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Abstract. Even though electronic devices are a reality in the aerospace industry, mechani-
cal issues involving assembly through mechanical fit, more precisely press fits of bushings in
primary structures and movable structures still demand attention in some aspects. Histori-
cally, this subject was demonstrated to affect all aircraft manufacturers during aircraft design,
assembly and their operation. Also, existing methods in the literature are not capable of accu-
rately predicting the interaction between the parts due to the combined behavior of differences
in stiffness and the asymmetry of applied loads. This paper demonstrates a numerical method-
ology for evaluating press fits through a contact finite element model and takes into account
considerations about materials compatibility, surface treatment and load asymmetries. Also
a final solution considering dimensioning aspects and a comparison between the analytical
and the numerical methodology are presented.
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1. INTRODUCTION

A bushing, also know as plain bearing, is a type of bearing composed by a bearing
surface with no rolling elements, with the axle sliding over the bearing surface. This type of
baring is the cheapest one in general. Its main features are low cost, low weight and high load
capacity [Bruhn(1973)]. The present work is focused on one type of plain bearing: the bush-
ing is an independent plain bearing inserted in a housing, commonly by means of cryogenic
methods, when an interference fit is necessary to maintain bushing inside the housing. With
respect to the bushing assembly, some concerns are raised, such as the correct temperature
for freezing the bushing (cryogenics) and/or heat the housing hole, the bushing/ housing hole
alignment during assembly and the correct corrosion inhibition compound to avoid corro-
sion between the parts. Material compatibility is also a concern, since an erroneous material
combination between bushing/housing and axle can lead to premature wear and corrosion.
A suitable geometry must be defined by the designer, to ensure the intended function to the
bushing, avoiding undesired effects such as bushing migration and play inside the housing,
what could lead to reduced fatigue life of the components. The existing analytical methodolo-
gies are too restrictive, enabling to evaluate the bushing behavior only when the external load
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from the axle is imposed in axial or radial directions. Basedon this, the present work intends
to present a comparison study between analytical methods and newcomer FEM techniques,
demonstrating the differences between them and the capabilities of this new engineering tool,
allowing for the analysis of assymmetrical and bending loads.

2. MATERIAL COMPATIBILITY AND ROUGHNESS

Bushings must be made with durable, low friction and low wearmaterials that, when
in contact with the axle, will sustain high loads under special conditions such as low and high
temperatures and corrosive environments. An erroneous material choice can lead to corrosion
of the bushing, housing and axle. Also, the choice of the bestbushing material to avoid
corrosion of the housing and axle does not necessarily mean aguarantee of durability of the
bushing [Ashby and Jones(2011)].

The use of the same material for housing, bushing, and axle should be avoided, since
it is preferable to change a cheap component (i.e. the bushing) instead of the housing or axle
which are more expensive. Thus, a softer bushing, can be replaced whenever it has worn too
much.

In some cases, the correct roughness specification of the parts, which is directly as-
sociated to premature wear, is not enough to avoid the wear. With that in mind, some wear
prevention actions should be addressed, such as periodic grease application or the use of a
bi-material combination, with a metal bushing core and a plastic bearing surface. A proper
choice of contact parameters will reduce friction and, consequently, wear.

3. THEORETICAL ANALYSIS

3.1. Interference fit retention load capability

Nowadays, the bushing-housing retention load can easily becalculated, based on the
fact that when two cylindrical parts are assembled by shrinking or press fitting, a contact
pressure is created between the two parts [Budynas and Nisbett(2008)]. In a shrink fit, the
outer radius of the bushing is larger than the inner radius ofthe housing. After assembly, the
interference contact pressure generates a radial stress, with the opposite sign of the pressure.
The radial pressure is given by:
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The notation used in equation 1 is shown in Figure 1



Figure 1. Notation for press and shrink fits [Budynas and Nisbett(2008)]

In order to obtain the interference fit retention load capability Fretention, it is necessary
to multiply the pressurep by the friction coefficient between lug and bushing materials and
also by the contact area (with lengthL ), as follows:

Fretention = µout2πRLp = µoutπDLp (2)

3.2. Force to remove the bushing due to friction coupling between bushing and axle

The loads imposed to the bushing by the axle tends to induce a pressure distribution
along the half of the internal diameter of the bushing, as shown below:

Figure 2. Pressure distribution due to axle loads on the bushing [Budynas and Nisbett(2008)]

This load imposes a friction load against the interference fit retention load, since de-
pending on the friction coefficient between the axle and the bushing, part of the imposed load
F will be transferred to the bushing-housing coupling. In this text, this load is called Force
Load Friction and, forθi = θf = 90◦, has the equation derived below.

Knowing that

p = Pmax cos θ (3)

The vertical component ofpdA is:
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Integrating fromθ = −π/2 to θ = π/2 yields F:
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This equation may be used just forθi = θf = 90◦. Variations of this angle may be
treated as shown in the following sections. OncePmax is known, it is possible to get the press
fit friction loadFfriction. Thus,
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Therefore:

Ffriction =
4

π
(µinF ) (5)

This load has the directions tangential or axial, dependingon the loads imposed to the
bushing. It works as an adherence between the bushing and theaxle, so that ifFfriction >

Fretention, the bushing will migrate.

3.3. Limitations of the theory

Even with the analytical formulation being an established method, this methodology
has limitations mainly when the load imposed against the bushing tends to be assymmetrical
or if the axle is subjected to bending. Figure 3 below summarizes the applicability of the
method:

4. FINITE ELEMENT ANALYSIS

The friction force is the reason why the bushing migration happens. That is, by defini-
tion, the friction force acting on the inner bushing surfaceand appearing whenever a load acts
on the structure, forcing the bushing which is located between the pin (or a sleeve bushing)
and the housing of the lug.

One might say that for the analysis of bushing migration, it would be necessary only
the simple comparison between this friction force and the retention force (already discussed),



Figure 3. Analytical method limitations

once the former is greater than the later, migration occurs.But care must be taken: the reten-
tion force is affected by the pin load, depending on its intensity. The effect of the pin load is
demonstrated and discussed in this section.

For that, a hypothetical case of a typical lug section (Figure 4) is studied to determine
the influence ofFx (Force inx direction) on the retention force.

Figure 4. Hypothetical lug and bushing dimensions and properties

Figure 4 shows the dimensions and properties of a typical lugassembly. The used
coordinate system and the forceFx are shown in Figure 5. For this analysis, the hypothetical
lug is fixed on its edges as in Figure 5.

Figure 5. Hypothetical lug boundary conditions

In real cases, theFx force represents a load acting on plane XY. This load generates a
pressure distribution along the contacting surfaces of thepin and the bushing, and the integral
of this pressure on the surface gives the normal forceN , which multiplied by the coefficient
of friction of the coupling surface gives the friction force(Equation 4, or Equation 7).



In the same manner, this load generates a pressure distribution along the contacting
surfaces between bushing and lug. The difference here is that, once there is interference on
this assembly, the pressure distribution already existentwill be modified. The combination
of the pressure distribution due to the interference and theloading will determine the new
retention forceFretention.

The mathematical determination of this equation comes fromthe theory of pressure
distribution on bushings under loaded pins, presented in section 3.2.

Figure 6. Pinned bushing

To validate the theory, a comparison between numerical results and the analytical
equations is performed. The numerical analysis is performed with the finite element soft-
ware MSC MARC. MARC is a FEM software widely used in the aerospace industry and is
suitable for highly non-linear problems involving material non-linearities, buckling, geomet-
rical non-linearities and contact. In this work the contactalgorithms of MARC were specially
usefull. It applies a penalty method optimization known as Augmented Lagrangean Method.
For more details, see [MSC Software (Firm : Santa Ana(2011a)]. In the next sections, the
results of two numerical cases are being presented. Each case is compared to the analytical
solutions obtained above.

The first case represents the above mentioned hypothetical case, except that in this
case the bushing has its outside surface pinned, as shown in the Figure 6. The second case is
the response of the hypothetical lug already detailed.

4.1. Finite Element Model Details

The finite element model for the two cases was developed in MSCPATRAN (see
[MSC Software (Firm : Santa Ana(2011b)]), using parabolic HEXA element formulation [Bathe(1996)]
(Figure 7 and Figure 8).



Figure 7. Hypothetical lug finite element model

Figure 8. Pinned lug finite element model

4.2. Pinned Bushing

Figure 9 depicts the contact pressure distribution betweenpin and bushing. As it is
possible to see, the area of contact grows from one simulation step to another as the force
increments are added. That is, the higher the load, the higher the contact area. For this reason,
it is necessary an analytical recalculation for the different initial and final angles (θi andθf )
of this contact surface.

Figure 9. Contact pressure distribution



The equation for the contact pressure varying with the contact angle becomes:
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For solutions of trigonometric integrals see [Abramowitz and Stegun(1964)]. OncePmax is
known it is possible to get toFfriction:
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This formulation allows for the analytical calculation of the friction force between
pin and bushing. It is important too in the calculation of theretention force under loaded
conditions.



This analysis leads to closer results compared with the theoretical approach, once it
better represents a cylinder inside a loaded pin.

Simulations were performed for two load values:Fx = 1000daN andFx = 2400daN .
The results are shown in the following sections:

4.2.1 Fx = 1000daN

The numerical analysis gives, as shown in figure 10 the initial and final angles of con-
tact of θi = −θf = 39.6◦. From these values and knowingFx, D and L it is possible to
calculate Equation 4. Therefore, the anlytical value for the maximum pressure along the dis-
tribution is:

Pmax = 500.54MPa.

Also, applying Equation (7), with the coefficent of frictionbetween bushing and pin
of µ = 0.74 (steel with steel) leads to:

Ffriction = 774.47daN .

Figure 10. Contact force normal vector representation (Fx = 1000daN , Pinned Bushing)

The numerical simulation using MSC MARC (see [MSC Software (Firm : Santa Ana(2011a)])
gives as output the values for the contact normal forces between bushing and pin nodes of
Figure 10 .The sum of the force values gives the total normal force between the two bodies.
Multiplying Nµin yields the numerical result forFfriction. The pressure distribution can also
be determined with the numerical results simply by summing the normal force of each row of
nodes with same angle (considering a cylindrical coordinate system with origin in the center
of the bushing) and dividing it by the row correspondent areaArow = πDL/Nnodes, where
Nnodes is the number of nodes around the bushing perimeter. In the simulations,Nnodes = 50.
Applying the described method leads to:

Pmax fem = 485.87MPa

Ffriction fem = 771.30daN



Figure 11. Pressure distribution (Fx = 1000daN , Pinned Bushing

Figure 11 shows the pressure distribution for both analytical and numerical analyses:
The comparison of the analytical and numerical analyses show that the error is quite

low:

error(Pmax) =
Pmax

Pmax fem
− 1 = 3.0%

error(Ffriction) =
Ffriction

Ffriction fem
− 1 = 0.4%

4.2.2 Fx = 2400daN

Figure 12 shows the initial and final angles of contact for aFx = 2400daN load on
the pin. The contact angles areθi = −θf = 50.4◦. With these angles and using the analytical
equations, the results for the maximum pressure and friction force are:

Pmax = 971.17MPa

Ffriction = 1912.46daN

And the numerical results are:

Pmax fem = 907.15MPa

Ffriction fem = 1908daN

Figure 13 shows the pressure distribution along the bushingcontact surface for both
the analytical and the numerical analyses.

The comparison of the obtained results gives:



Figure 12. Contact Force normal vector representation (Fx = 2400daN , Pinned Bushing)

Figure 13. Pressure distribution (Fx = 2400daN , Pinned Bushing

error(Pmax) =
Pmax

Pmax fem
− 1 = 7.0%

error(Ffriction) =
Ffriction

Ffriction fem
− 1 = 0.2%

4.3. Hypothetical Lug Assembly

In the previous sections, it was discussed the influence on the pressure distribution
on the interface between pin and bushing due to the application of load on the pin. In the
same manner, this load generates a pressure distribution along the contacting surfaces between
bushing and lug. The difference here is that, once there is interference on this assembly,
the pressure distribution already existent will be modified. The combination of the pressure
distribution due to interference and loading will determine the new retention forceFretention.

In this new analysis, an interference of 0,032 mm on lug/bushing assembly is being
considered. It represents an arbitrary value within the H6s6 tolerance level.

The simulation now considers the application ofFx by a rigid RBE3 element, which
makes the solution more simple and is commonly used in engineering problems. Figure 14
depicts the used model.



Figure 14. Application of load thru RBE3 element

Considering multiple values ofFx = 0; 200; 400; 600 and800daN the following pres-
sure distributions are shown in Figure 15

Figure 15. Pressure distribution on lug (Fx = 0; 200; 400; 600 and800daN

It is possible to visualize from Figure 15 that all the distribution curves tend to span
through same initial and final angles. That happens because the RBE3 element angles do not
vary making the pressure distribution initial and final angles constant. In this specific case,
the angle values areθi = −θf = 88◦.

With that in mind, it is now possible to calculatePmax for each load case and calculate
the friction forceFfriction using the analytical method already presented. For the numerical
solution, the same method presented in the previous sectionis used, that is, the numerical
simulation using MSC MARC [MSC Software (Firm : Santa Ana(2011a)] gives as output the
values for the contact normal forces between the bushing andlug nodes. The sum of these
forces gives the total normal force between the two bodies. Multiplying Nµout (using the
friction coefficient between the lug and the bushing outsidesurface) gives the numerical result
for the retention forceFretention and the effect of the applied load being already considered.
The pressure distribution can also be determined (Figure 15) using the sum of normal forces
for each row of nodes with same angle and dividing by the row correspondent area as before.

4.3.1 Load Correction Factor

The load application with RBE3 element does not represent with accuracy the exis-
tence of a real pin load on the bushing. Therefore, a correction factor must be applied. Using



Equation 7 yields:
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Numerical results givePmax, the remaining of the equation is known from the lug
dimensions. Theθi andθf angles are constant as already discussed. Thus, it is possible to
calculateFx for each load case.

The load correction factor is the direct relation between the forceFx and the force
applied by the RBE3 element:

fcorrection =
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FRBE3
(8)

4.3.2 Analytical curve - Ideal Lug

The analytical response for the retention force can be calculated based on the theory
presented in section 3.1 superposed to the friction force ofthe external bushing surface, ac-
cording to the theory presented in section 4.Actually this method is a superposition of effects.
In summary, the press fitted bushing can act in two different ways. Knowing that the friction
force of the outside bushing surface is:
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1. Retention force is constant (no load influence)
If Ffriction < µoutπDLp then
Fretention = µoutπDLp caused inly by interference.

2. Retention force depends on the applied load
If Ffriction > µoutπDLp then
Fretention = Ffriction

Figure 16 below shows the results for the numerical solutionand the ideal analytical
solution for the hypothetical lug

From figure 16, it is possible to see that the retention forceFretention is actually a little
higher in the unloaded (Fx = 0) typical lug. The reason for this is obvious: since the typical
lug is actually stronger than the ideal lug, it generates a higher amount of pressure in the
bushing external surface for the same value of interference. Once the load gets higher, the
retention force tends to decreasse, reaching the value presented by the ideal lug. Therefore,
the opposite side of the bushing (not reached by the load) tends to lose contact with the lug
internal surface, and the interference it once had now is applied on the side reached by the
load. Thus, when this contact is completely lost, the interference doubles on the other side,
generating a retention force equivalent to that on the ideallug.



Figure 16. Retention force curve

5. MIGRATION CRITERIA

Once the following items are known:

• Bushing/Lug/Pin assembly properties and simensions;

• Interference fit tolerances and adjustment;

• Limit loads involved;

• Bushing outer and inner surfaces’ contact friction coefficients;

is it possible to draw a diagram as in figure 17 to describe the criteria for bushing migration:

Figure 17. Bushing migration criteria diagram

Note that for a conservative design, the diagram considers apressure distribution start-
ing and ending withθi = θf = 90◦. The black line represents the retention force on bushing
due to application of load in the XY plane. As discussed earlier, this curve is described by the
equations in section 4.3.2. Point B represents the transition, i.e., when the retention force is
influenced by the load applied in the XY plane:

B ⇒ p (πDL)µout = FXY
4

π
µout



thus,

FXY =
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]

The red line (case 1) occurs when the friction coefficient acting on the inner surface
of the bushing is equal or higher than the friction coefficient acting on the outer surface
µin ≥ µout . For this case, when the load in the XY plane is higher than that on point A,
the friction force inside the bushing overcomes the friction force on the outside surface mak-
ing the bushing migrate:

A ⇒ p (πDL)µout = FXY
4

π
µin

thus,

FXY =
[

p
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π2/4
)

DL
] µout
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The blue line (case 2) occurs when the friction coefficient onthe inner surface of the
bushing is smaller than the friction coefficient on the outersurfaceµin < µout. In this case,
the friction force inside the bushing never overcomes the friction force on the outer surface,
not allowing the bushing migration.

6. SUMMARY AND CONCLUSIONS

The present work intends to demonstrate the analytical/numerical evaluation of the
bushing migration phenomena in mechanical assemblies. Based on the analyses, it is possible
to conclude that the methodology can be applied to general mechanical assemblies, such as
landing gear fittings, side-stay fittings, control surfacesfittings and a series of other appli-
cations. As a future extension of this work, bench tests should be performed and compared
to the analytical and numerical analyses. The tests should take into account both axial and
tangential load directions as in the analysis presented in this article. Another suggestion for
further analyses is the use of bench results also under torsional and bending loads.
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