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Abstract. In this work it was implemented the numerical method of Smoothed Particle Hy-
drodynamics (SPH) to solve plastic deformation problems. The SPH is a meshfree particle 
method, based on a Lagrangian formulation; this is a computationally efficient method that 
provides precision and stable solutions to integral and differential equations. This formula-
tion includes the continuum mechanics equations for solids, modified by the Johnson-Cook 
model to represent the plastic behavior of metallic materials. Benchmarks problems and ex-
perimental validation are provided. 
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1. INTRODUCTION 

Smoothed Particle Hydrodynamics (SPH) is a technique developed for solving Com-
putational Continuum Dynamics problems. Thus, SPH is a mesh free method based on a La-
grangian approximation for solving partial differential equation systems.  

It was used first in Astrophysics problems [1], but nowadays SPH is applied in many 
fluid and solid mechanics problems [2–4]. The basic SPH technique was first introduced by 
Lucy, Gingold and Monaghan in 1997 [5], however the most important works in materials 
strength were provided by Libersky and Petshek [6]. Since then, many authors have imple-
mented SPH in solid mechanics, and lot of papers present applications on numerical fracture 
[7], elastic [8] and plastic [9] regime deformations in solids, extreme deformation and materi-
al processing applications (extrusion, forging and machining) [10], [11]. 

The application of SPH method in solid mechanics uses the conservation equations of 
continuum mechanics with energy, momentum and density equations. This work includes 
lineal terms (elastic deformation) using Hooke’s law for the stress tensor, and to describe the 
non-diagonal terms of the stress tensor this is modified by a von Mises yielding relation, when 
beyond the elastic limit for permanent deformation. Plasticity is treated using the Johnson and 
Cook visco-plastic model [12] and an elastic – plastic perfect model was used for the stress 
and deformation behavior.      

This paper presents the application of SPH method to simulate large strains with mate-
rial strength. A SPH code was implemented and evaluated in three test problems, the impact 
of a plate against a rigid surface, high shear in a plate and the penetration of a cylinder 
through a plate. The three example problems are compared using other SPH modeling of the 
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literature and the experimental data. The results that were obtained in the different simulations 
presents an adequate behavior compared to the experimental and other simulation sources. 

 
2. SPH METHODS  

 
A little summary of the SPH method is presented here. For more details see [13]. The 

basis of SPH is interpolation theory, and its formulation involves two steps. In the first step 
the representation of a function in its continuous form is done through the use of a kernel es-
timate of the field variables at a point [14], this approximation of the function is based on the 
evaluation of the smoothing kernel function. Then, the second step is the representation of the 
interpolation kernel over the defined domain using discrete variables [15]. 

Then, the interpolated value of a function f  in the space defined by the x  vector can 
be expressed using SPH smoothing as (1). 
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 Where jm  and j  are the mass and density of particle j ,  ,i jW hx x  is the 

smoothing kernel, h  is the smoothing length (see more in [4]) and N is the total number of 
particle. The gradient of function f  can also be found by differentiating the interpolation (1) 
as expressed in (2). 
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Definition of the kernel function is represented in (3). 
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Where   is the function that describes kernel approximation and d  is the number of 

space dimensions. Although there are several smoothing functions widely used, it is usually 
preferred the cubic B-spline [16], [17], which is defined by (4). 
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 where || ||i jx x  is the distance between two particles. 

 
 

3. IMPLEMENTATION OF THE ELASTIC-PERFECTLY PLASTIC STRENGTH 
MODEL 

 
The SPH method applied in solids mechanics, integrates the traditional equations of 

mass (5), momentum (6) and energy (7).  
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Where for the equations (5) to (7),   is density, v  is the velocity vector ( v  is also de-
fined as /dx dt ), σ  is the stress tensor, F is external force, E  is energy, ijQ is the heat flux, 

  is the gradient, s is a symmetric gradient, T  is the temperature and t  is the time. With 
the above definitions, the conservation equations can be written in their discrete form, then 
the equation of conservation of mass, momentum and energy can be transformed into particle 
equations for SPH with (8), (9) and (10) respectively [15], [18].  
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Where the brackets  are used to identify the function approximated by the kernel es-
timation, and ij  term represents the artificial viscous pressure. 

The term of the heat flux is defined like (11), This form is used for [15], [19]. 
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Where in (11) and (12), k is material conduction, ijr  is the distance vector between two 

particles and x is the component coordinate of vector ix . 
    

The  artificial viscous pressure was used as the Monaghan-Gingold form [17](13). 
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parameters  and   are order unity and ic  is the speed of sound on the ith  particle. 
 

3.1. Equations for an elastic-perfectly plastic strength model 
 
The stress tensor appearing in the conservation equations (9) and (10) is defined in term 

of the pressure  1
3

P Tr  σ 1  and the traceless symmetric deviatoric stress   as (14). 

P σ σ 1               (14) 
 
The pressure is normally computed using an state equation of the form  ,p p E , 

such as the Mie-Gruneisen equation for solids defined in (15). 
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Where for (15) the subscript H  refers to the Hugoniot curve and is the Gruneisen pa-

rameter and the constants 0 0 0, ,a b c  can be definition with lineal relation between to shock 
velocity sU  and particle velocity sS , defined for s s pU c S U  . Through a Taylor’s series 
expansion of the Hugoniot function the equations (16) are obtained. 
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For the deviatoric part of equation (14), in the elastic range, we used Hooke´s law as 

shown in (17). 
 

2σ ε                (17) 
 

 1
3

 ε ε tr ε 1               (18) 

 
1 ( )
2

S     ε v v v           (19) 

 
Where for equations (17) to (19), σ  is the deviatoric stress rate tensor and ε  is the 

strain rate tensor and ε  is the strain rate deviatoric tensor. However, for finite rotations, the 
equations (17) is not material frame indifferent, then the rotation becomes dependent of a non-
physical response. To improve this situation many cases have been formulated [3]. In this 
work is employed the widely used Jaumann rate [2], [8] for small rotations and it alters (17) to 
appear as (20). 
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Where for the equation  (20), ω  is the rotational or spin rate strain tensor taken for (21), 

which it’s defined by A  that is the anti-symmetric gradient, and  is the material shear 
modulus. 
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Applying the SPH method the equations (19) and (21)  become the equations (22) and (23) 
[13]. 
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This set of equations can now be solved and will describe a perfectly elastic materials 

behavior. However, it is known that studied materials are not only perfectly elastic but instead 
present also a plastic behavior, for this a critical stress always exists and the employment of 



 
 

such was used for the material in permanent deformation. This plastic behavior can be intro-
duced in the equations using the von Mises yielding criterion [20], [21], and the deviatoric 
stress is limited by a scalar function f defined by (24). 
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Plasticity in the von Mises yielding criterion is tread using the Jhonson and Cook visco-

plastic model [12] showing in (25). It depends on the plastic strain, the plastic strain rate and 
temperature variations. 
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Where the equations (25) to (27), A  is the initial yield stress ( MPa ), B  is the coeffi-

cient of strength ( MPa ), n  is the work hardening exponent, C  is the coefficient of strain rate 
sensitivity, p  is the thermal softening coefficient, 0  is the strain rate reference value (de-
fined as 0 1  ), T is the material temperature ( K ), 0T is the room temperature, mT  is the ma-
terial melting temperature, ε  is the deviatoric strain, eq  is the equivalent plastic strain and 

eq  is the equivalent plastic strain rate, the two last ones are defined in the equations (26) and 
(27) respectively. In this work the test problems have a high strain behavior, by such circum-
stances it is entirely reasonable that when yielding criterion is reached, the assumption that the 
elastic strain is zero and the plastic strain becomes the total strain can be made; according to 
this the function f  (28) can now be computed following the widely used form [2], [6], [22], 
where eq  is equivalent stress, which is given by (29).    
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3.2. Model’s definition 

 
For the time stepping we used the Predictor-Corrector algorithm described by Mona-

ghan [23] because presents more stability for the variables time update.  



 
 

The calculations for boundary conditions in this work were made with boundaries de-
fined by lines that exert repulsive force [4], [23], [24], this approach improves the physical 
behavior because produces a force normal to the boundary over the neighboring particles [25], 
[26].  

Further, we used other improvements like the XSPH [23] for moving the particles, 
Moving Least Squares (MLS) [27], [28] for density re-initialization and Artificial stress [8] 
for treatment of instability tensile.    
 
4. NUMERICAL TESTS 

 
Examples for simulating high strain with material strength were carried out using SPH. 

The SPH results were compared with the result of the other SPH works and experimental da-
ta. In this section are presented three test, many employed in the literature [5], [29], [30]. The 
study examples are high shear in a plate, the impact of a plate against a rigid surface and the 
penetration of a cylinder through a plate. 

 
4.1. High Shear plate 

 
This test was develop in [5], [29] at first. In this example, an Armco iron plate in two 

dimensions, the upper half of the plate has an initial velocity of 254 m/s , while the lower bot-
tom starts at rest as seen in Figure 1. The material properties and the parameters for Mie-
Gruneisen equation of the Armco iron are presented in Table 1, and in Table 2 are shown the 
parameters of the Johnson and Cook model and the artificial viscosity coefficient. In this case 
1122 particles were initially distributed to represent the plate. 

In Figure 2 and Figure 3 is showed a comparison between temperature and equivalent 
strain at 80 s of simulation. The Figure 2 and Figure 3 shows that the maximum strain and 
temperature are found in the shear plane between the lower and the upper half, from these 
behaviors it can be intuited that the model is appropriate. In Figure 4 are compared our SPH 
simulation with that made by Gordon R. Johnson [5], [29], it can be seen that our simulation ( 
Figure 4(a)) shows a more realistic behavior in the interaction between particles compared 
with Figure 4 (b) in which the material exhibits instability in the separation plane, this im-
provement is due to the implementation of the artificial viscosity [29], XSPH [23] and artifi-
cial stress [22]. While the comparison between our SPH model and the standard finite element 
method (FEM) (Figure 4 (c)), shows that SPH presents a more rigid behavior in deformation 
and distributes the strain uniformly in all the particles.  

 
Figure 1. Test 1 high Shear plate, initial conditions. 

Table 1.The material properties and the parameters for Mie-Gruneisen equation of the 
Armco iron [13]. 

 GPa   /pC J kgK   /k W mK  3/kg m      sS  
80 452 80,2 7890 1,81 1,8 



 
 

 
Table 2.The parameter in Armco iron for the Johnson and Cook model and coefficient 

in artificial viscosity [12]. 

 A Mpa   B MPa  C  n  m   0T K   mT K      
175 380 0,060 0,32 0,55 293,15 1811 0,2 4 

 

 

Figure 2. High Shear plate, Temperature distribution at  80 s .  

 

 
Figure 3. High Shear plate, strain distribution at  80 s . 

 
Figure 4. Compared the SPH simulation made in this work with the made by Gordon R. 

Johnson (at  80 s ). 

4.2.  Impact of a plate against a rigid surface 
 
This problem has been widely used in the literature [6], [29], [30]. An Armco iron cyl-

inder represented with a plate in two dimensions is traveling at 200 m/s and in impacts on a 
rigid static surface. The plate was 2,546 cm  longitude, and 0,76 cm wide (Figure 5). The 
material properties and parameters of models for the Armco iron are presented in the Table 1 
and Table 2. The separation between real particles was300 m . 

The Figure 6 shows the final deformed shape of the cylinder and its dimension and the  
Table 3 is the comparison between the SPH simulation made in this work and the made 

by Gordon R. Johnson [29], Libersky [6] and Liu [30] . From Figure 6 and  



 
 

Table 3 it can be seen a good behaviour of our model compared to previous SPH mod-
els presented in the literature. 

 
Figure 5. The impact of a plate against a rigid surface, initial condition. 

 
Figure 6. The impact of a plate against a rigid surface, final condition. 

Table 3. Comparing our SPH simulation of “The impact of a plate against a rigid sur-
face” with that made by Libersky [6], Liu [30] and Gordon R. Johnson [29]. 

Impact cylinder SPH Models  Final bar height (cm) Final bar width (cm) 
Result by Patiño, Reyes et al.  2,02 1,52 

Result by Libersky [6] 2,18 1,52 
Result by Liu [30] 2,09 1,93 

Result by  Johnson [29] 2,11 1,70 
 

4.3. Penetration of a cylinder through a plate 
 
In this case, the model was applied to simulate the penetrating process of an infinitely 

long aluminum cylinder through an infinitely long aluminum plate, this problem has been 
widely studied [3], [5], [29]. The simulation has two dimensions, taken as the transversal sec-



 
 

tion of both cylinder and plate. Figure 7 presents the initial conditions, while the material 
properties and the parameters for Mie-Gruneisen equation for the Aluminum are presented in 
Table 4. Table 5 shows the parameter for the Johnson and Cook model and the artificial vis-
cosity coefficient. In this case 12830 particles were initially distributed. The impact speed of 
the cylinder was 6180 m/s  and the simulations were run up to 20 s . 

 
Figure 7. The penetration of a cylinder through a plate, initial conditions.  

Table 4. The material properties and the parameters for Mie-Gruneisen equation of the 
Aluminum [9], [18]. 

 GPa   /pC J kgK   /k W mK  3/kg m      sS  
27,1 875 237 2710 1,7 1,5 
 
Table 5.The parameter in Aluminum for the Johnson and Cook model and coefficient in 

artificial viscosity [9]. 

 A Mpa   B MPa  C  n  m   0T K   mT K      
300 426 0,015 0,34 1 273,15 775 2,5 2,5 

 
The strain in the cylinder and the plate at 20 s  can be seen in Figure 8 and Table 6, 

the comparison between the results of the simulation with the results obtained by Liu [30] and 
S. Hiermaier [9]  shows an adequate behavior.  

The Figure 9 and Figure 10 present the initial impact behavior, showing the equivalent 
strain and equivalent strain rate, these show a high plastic strains as it should be assumed in 
the impact test. It is important to say that the deformation behaviour and the strain rate are 
distributed over the contact and penetration between the cylinder and the plate, which is phys-
ically correct, however the model presents some unnatural separations in the cylinder, proba-
bly because of the bad interaction between particles at the penetration starting instant. The 
fracture criterion was only the natural separation between particles [3]. 

 
Table 6. Compared simulation behavior in this paper with the made by Liu [30] and S. 

Hiermaier [9] at 20 s . 

Cylinder and 
plate 

Patiño, Reyes 
et. al 

G.R. Liu 
[30]  

S. HIER-
MAIER [9] 

Experimental 
[9] 

Dg (cm) 3,2 3,35 3,5  2,75 - 3,45 
L/w 1,388 1,33 1,11 1,39 



 
 

 

 
Figure 8. The strain in the cylinder and plane by 20 s . 

 
Figure 9. Equivalent strain by 1, 55 s . 

 



 
 

 
Figure 10. Equivalent strain rate by 1 s . 

 
5. CONCLUSIONS 

 
We presented three two-dimensional models of materials strain by the method of 

Smoothed Particle Hydrodynamics (SPH) for high strains, considering elastic deformations 
by Hooke's law and plastic strains through the yielding criterion of von Mises and the John-
son-Cook model. 

The test of High Shear plate shows an adequate behaviour in the interaction between 
particles in our SPH model compared to other models and experimental data. The impact of a 
rigid plate against a surface presents realistic behavior between particles and rigid boundaries 
as compared with other simulations. Penetration of a cylinder through a plate has a good per-
formance relative to other models and experimental values, but we still have some irregular 
separations at the penetration time.  

The functionality of SPH for high strain processes modeling was proved and the exam-
ples developed showed an appropriate behavior with respect to other models and experimental 
data. 

In future implementations an improvement in the fracture criterion to represent the sepa-
ration between particles in a better way is necessary 
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