number of degrees
of freedom. The three-dimensional aspect of the flow and of the fluid-structure interactions



added to the large number of tubes and their reciprocal interactions force us to lead long-time
calculations, in order to be as precise as possible.

One of the existing alternatives to these restrictive situations from an industrial point of view
is to have recourse to reduced-order models [1, 11, 2, 9, 19, 21] such as POD (Proper Or-
thogonal Decomposition) [29, 14, 17]. It is thus possible to make numerical calculations in a
very short time, and this paves the way to lead parametric studies or even real-time control.
Here, the challenge consists in the adaptation of POD to the case of fluid-structure interaction
problems. Liberge & Hamdouni [19, 20] proposed an efficient way to cope with the moving
fluid-structure interface; this method is called “Multiphase-POD” : the idea is to consider the
whole system (fluid and structure domains) as a unique multiphase domain. The advantages
of this technique are numerous. First, the data can be extracted from any way (experiments,
moving grid techniques, etc.), it is only necessary to know how data are organized to proceed
to the interpolation. Here, we show its ability to reproduce large structure displacements,
which is often, to the author’s knowledge, not so easy with other reduced-order models. The
first part of this paper is dedicated to the description of the Multiphase-POD method. Then,
its application to the case of large displacements of a single circular cylinder under cross-flow
(lock-in phenomenon) is presented in a second part. Finally, a 2D tube-bundle configuration
is considered with one moving cylinder under cross-flow.

2. MULTIPHASE-POD

We consider here that POD-Galerkin method is well known (see for example [14]) and

we are interested on its adaptation to FSI through Multiphase-POD. Complete calculations are
leaded with a classic ALE approach [12]. Thus, in this case of Flow Induced Vibrations, clas-
sic POD-Galerkin method cannot be used because of the presence of a moving interface :
POD modes are only spatial and consequently, they do not contain any dynamic information,
although snapshots, in the case of an ALE calculation, have been taken for several positions
of mesh nodes.
To get round this problem, Liberge & Hamdouni [19] proposed an original method that treats
the case of a fluid-structure interaction problem with an adaptation of the POD-Galerkin tech-
nique, which is called “Multiphase-POD method”, where a non-moving mesh is used. The
description of the Multiphase-POD method is the following : lets consider a global domain 2
containing the fluid domain €2¢(¢) and the solid domain §24(¢) at each time step ¢, where the
solid domain is considered as a particular fluid with its own physical characteristics (density,
viscosity). We have 2 = Q¢(¢) UQ,(¢) UT';(¢), where I';(¢) is the interface between fluid and
solid domains. A global velocity field v € H(2) (with H a Hilbert space) is considered :

u(z,t) = up(r,t)xa, (2, t) + us(v, t)xa,(, 1) (1)

where xq, and xq, are respectively characteristics functions defining if the considered point
position is in the fluid or in the solid domain :
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and xqo,(7,t) = 1 — xq,(,t). Taking into account this notations, a global weak form of
Navier-Stokes equations on {2 is made possible to formulate :

0 t
/ pMu*dm + / (u-V)u-u'de = /(V co)utdx (3)
Q ot Q Q
where u* is a test-function defined as v* € H(£2) with the non-deformable solid constraint :
D(u*) = 0in Q4(t) 4)

Each field or variable is defined on the global domain {2 as described below:

u(x, t) = uf(x’ t)XQj (1:’ t) + US(I, t)XQs (l’, t)
o(x,t) = op(x, t)xa,(7,t) + os(2,t)x,(T,1) 5)
p(ilj', t) = pf(xv t)XQf (%, t) + ,OS(fL', t)XQs (‘T? t)
p(z,t) = pr(z,t)xo, (2,1) + ps(2, )Xo, (2, 1)
Lets define both components of the constraints tensor o :
014j(2,t) = —pb] + 211 Dyj(uy) (6)

where 07 is the Kroenecker symbol and D;; is the deformation velocity tensor. The definition
of the structural compotent o,(x, t) allows taking into account that the solid has its specific
viscosity and the non-deformable structural condition. For the viscosity, a penalization term
is used: in order to specify that the domain 4(¢) is solid, the viscosity is artificially increased.
To insure the non-deformable condition, a Lagrange multiplier A is added. Thus, the structural
component of the constraints tensor is:

O'S’Z'j(ili', t) = —pdf + A -+ 2/,L5Dij (US) (7)

Developing the global weak form with these definitions and making the Proper Orthogonal
Decomposition on the global velocity flow field leads to the construction of a dynamical sys-
tem for the whole domain 2 which is fixed all over the studied time interval. Taking into
account the space-time decomposition of the global velocity field as:

t) = Z a4, (t) P () 8)

where ®,, n = 1,.., N are elements of the POD basis and a,(t), n = 1,..,N are time
coefficients, the final dynamical system is the following :

(N
=33 B+ Y Cu B
=1 =1 j=1 (9)
D(u ) = 0 on (1) (non deformability)
oxa
gt . = 0 (characteristic function transfer)
for each n = 1,.., N where N is the number of modes in the POD basis. Coefficients

Ain, Bijn, Cin, B, are not detailed here, but a very important point to notice is that they are not



all exclusively spatial coefficients, because some of them contain the physical characteristics
p(x,t) and p(x,t). Thus, they have to be re-calculated at each time step: the time calcula-
tion is increased in comparison with a classic POD model without moving structure. But this
time calculation is still less than a complete calculation. Another approach consists in mak-
ing the proper orthogonal decomposition of the characteristic function xq, (z,t) also, which
allows avoiding the time dependence of all coefficients of the dynamical system. For more
precisions, see [20]. Practical implementation of the Multiphase-POD technique is described
below.

1. Lead a complete ALE calculation of the fluid-structure interaction problem during a
time interval [0,T]

2. Extract enough snapshots from this complete calculation
3. Create a unique Cartesian fixed mesh containing both fluid and solid domains

4. Interpolate each extracted snapshot onto the fixed reference mesh: new fixed snapshots
are created

5. Apply the classic POD approach for the new snapshots constructed on the reference
mesh

6. Construct the dynamical system following (9) and resolve it with a classic method
(Runge-Kutta for example).

3. APPLICATION TO LOCK-IN PHENOMENON OF A SINGLE CIRCULAR CYLIN-
DER

In a first time, we propose a simple application of the Multiphase-POD technique,
which is the case of a circular cylinder under cross-flow (see Fig.1). The cylinder is submitted
to transverse displacements (y-direction) due to the presence of the flowing fluid. The case
of small displacements of the structure has already been tested with Multiphase-POD in [19].
Here, we consider the lock-in phenomenon [16, 26, 30], where amplitudes of the structure
displacement are of the order of the cylinder radius. The fluid domain is considered as infi-
nite, as boundaries are far enough from the structure. The effects that the flow exerts on the
structure are modeled through a restoring force. Reynolds number is R. = 100, fluid is water.
Cylinder displacement maximal amplitude is A* = 0.58 D, where D is the cylinder diameter:
the frequency lock-in mechanism is reached.
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Figure 1. Case of a single circular cylinder and boundary conditions



Complete calculations are leaded with the CFD code Code_Saturne [3] and data at

the interface are interpolated to the cylinder gravity center. The reduced-order model is con-
structed with the following characteristics: 250 snapshots are extracted from the complete
ALE calculation, 6 POD modes are constituting the POD basis. The fixed reference mesh
contains 200 x 250 points. The dynamical system resolution in the present case is simplified:
indeed, the penalization term is sufficient to guarantee the non-deformable condition. Time
integration scheme is Runge-Kutta 4.
The two first time coefficients are represented on Fig.2, they are well reconstructed by the
reduced model. And, as they are containing the main part of the system energy, this good
reproduction allows a good reconstruction of the velocity flow field and the cylinder displace-
ment is also well reproduced (Fig.3), which is confirming that 1) the Multiphase-POD method
is able to reproduce a structure displacement and a fluid flow with its global formulation and
2) the Multiphase-POD method is able to reproduce large displacements of the structure. The
latter point is interesting for the willingness of studying instability behaviors.
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Figure 2. Two first time coefficients of the velocity field for the single cylinder. +++ direct
coefficient; xxx Multiphase-POD reconstruction
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Figure 3. Gravity center displacement reconstruction of the cylinder. +++ direct calculation;
xxx Multiphase-POD reconstruction

4. APPLICATION TO FIV IN TUBE-BUNDLE CONFIGURATION

In order to consider a configuration close to the case of a tube bundle of heat exchanger,

we consider a circular cylinder in a confined configuration. Non-dimensional numbers are

U,D
adapted to this configuration, here Reynolds number is defined as R, = PZr” The step fluid

where

velocity U, takes into account the tube confinement and is defined as: U, = Uy D
U is the equivalent mean flow velocity that would have been imposed in an infinite domain
and P is the pitch ratio (distance between two neighbouring cylinders centres). Geometry and
boundary conditions are depicted on Fig.4: a 2D domain and only one tube and its neighbors
are considered, with inlet/outlet boundary conditions. Thus, the domain is not representing a
whole tube bundle but a confined case. Reynolds number is fixed to R, = 2000, complete
calculation is also leaded with Code_Saturne which has been validated in various FSI studies
in tube bundle systems [5, 15, 22]. Large displacements in the y-direction (see Fig.4) of the
central cylinder are considered (A* = 0.35D when P/D = 0.44D). The reference fixed mesh

contains 200 x 200 points.
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Figure 4. Boundary conditions for the confined tube

Figure 5 represents the comparison between the global velocity flow field from the
complete calculation and the interpolated velocity flow field. It allows to check the precision
of the snapshots interpolation algorithm: velocity levels are well reproduced after interpola-
tion. In the interpolated case (right-hand side), the non-zero velocity in the cylinder zone is
representative of the structure velocity, which is now considered as the second phase of the
flow.
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Figure 5. Comparison between complete and interpolated velocity field at two dates ¢; and ?



Figure 6 shows the comparison between the central cylinder displacement calculated
by complete calculation and by Multiphase-POD. The reconstruction gives very satisfying
results, which is confirmed by the observation of the two first time coefficients of the global
velocity flow field (Fig.7). The reconstruction of large displacements with Multiphase-POD in
the case of a confined tube bundle is very interesting. It allows to plan for its implementation
to unstable fluid-structure interactions like fluid-elastic instability occurring in tube bundle
systems [6, 10, 18, 25, 27].
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Figure 6. Comparison between complete and multiphase-POD reconstruction of the central
cylinder displacement. — complete calculation; +++ Multiphase-POD reconstruction
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Figure 7. Comparison between complete and multiphase-POD reconstruction of time coeffi-
cients. +++ direct coefficient; — Multiphase-POD reconstruction

CONCLUSION

In this paper, the Multiphase-POD method is presented and applied to the case of a
single circular cylinder moving under cross-flow and a confined cylinder in tube bundle under
cross-flow. The method was already shown to be efficient in the case of small displacements
of a structure under flow sollicitations and here, we show its efficiency in the case of large
displacements of the structure. This is a very interesting point in order to treat instabilities
that can appear in a large number of industrial systems. Moreover, a simple case of tube
bundle has been successfully past with Multiphase-POD, which is encouraging for reducing
calculation times in this context. An on-going work is the application of parametric studies
with the help of POD: the main interest of reduced-order models consists in their ability to
reconstruct various solutions of a system where one or several parameters have been changed.
Indeed, the reconstruction of a solution for which we already have the complete calculation is
not sufficient. Further work will consist in the application of these methods to the case of FSI.



References

[1]

(2]

[3]

[4]

[5]

[10]

Allery, C., Guerin, S., Hamdouni, A., and Sakout, A. Experimental and numerical POD
study of the Coanda effect used to reduce self-sustained tones. Mechanics Research
Communications, 31:105-120, January-February 2004.

Anttonen, J., King, P., and Beran, P.  Application of Multi-POD to a pitching and
plunging airfoil. Mathematical and Computer Modelling, 42:245 — 259, 2005.

Archambeau, F., Mechitoua, N., and Sakiz, M. Code_Saturne: a finite volume code for
the computation of turbulent incompressible flows Industrial applications. International
Journal of Finite Volumes, [www.latp.univ-mrs.fr/lJFV/], 1, 2004.

Axisa, F., Antunes, J., and Villard, B. Random excitation of heat exchanger tubes by
cross-flows. Journal of Fluids and Structures, 4:231 — 341, 1990.

Benhamadouche, S. and Laurence, D. LES, coarse LES, and transient RANS compar-
isons on the ow across a tube bundle. [International Journal of Heat and Fluid Flow,
24:470 — 479, 2003.

Blevins, R. Fluidelastic whirling of a tube rows. ASME Journal of Pressure Vessel
Technology, 96:263 — 267, 1974.

Blevins, R. Flow-Induced Vibrations. Van Nostrand Reinhold, 1990.

Blevins, R. and Bressler, M. Acoustic resonances in heat exchangers, Part II: Prediction
and suppression of resonance. ASME Journal of Pressure Vessel Technology, 109:282—
288, 1987.

Bogaers, A. Reduced Order Modeling Techniques for Mesh Movement Strategies as
Applied to Fluid Structure Interactions. Master of engineering, University of Pretoria,
2010.

Chen, S. Instability mechanisms and stability criteria of a group of circular cylinders
subject to cross-flow, Part I Part Il. Journal of vibration, acoustics, stress and reliability
in design, 105:51-58, 1983.

Couplet, M., Basdevant, C., and Sagaut, P. Calibrated reduced-order POD-Galerkin
system for fluid flow modelling. Journal of Computational Physics, 207:192-220, 2005.

Donea, J., Huerta, A., Ponthot, J., and Rodriguez-Ferran, A. Arbitrary Lagrangian-
Eulerian Methods, Encyclopedia of Computational Mechanics Vol. 1: Fundamentals,
Chap. 14. Wiley & Sons, 2004.

Feenstra, P., Weaver, D., and Nakamura, T. Vortex shedding and fuidelastic instability
in a normal square tube array excited by two-phase cross-flow. Journal of Fluids and
Structures, 17:793-811, 2003.



[14]

[21]

[22]

[23]

[26]

Holmes, P., Lumey, J., and Berkooz, G. Turbulence, Coherent Structures, Dynamical
Systems and Symmetry. Cambridge Monographs on Mechanics, Cambridge University
Press, 1996.

Huvelin, F. Couplage de codes en interaction fluide-structure et application aux in-
stabilités fluide-élastiques. PhD Thesis, Ecole des Sciences Pour I”Ingénieur de Lille,
2008.

Khalak, A. and Williamson, C. Motions, Forces and Mode Transitions in Vortex-Induced
Vibrations at Low Mass Damping. Journal of Fluids and Structures, 13:813-851, 1999.

Kunisch, K. and Volkwein, S. Galerkin Proper Orthogonal Decomposition methods for
parabolic systems. Numerische Mathematik, 90:117-148, 2001.

Lever, J. and Weaver, D. On the stability of Heat Exchanger Tube Bundles, Part II:

Numerical results and comparison with experiments. Journal of Sound and vibration,
107(3):393-410, 1986.

Liberge, E. and Hamdouni, A. Reduced-order modelling method via Proper Orthogonal
Decomposition (POD) for flow around an oscillating cylinder. Journal of Fluids and
Structures, 26(2):292-311, 2010.

Liberge, E., Pomarede, M., and Hamdouni, A. Reduced-order modelling method by
POD-multiphase approach for fluid-structure interactions. European Journal of Compu-
tational Mechanics, 19:41-52, 2009.

Lieu, T., Farhat, C., and Lesoinne, M. Reduced-order fluid/structure modelling of a com-

plete aircraft configuration. Computer Methods in Applied Mechanics and Engineering,
195:5730-5742, 2006.

Longatte, E., Bendjeddou, Z., and Souli, M. Methods for numerical study of tube bundle
vibrations in cross-flows. Journal of Fluids and Structures, 18:513-528, 2003.

M.P. Paidoussis. A review of flow-induced vibrations in reactors and reactor compo-
nents. Nuclear Engineering and Design, 74:31-60, 1982.

Pettigrew, M. and Gorman, D. Vibration of heat exchanger tube bundles in liquid
and two-phase cross-flow. Flow-induced vibration design guidelines P.Y. Chen edition,
ASME PVP, 52:89-110, 1981.

Pettigrew, M. and Taylor, C. Fluidelastic Instability of heat exchanger tube bundle:
review and design recommendations. Journal of Pressure Vessel Technology, 113:242—
256, 1991.

Pomarede, M., Longatte, E., and Sigrist, J.-F. Benchmark of numerical codes for cou-
pled csd/cfd computations on an elementary vortex induced vibration problem. Pressure
Vessel and Piping,, July 2009. Prague.



[27] Price, S. A review of theoretical models for fluidelastic instability of cylinder arrays in
cross-flow. Journal of Fluids and Structures, 9:3147-3170, 2001.

[28] Sigrist, J. and Abouri, D. Numerical simulation of a non-linear coupled fluid-structure
problem with implicit and explicit coupling procedures. Pressure Vessel and Piping, July
2006. Vancouver.

[29] Sirovich, L. Turbulence and the dynamics of coherent structures, Parts I-1II. Quarterly
of Applied Mathematics, 45(3):561-590, 1987.

[30] Williamson, C. and Roshko, A. Vortex formation in the wake of an oscillating cylinder.
Journal of Fluids and Structures, 2:355-381, 1988.



