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Abstract. An algorithm for topology optimization of elastic structures under plane stress
subject to the Drucker-Prager stress constraint is presented. The algorithm is based on the use
of the topological derivative of the associated objective functional in conjunction with a level-
set representation of the structure domain. In this context, a penalty functional is proposed to
enforce the point-wise stress constraint and a closed formula for its topological derivative is
derived. The resulting algorithm is of remarkably simple computational implementation. It
does not require post-processing procedures of any kind and features only a minimal number
of user-defined algorithmic parameters. This is in sharp contrast with current procedures
for topological structural optimization with local stress constraints. The effectiveness and
efficiency of the algorithm presented here are demonstrated by means of numerical examples.
The examples show, in particular, that it can easily handle structural optimization problems
with underlying materials featuring strong asymmetry in their tensile and compressive yield
strengths.

Keywords: topological sensitivity, topological derivative, topology optimization, Drucker-
Prager criterion, local stress constraint.

1. INTRODUCTION

Over the last two decades or so, the development of algorithms for topology optimiza-
tion of linear elastic load-bearing structures has attracted considerable attention in computa-
tional mechanics circles. As a result of the continuous research efforts in this direction a wide
body of literature is currently available on this topic and various computational procedures
are well established and can be applied to a range of practical problems of industrial interest
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[16, 1, 10]. Many such procedures, almost invariably used in conjunction with finite ele-
ment methods of structural analysis, are even available in off-the-shelf commercial software
packages.

To date, most developments in this field have relied on so-called SIMP methods (solid
isotropic material with penalization), where the physical black-and-white topology of the op-
timal structure, i.e. a topology consisting of either material (black) or empty space (white) at
each point of the computational domain, is approximated by means of a fictitious density field
displaying a smooth (grey) transition in the otherwise black-white interface (the boundary of
the structure domain). Such methods have been widely applied with success to problems such
as compliance minimization [10] but, despite its fundamental importance in engineering de-
sign, only a relatively small number of publications appear to deal with the incorporation of
local (point-wise) stress constraints [2, 3, 11, 14, 18, 21, 27]. This can be probably justified by
the challenges resulting from the typically very large number of highly non-linear constraints
involved as well as by the need for carefully designed stress relaxation procedures to address
a side effect of the density field-based regularization of the original black-and-white problem
[21].

More recently, a new class of methodologies for structural topology optimization has
emerged based on the use of the topological derivative of the relevant objective function-
als [29, 12, 25, 5, 24, 26]. The notion of topological derivative itself is a relatively new
concept, introduced just over a decade ago [12, 29]. Further theoretical developments are re-
ported, among others, in [23, 4, 28]. An early application of this idea to topology compliance
optimization, prior to its precise mathematical definition in a general context, is described
in [17]. The topological derivative concept extends the conventional notion of derivative to
functionals whose variable is a geometrical domain subject to singular topology changes. In
structural topology optimization for instance, it gives the exact sensitivity of the associated
objective functionals to black-and-white-type topological perturbations such as the insertion
of infinitesinal holes or inclusions of different material properties. Crucial here is the fact
that the topological derivative of the objective functional contains fundamental information
that accurately indicates descent directions associated with exact black-and-white-type topol-
ogy changes, without the need for black-grey-white-type regularisation procedures. In this
context, a topological derivative-based algorithm with a level-set representation of the struc-
ture domain has been proposed in [5] and shown to efficiently solve compliance minimization
problems. More recently, following the ideas presented in [6] for the Laplace equation, this
algorithm has been further developed in [8] to incorporate local stress constraints of the von
Mises type by means of a penalty approach in plane stress problems. One striking feature of
the algorithm of [8] is its simplicity of implementation. Once a suitable penalized objective
functional has been defined and a closed formula for its topological derivative obtained, the
locally stress-constrained topology optimization problem is treated algorithmically in exactly
the same way as its unconstrained counterpart. In particular, in contrast to current methods of
stress-constrained topology optimization, the topological derivative-based procedure does not
require post-processing (e.g. procedures such as density filtering, ε-relaxation [21]) of any
kind and only a minimal number of user-defined algorithmic parameters (e.g. penalty coeffi-
cient) are needed. This relative algorithmic simplicity is nothing but a natural consequence of



the use of the topological derivative in defining the descent direction, which is based on the
exact black-and-white definition of the topology optimization problem. In fairness to other
methods of topology optimization, however, we should note that the striking algorithmic sim-
plicity here comes at the cost of derivation of a closed formula for the topological derivative
of the objective functional which may prove to be a laborious mathematical task.

Our main purpose in this paper is to extend the work reported in [8] to incorporate
point-wise stress constraints of the Drucker-Prager type [15]. In particular, we want to mini-
mize the volume of the structure domain requiring at the same time the stress tensor at each
point of the loaded optimized structure to be bound by a Drucker-Prager-type yield crite-
rion. In this context, a suitable penalty functional for the enforcement of the Drucker-Prager
constraint is proposed and a closed formula for its topological derivative is obtained. We
recall that the Drucker-Prager yield criterion was originally conceived as a smooth approxi-
mation to the classical Mohr-Coulomb criterion for soils and geomaterials (refer for instance
to [13]). Under plane stress (the case considered here) it may be used as a general model
for materials with distinct tensile and compressive yield strengths, such as concrete, masonry
and wood. The overall optimization algorithm is described in detail and numerical exam-
ples are presented to demonstrate its effectiveness and efficiency in the treatment of structural
optimization under the present stress constraints. In particular, unlike stress-unconstrained
optimization, the results here show that the obtained optimized structures are free from geo-
metrical singularities that result in (highly undesirable) stress concentration.

The paper is organized as follows. Section 2 states the stress-constrained topology
optimization problem and defines the penalized version to be solved by the algorithm. Sec-
tion 3 presents a closed formula for the topological derivative of the corresponding penalized
objective functional. The optimization algorithm is described in Section 4 and its application
in numerical examples is presented in Section 5. Concluding remarks are drawn in Section 6.

2. THE TOPOLOGY OPTIMIZATION PROBLEM

Our purpose here is to find optimal topologies for two-dimensional elastic structures
under plane stress condition loaded by a given system of mechanical loads with prescribed
kinematical boundary conditions and subject to a point-wise constraint on the stress tensor.
More specifically, we want to minimize the volume of the structure domain requiring at the
same time the stress tensor at each point of the loaded optimized structure to be bound by a
Drucker-Prager-type yield criterion. The corresponding optimization problem is mathemati-
cally stated in the following.

2.1. The constrained optimization problem

Let D ⊂ ℜ2 be a bounded domain with Lipschitz boundary Γ defining the so-called
hold-all domain (refer to Fig. 1). The domain of the sought optimal structure will be a subset
of the hold-all domain. The boundary Γ is the union of three given non-overlapping subsets,
ΓD, ΓN and Γ0. Displacements are prescribed on ΓD and non-zero and zero boundary tractions
are prescribed respectively on ΓN and Γ0. In addition, we conveniently assume that the stress
constraint is to be enforced on a given open subset D̃ of D. Note that stress constraints cannot



usually be enforced, for instance, in the surroundings of point supports or point loads and,
hence, D̃ ̸= D in general.

Given a hold-all domain D and a stress constraint-enforcement subdomain D̃, the
optimisation problem consists in finding a subdomain Ω ⊂ D (the optimal structure domain)
that solves the following constrained minimization problem:

Minimize
Ω⊂D

IΩ(uΩ), (1)

with IΩ the objective functional

IΩ(uΩ) := |Ω|+ βKΩ(uΩ); KΩ(uΩ) :=

∫
ΓN

g · uΩ ds, (2)

subject to the elastic equilibrium equations,
divΣ(uΩ) = 0 in D

uΩ = 0 on ΓD

Σ(uΩ)n = g on ΓN

Σ(uΩ)n = 0 on Γ0,

(3)

and a point-wise Drucker-Prager constraint on the stress tensor Σ:

ΣM(uΩ) + η trΣ(uΩ) ≤ σ⋆ a.e. in Ω ∩ D̃, (4)

with ΣM the von Mises effective stress:

ΣM :=
√

3
2
Σd ·Σd, (5)

and Σd the stress deviator. The given scalar constants η and σ⋆ in (4) are the Drucker-Prager
yield criterion parameters [15, 13] associated, respectively, with the Drucker-Prager cone an-
gle and cohesion intersect. In (2,3), g is the prescribed boundary traction field on the given
portion ΓN of the boundary and is assumed to belong to L2(ΓN)

2, n in (3) is the outward
unit normal vector field on Γ and uΩ is the displacement field that solves the elastic equilib-
rium equations. The objective functional defined in (2) is well-suited for the minimization
of the volume |Ω| of the structure subject to a point-wise stress constraint and has been used
in [8] in conjunction with a von Mises stress constraint. The parameter β > 0 multiplying
the compliance integral on the right hand side of (2) regularises the stress-constrained volume
minimization problem which is otherwise ill-posed.

The subscript Ω is used here to emphasise that the relevant quantities (e.g. IΩ, uΩ)
depend on the domain Ω – the design variable of problem (1). Throughout the paper, we
assume (3) to hold in the weak sense and its solution,

uΩ ∈ V = {u ∈ H1(D)2,u|ΓD
= 0}, (6)

to be unique. The space V is the corresponding space of kinematicaly admissible displacement
fields. The notation Σ(uΩ) is used to emphasize that the stress tensor is a functional of the
displacement field uΩ through the linear elastic constitutive equation:

Σ(u) = C e(u), (7)



where e is the infinitesimal strain tensor,

e(u) = 1
2
(∇u+∇uT ), (8)

and
C = 2µΩI+ λΩ(I ⊗ I), (9)

with µΩ and λΩ denoting the Lamé coefficients and I and I the fourth- and second-order
identity tensors respectively. The statement of the minimization problem is completed with
the definition of a piece-wise constant Young’s modulus field over D as follows:

EΩ =

{
Ehard in Ω
Esoft in D \ Ω, (10)

with
Esoft ≪ Ehard. (11)

That is, the original optimization problem, where the structure itself consists of the domain
Ω of given elastic properties and the remaining part D \ Ω of the hold-all is empty (has no
material), is approximated by means of the two-phase material distribution (10) over D where
the empty region D \ Ω is occupied by a material (the soft phase) with Young’s modulus,
Esoft, much lower than the given Young’s modulus Ehard of the structure material (the hard
phase). Both phases share the same Poisson’s ratio ν. The corresponding Lamé coefficients
under plane stress read

µΩ =
EΩ

2(1 + ν)
, and λΩ =

νEΩ

1− ν2
. (12)

Figure 1. Sketch of the hold-all domain.

2.2. The penalized optimization problem

The presence of the point-wise stress constraint (4) makes it difficult to treat the above
constrained optimization problem directly. This issue has been recently discussed in some
detail by Le et al. [21] in the context of SIMP methods for structural optimization [10]. To



tackle the problem here we follow a radically different approach proposed in [8]. It relies on
a topological derivative-based algorithm in conjunction with an approximation of the original
constrained problem by means of a penalty regularization of the point-wise stress constraint.
The penalized problem is obtained in the following.

Before defining the corresponding penalty functional it is convenient in the present
case to re-phrase the stress constraint (4) in terms of normalized quantities. To this end we
define the normalized stress tensor:

σ := Σ/EΩ, (13)

and the normalized cohesion intersect-related parameter of the Drucker-Prager yield surface:

σ := σ⋆/EΩ. (14)

By rewriting (4) as
ΣM(uΩ) ≤ σ⋆ − η trΣ(uΩ), (15)

squaring both sides and making use of the above definitions, we obtain after a straightfor-
ward manipulation an equivalent statement of the Drucker-Prager stress constraint in terms of
normalized stresses:

Υ(σ(u)) := 1
2
B̃σ(u) · σ(u) + 2ησ trσ(u) ≤ σ2, (16)

where
B̃ = 3I− (1 + 2η2)I ⊗ I. (17)

Alternatively, by taking the elastic law (7,9) into account, (16) can be expressed as

1
2
Bσ(u) · e(u) + ξ tre(u) ≤ σ2, (18)

where
B = 6µI+ λ(1− 4η2)(I ⊗ I)− 2µ(1 + 2η2)(I ⊗ I) (19)

with µ and λ the normalized Lamé coefficients:

µ :=
µΩ

EΩ

; λ :=
λΩ
EΩ

(20)

and
ξ := 4(µ+ λ)ησ. (21)

With the above at hand, we now proceed to define the penalized objective function.
Then, let Φ : ℜ+ → ℜ+ be a nondecreasing function of class C2. To allow a proper justi-
fication in the analysis, we further assume that the derivatives Φ′ and Φ′′ are bounded. The
penalty functional is defined as

JΩ(u) :=

∫
D̃

EΩΦ(Υ(σ(u)))dx. (22)

According to (4), in the original optimization problem the stress is constrained in Ω ∩ D̃ –
the portion of the elastic structure subject to the stress constraint. In the penalized version



(22) – where a soft phase has been introduced to mimic the void region – the constraint must
be imposed over the entire D̃. With the above penalty function, we define a corresponding
penalized objective functional as

IαΩ(u) := IΩ(u) + αJΩ(u), (23)

where the scalar α > 0 is a given penalty coefficient. The original constrained optimiza-
tion problem (1)-(4) with point-wise constraints can then be approximated by the following
penalized optimization problem:

Minimize
Ω⊂D

IαΩ(uΩ) subject to (3). (24)

Problem (24) provides a good approximation to (1)-(4) so long as

(a) the penalty coefficient α is sufficiently large; and

(b) a function Φ is chosen such that Φ′ varies sufficiently sharply around Υ(σ(u)) = σ2.

In particular, in the present paper we shall adopt a function Φ of the following functional
format:

Φ(t) ≡ Φp(t), (25)

where p ≥ 1 is a given real parameter and Φp : ℜ+ → ℜ+ is defined as

Φp(t) =
[
1 +

(
t
σ2

)p]1/p − 1. (26)

With this choice, the penalized problem (24) to be solved here reads explicitly

Minimize
Ω⊂D

IαΩ(uΩ) = |Ω|+ β

∫
ΓN

g · uΩ ds+ α

∫
D̃

EΩΦp(Υ(σ(uΩ))) dx subject to (3).

(27)

Remark 1. Figure 2 shows the graph of function Φp for different values of p. Note that
increasing values of p make Φp vary more sharply around Φp(Υ(σ(u))) = 1, i.e. around
Υ(σ(u)) = σ2 (the Drucker-Prager cone in stress space) so that the requirement of item (b)
above is met by this choice of Φp if p is sufficiently large. For increasing values of p and α,
the penalizing term of (27) tends to a non-differentiable penalty functional, whose value is
zero if the stress tensor is bound by the Drucker-Prager cone almost everywhere in D̃ and ∞
otherwise.

3. TOPOLOGICAL DERIVATIVES

The unconstrained minimization problem (27) will be solved in this paper by the al-
gorithm described in Section 4, which relies fundamentally on the concept of topological
derivative. This section provides a closed formula for the topological derivative of the pe-
nalized objective functional of (27) to be used in the algorithm. Before presenting the closed
formula itself, a brief discussion on the relatively recent concept of topological derivative
appears to be convenient and should be helpful to those not yet familiar with the idea.
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Figure 2. Function Φp with σ = 1 for p = 2n, n = 0, ..., 6.

3.1. The topological derivative concept

The notion of topological derivative extends the conventional definition of derivative
to functionals whose variable is a geometrical domain subjected to singular topology changes.
The idea can be introduced by considering a generic functionalG(Ω) of a given domain Ω and
assuming that Ω is subject to topology changes consisting, say, of the introduction of a circular
hole of radius ε centered at an arbitrary point x̂ ∈ Ω. The resulting topologically changed
domain, denoted Ωε(x̂), is the set defined as (refer to Fig. 3)

Figure 3. An example of topological domain perturbation.

Ωε(x̂) = Ω \Bε(x̂), (28)

whereBε(x̂) denotes the closure of the domain of the inserted hole. The topological derivative
of the functional G exists if its value G(Ωε) for the topologically perturbed domain Ωε can be
expressed as a sum

G(Ωε(x̂)) = G(Ω) + f(ε)DTG(x̂) + o(f(ε)), (29)

of the functional G(Ω) evaluated for the original domain Ω, a term f(ε)DTG(x̂) that varies
linearly with a function f(ε) and a remainder of the form o(f(ε)). The function f : ℜ+ → ℜ+



must be such that f(ε) → 0 when ε → 0+ and the remainder o(f(ε)) vanishes faster than
f(ε), with respect to ε, namely:

lim
ε→0

o(f(ε))

f(ε)
= 0. (30)

The right hand side of (29) is named the topological asymptotic expansion of G and the field
DTG : Ω → ℜ is the topological derivative of the functional G evaluated at the original
domain Ω for the considered type of topological perturbation (the introduction of a circular
hole). The topological derivative DTG itself can be expressed as

DTG = lim
ε→0+

G(Ωε)−G(Ω)

f(ε)
. (31)

The analogy between (29,31) and the corresponding expressions for a conventional derivative
should be noted.

3.2. The topological derivative of the penalized objective functional

In the minimization problem (27) the hold-all domain is split as the union of a subset Ω
occupied by the hard phase and its complement D\Ω occupied by the soft phase. In this case,
it is appropriate to consider topological perturbations consisting of the introduction a circular
inclusion of domain Bε(x̂) made of hard phase material if the perturbation point x̂ lies in the
soft phase domain and made of soft phase material if x̂ lies in the hard phase domain. The
corresponding perturbed structural domain Ωε(x̂), i.e. the domain of the hard phase after the
introduction of the inclusion, reads

Ωε(x̂) =

{
Ω \Bε(x̂) if x̂ ∈ Ω,

(Ω ∪Bε(x̂)) ∩D if x̂ ∈ D \ Ω.
(32)

The topological derivative of the unconstrained objective functional (27) is given by
the sum

DT I
α
Ω = DT |Ω|+ β DTKΩ + αDTJΩ, (33)

of topological derivatives of each term on the right hand side of (27) with respect to the class
of topological perturbations defined by (32). The first term DT |Ω| above is trivial. Here we
have

DT |Ω| =

{
−π in Ω,

π in D \ Ω.
(34)

The topological derivative DTKΩ of the compliance functional is known. It has been used in
the context of structural optimization with topological derivative-based algorithms (refer, for
instance, to [4, 19] for a detailed derivation). Its closed formula is

DTKΩ = π(E1 − E0)(ρT− I)σ(uΩ) · e(uΩ), (35)

where

E0(x̂) =

{
Ehard if x̂ ∈ Ω

Esoft if x̂ ∈ D \ Ω;
E1(x̂) =

{
Esoft if x̂ ∈ Ω

Ehard if x̂ ∈ D \ Ω,
(36)



the scalar ρ is

ρ =
E1 − E0

bE1 + E0

, (37)

the fourth-order tensor T is the polarization tensor given by

T = b I+
a− b

2(1 + γa)
I ⊗ I, (38)

with γ the elastic modulus contrast

γ =
E1

E0

, (39)

and the constants a and b given by

a =
1 + ν

1− ν
; b =

3− ν

1 + ν
. (40)

The derivation of the topological derivative DTJΩ of the penalty functional (22) for the
Drucker-Prager stress constraint is rather involved. For the sake of clarity we limit ourselves
to presenting only the final formula here. The closed formula for DTJΩ reads

DTJΩ = −π(E1 − E0){ρk1(uΩ)T[Bσ(uΩ) + ξI] · e(uΩ) + (ρT− I)σ(uΩ) · e(vΩ)}+
πE1χD̃{Φ(ζ1(uΩ)) + ρk1(uΩ) [B̃σ(uΩ) · Tσ(uΩ) + 2ησ tr(Tσ(uΩ))]}+

E0χD̃{Ψρ(σ(uΩ)) +
1
4
πρ2k1(uΩ)ζ2(uΩ)} − πχD̃E0Φ(Υ(σ(uΩ))), (41)

where
k1(uΩ) = χD̃ Φ′(Υ(σ(uΩ))), (42)

with χD̃ the characteristic function of D̃:

χD̃(x) =

{
1 if x ∈ D̃
0 otherwise.

(43)

The functions ζ1, ζ2 and Ψρ are given by

ζ1(uΩ) = Υ(σ(uΩ))− ρ[B̃σ(uΩ) · Tσ(uΩ) + 2ησ tr(Tσ(uΩ))]+

ρ2 1
2
B̃Tσ(uΩ) · Tσ(uΩ), (44)

ζ2(uΩ) = (5− 8η2)[2σ(uΩ) · σ(uΩ)− tr2σ(uΩ)] + 3
(

1+bγ
1+aγ

)2

tr2σ(uΩ), (45)

and

Ψρ(σ(uΩ)) =

∫ 1

0

∫ π

0

1

t2
[Φ(Υ(σ(uΩ)) + ∆(t, θ))−

Φ(Υ(σ(uΩ)))− Φ′(Υ(σ(uΩ)))∆(t, θ)] dθ dt, (46)

with

∆(t, θ) := ρ t
2

{
(σI − σII)

[
(σI + σII)

(
2(1− 4η2) + 3 1+bγ

1+aγ

)
+ 8ησ

]
cos θ+

3(σI − σII)
2(2− 3t) cos 2θ

}
+(

ρ t
2

)2 {
3(σI + σII)

2
(

1+bγ
1+aγ

)2

+ (σI − σII)
2 (3(2− 3t)2 + 4(1− 4η2) cos2 θ)+

6 1+bγ
1+aγ

(σ2
I − σ2

II)(2− 3t) cos θ
}
, (47)



where σI and σII are the eigenvalues of σ(uΩ). The vector field vΩ in (41) is the solution of
the adjoint equation

−div Σ(vΩ) = +div[EΩk1(uΩ)(Bσ(uΩ) + ξI)] in D,

vΩ = 0 on ΓD,

Σ(vΩ)n = −EΩk1(uΩ)[Bσ(uΩ) + ξI]n on ΓN ∪ Γ0.

(48)

Formula (41) is valid for all x̂ ∈ D \ ∂D̃ \ ∂Ω.

4. THE TOPOLOGY DESIGN/OPTIMIZATION ALGORITHM

The numerical solution of the penalized minimization problem (27) is undertaken here
by the algorithm proposed in [5] in conjunction with a finite element approximation of the
elastic boundary value problem (3) and the adjoint equation (48). The algorithm relies essen-
tially on an optimality criterion based on the topological derivative of the objective function
and on a level-set representation of the structure domain. It was proven very successful in the
context of unconstrained structural optimization and optimization in problems of flow through
porous media [5], in structural optimization under a von Mises stress constraint [8] and in the
topology optimization of elastic microstructures [7].

With the level-set representation, the current structure domain Ω is characterized by a
level-set function ψ ∈ L2(D) as

Ω = {x ∈ D : ψ(x) < 0}, (49)

and its complement as
D \ Ω = {x ∈ D : ψ(x) > 0}. (50)

4.1. Topological derivative-based local optimality condition

The establishment of a local optimality condition based on the topological derivative
field is straightforward. Indeed, note that for any given structure domain Ω, a negative (pos-
itive) value of the topological derivative DT I

α
Ω(x) at an arbitrary point x ∈ D indicates that

the introduction of an infinitesimal circular inclusion centered at that point produces a per-
turbed domain whose objective functional value is smaller (greater) than that of the original
domain. From this observation we have that a sufficient condition of local optimality under
the considered class of topological perturbations is that

DT I
α
Ω(x) > 0 ∀x ∈ D. (51)

That is, (51) implies in the present context that the introduction of an infinitesimal circular
inclusion at any point of D can only cause an increase in the value of the objective functional
and, hence, Ω is indeed a locally optimum structure domain.

The algorithm described below is based on an alternative sufficient condition of local
optimality, particularly convenient for use in conjunction with the level-set representation of
the structure domain. The alternative condition can be established by first defining the scalar
function,

g(x) :=

{
−DT I

α
Ω(x) if ψ(x) < 0

DT I
α
Ω(x) if ψ(x) > 0,

(52)



and then observing that, exclusively in terms of the function g and the level-set ψ, condition
(51) is equivalent to {

g(x) < 0 if ψ(x) < 0

g(x) > 0 if ψ(x) > 0.
(53)

Now, we note that (53) holds if the function g is a strictly positive scalar multiple of ψ, i.e.

∃ τ > 0 s.t. g = τ ψ, (54)

or, equivalently,

θ := arccos
[

⟨g, ψ⟩
∥g∥L2(D) ∥ψ∥L2(D)

]
= 0, (55)

where θ is the angle between the functions g and ψ in L2(D). Hence, (54) or (55) are also
sufficient conditions of local optimality. In particular, (55) will be used in the algorithm
described below.

4.2. The algorithm

The algorithm itself aims to generate a sequence {ψi} of level-set functions (a se-
quence of structural domains {Ωi}) that will produce for some iteration n a domain Ωn such
that (55) is satisfied to within a given small numerical tolerance ϵθ > 0:

θn := arccos
[

⟨gn, ψn⟩
∥gn∥L2(D) ∥ψn∥L2(D)

]
≤ ϵθ. (56)

The iterative procedure starts with the choice of an initial guess for the optimal struc-
ture domain, i.e. with the choice of a starting level-set function ψ0 ∈L2(D). For simplicity,
the function ψ0 is chosen as a unit vector of L2(D). With S denoting the set of unit vectors of
L2(D), the algorithm is explicitly given by

ψ0 ∈ S,

ψi =
1

sin θi−1

[
sin((1− κi)θi−1)ψi−1 + sin(κiθi−1)

gi−1

∥gi−1∥L2(D)

]
,

(57)

where i denotes a generic iteration number and κi ∈ [0, 1] is a step size determined by a line-
search performed at each iteration in order to decrease the value of the objective functional
IαΩi

. Note that the right hand side of (57)2 is a convex combination between ψi−1 and gi−1 up
to a positive multiplicative constant and that, by construction of the iteration formula, we have

ψi ∈ S. (58)

The iterative process is stopped when for some iteration i the optimality condition (56) is
satisfied to the desired degree of accuracy, i.e. if

θi ≤ ϵθ. (59)

If at some iteration i, the line-search step size κi is found to be smaller than a given numerical
tolerance ϵκ > 0:

κi < ϵκ, (60)



i.e. if the topology is effectively no longer changing, and at the same time the optimality
condition (59) is not met, then a uniform mesh refinement of the hold-all domain D is carried
out and the iterative procedure is continued. The goal of this coarse-to-fine procedure is
twofold: on one hand to reduce the computer cost, and on the other hand to be less subject
to getting stuck in bad local minima. Of course, as the continuous topology optimization
problem has no global minimum in general, the mesh dependency of the obtained domain
cannot be completely avoided. Note that a uniform mesh refinement will enrich the discretized
space of level-set functions and will in general improve the accuracy of the elastic solutions.
At this point we should add that more sophisticated approaches could be adopted, for example,
by generating at each iteration a finite element mesh having element edges matching exactly
the phase interface defined by the corresponding level-set function. Also, mesh density could
be defined according to a suitable error estimator, leading to potential savings in computing
time and ensuring the error is bounded to a desired level in the attained optimal structure
domain. We emphasize, however, that our main purpose here is to demonstrate the robustness
of the topological derivative-based iteration (57). Hence, we choose to rely on a simpler
approach to avoid any potential lack of robustness being masked by procedures of a more
peripheral nature.

In the computation of DT I
α
Ω according to expression (33) the stresses and the topo-

logical derivatives are first computed within the finite elements (at Gauss points) and then
extrapolated to nodes. The final discretized version of the field DT I

α
Ω used in the iterations

is generated by the finite element shape functions with smoothed nodal values obtained in a
standard fashion. The level-set functions ψ and the discretized field DT I

α
Ω are generated by

the same shape functions used in the finite element approximation of the direct and adjoint
boundary value problems (3) and (48). The material properties Ehard or Esoft are assigned to
nodes of the mesh depending on whether they are at points with ψ < 0 (hard phase) or ψ > 0

(soft phase). In this way, elements crossed by the hard-soft phase interface (defined by ψ = 0)
will have Young’s moduli between the values Ehard and Esoft, obtained by a standard interpo-
lation of the nodal Young’s moduli using the element shape functions. Obviously, according
to the above procedure, the resolution of the optimal structure domain depends directly on the
fineness of the adopted mesh.

5. NUMERICAL EXAMPLES

The effectiveness of the algorithm described above is demonstrated in this section by
means of numerical examples. In order to avoid numerical ill-conditioning of the optimiza-
tion problem we use in all examples, without loss of generality, a normalized version of the
objective functional of (27) defined as

IαΩ(uΩ) =
|Ω|
V0

+
β

K0

∫
ΓN

g · uΩ ds+ α

∫
D̃

EΩΦp(Υ(σ(uΩ))) dx, (61)

with the normalizing factors V0 and K0 being respectively the area and the compliance func-
tional of the initial guess Ω0 for the optimum structure domain, here taken as Ω0 = D. In all
the examples, we adopt the Young’s modulus contrast Esoft/Ehard = 10−3.



5.1. Wall under shear load

The first example consists of wall under shear load (see Fig. 4).

Figure 4. Wall under shear load. Initial guess and boundary conditions.

The hold-all domain is a rectangle of size 2×1 clamped at its bottom edge. The loading
consists of a unit uniformly distributed horizontal force g = (1, 0) applied along a central
portion of length 0.2 of the top edge of the hold-all domain. The material parameters Ehard =

1.0, ν = 0.3 and σ = 1 are used. For the penalty coefficient and compliance weighting factor
we choose α = 25 with p = 32 and β = 1/4. The optimization procedure is carried out for
three different values of η. Firstly we use η = 0, corresponding to a von Mises stress constraint
and then adopt η = 0.4 and η = −0.4. The positive η corresponds to a standard Drucker-
Prager material with yield strength greater in compression than in tension. The negative value
η = −0.4 models a material with yield strength greater in tension than in compression. An
initial uniform mesh containing 6400 linear triangles and 3321 nodes was adopted to discretize
the hold-all domain. During the optimization procedure, one step of uniform mesh refinement
of the hold-all domain was required in all cases to achieve convergence with a tolerance ϵθ =
1◦. Convergence was attained in 26 iterations for the von Mises constraint case (η = 0) and
39 iterations in the other two cases (η = 0.4 and η = −0.4). The final mesh contains contains
25600 elements and 13041 nodes. The optimal topologies obtained are shown in Fig. 5.

(a) η = 0.0 (b) η = 0.4 (c) η = −0.4

Figure 5. Wall under shear load. Obtained design for different values of η.

As one would expect, a symmetric structure is obtained under the von Mises constraint.
The optimal domains for the other two cases are flipped images of each other and, as expected,
under the conventional Drucker-Prager constraint (η = 0.4) the member under compression
(on the right) is bulkier than the member under tensile stresses (on the left).

5.2. L-bracket

Now we turn our attention to a classical structural optimization problem containing
a geometrical singularity – the L-bracket problem subject to stress constraints. The hold-all
domain and loading are illustrated in Fig. 6.



Figure 6. L-bracket. Initial guess and boundary condition.

This problem has been studied by a number of authors and various strategies have
been proposed for the treatment of the von Mises stress constraint, exclusively in the context
of SIMP-based methods of structural optimization (refer to [21] and references therein). The
solution of this optimization problem (with a slightly different loading condition to that of
Fig. 6) under a von Mises constraint by a topological derivative-based approach has been
recently proposed in [8]. Here we show the application of the topological-derivative approach
to the case of Drucker-Prager-type constraints. The lengths of the horizontal and vertical
branches of the L-bracket are respectively 2m and 2.5m measured along their centre lines.
Both have identical width of 1m. The structure is clamped at the top edge and a point load
g = −(0, 40)KN/m is applied to the corner of the right tip. The elastic properties of the
structure material are Ehard = 12500MPa and ν = 0.2. The Drucker-Prager yield criterion
parameters are set as η = −0.3703 and σ⋆ = 63.85MPa. These are chosen so that the
Drucker-Prager yield surface matches the compressive and tensile uniaxial yield strengths
[13] of a natural wood, given respectively by fc = 46.6MPa and ft = 101.4MPa. The stress
constraint is not enforced in the white region of radius R = 0.15m directly under the point of
load application (shown in Fig. 6). The initial (non-uniform) mesh discretizing the hold-all
domain has 14236 three-noded triangular elements and 7323 nodes with a higher density of
elements around the reentrant corner that gives rise to the stress singularity. Figure 7 shows the
optimum structures obtained without and with the enforcement of the Drucker-Prager stress
constraint.

(a) unconstrained case (b) stress-constrained case

Figure 7. L-bracket. Obtained design for the unconstrained (volume fraction 42.96%) and
constrained (volume fraction 46.76%) cases.

In the stress-constrained case, the penalty coefficient adopted in the penalized objec-



tive functional was α = 104 with p = 32. In both cases we set β = 1/3. As in the previous
example, one step of uniform mesh refinement is performed in both cases to achieve conver-
gence. The final mesh here has a total of 58240 elements and 29532 nodes. The convergence
tolerance adopted for both unconstrained and stress-constrained problems is ϵθ = 1◦ with a
total number of iterations required for convergence being 39 and 62, respectively. The evolu-
tion of the objective functional, volume fraction and angle θ throughout the iterations of the
optimization algorithm is shown in Fig. 8(a–c).
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Figure 8. L-bracket. Convergence history.

We remark here that the adopted tolerances are quite stringent and a converged design
for practical purposes is in fact obtained for the constrained case with the (quite satisfactory)
initial mesh at iteration 39. This is where a sharp variation in θ and IαΩ is depicted in Figs.
8(a) and 8(c), corresponding to the mesh refinement step. Figure 8(d) shows the history of the
worst stress ratio in the structure:

maxΩ

√
Υ(σ(uΩ))

σ
,

whose maximum admissible value is 1. It should be observed that in the stress constrained
case shown in Fig. 7(b) the reentrant corner has been rounded by the algorithm. The cor-
responding worst stress ratio in this case (shown in Fig. 8(d)) is 1.0184 for the converged



structural domain – very close to its saturation value of 1. In the unconstrained case, on
the other hand, the worst stress ratio blows up when minimizing the compliance due to the
geometrical singularity of the reentrant corner.

It is worth noting here that the rounding off of the reentrant corner in the stress-
constrained problem has been achieved by the present algorithm in a most natural manner
without any added post-processing techniques. This is a mere consequence of the use of the
exact formula (33) for the topological derivative of the objective functional. This formula
gives the exact sensitivity of the penalized objective functional with respect to the consid-
ered black-and-white-type topological changes. The only approximation here is the use of a
penalty term to enforce the required stress constraint. In SIMP-based methodologies on the
other hand, some of the exact information on the sensitivity to black-and-white-type topolog-
ical changes (i.e. first order terms of the topological asymptotic expansion of the objective
functional) is inevitably lost with the introduction of the regularized density field that approx-
imates the sharp black-white transition. The enforcement of stress constraints with such meth-
ods poses a more significant challenge and requires, for instance, the use of post-processing
techniques to retrieve stresses. In this context, many such procedures have been proposed and
used with success in a number of stress-constrained problems (a recent overview is provided
in [21]).

5.3. Bridge design

This last example considers the design of a bridge. The hold-all domain is a rectangle
180m long and 60m high illustrated in Fig. 9.

Figure 9. Bridge design. Initial guess and boundary conditions.

The bridge is assumed clamped at the two bottom supports of equal length a = 9m.
A uniformly distributed traffic load g = −(0, 400)KN/m2 is applied to the edge of the dark
strip of height h = 3m indicated in Fig. 9 that represents the road and will remain unchanged
throughout the optimization process. The strip is positioned at a distance c = 27m from
the top of the hold-all domain. The material properties are Ehard = 27500MPa and ν =

0.2. For the purpose of comparison, the optimization procedure is carried for two cases:
(a) No stress constraints (α = 0), and (b) The Drucker-Prager stress constraint with yield
strength parameters η = 0.417 and σ⋆ = 5.05MPa. These parameters are obtained from the
Drucker-Prager biaxial fit model [13] to match a tensile and compressive yield strength of
fc = 30.5MPa and ft = 2.75MPa respectively. For the stress-constrained case we adopt
the penalty coefficient α = 103 and in both cases we choose β = 1/10 and the convergence
tolerance ϵθ = 1◦. The stress constraint is not enforced within the white region of size 15 ×
15m adjacent to the bottom supports. Due to symmetry, only half of the hold-all domain is



discretized. The initial (uniform) mesh has 4800 elements and 2501 nodes. In both cases, two
steps of uniform mesh refinement are performed leading to a final mesh of 76800 and 38801
nodes. Figure 10 shows the optimized topologies obtained for the two cases.

(a) Unconstrained case (b) Stress-constrained case

Figure 10. Bridge design. Obtained design for the unconstrained and constrained cases.

The total number of iteration required for convergence was 16 and 13, respectively,
for the unconstrained and constrained cases. Note that the unconstrained optimization results
in the well-known tie-arch bridge design. In this design some structural members are under
tensile and others under compressive dominant stresses. The stress-constrained optimization
with the Drucker-Prager criterion, on the other hand, results in a radically different design
where all members are subject to compressive dominant stresses. Such designs are typical in
practice for materials whose compressive strength is much higher than their tensile strength
(such as concrete). Its automatic generation here clearly demonstrates the success of the
proposed topology optimization procedure.

6. CONCLUSION

This paper has extended the result derived in [8] to incorporate the Drucker-Prager
stress constraint within a topological derivative-based algorithm for topology optimization
of elastic structures. In this context a penalty functional has been proposed to enforce the
point-wise Drucker-Prager constraint and a closed formula for its topological derivative has
been presented. The overall algorithm, which uses the topological derivative to indicate the
descent direction in conjunction with a level-set representation of the structure domain, is
of remarkably simple computational implementation. In particular, it does not feature post-
processing procedures (such as filtering or relaxation) of any kind and only a minimal number
of user-defined algorithmic parameters are needed. This is in sharp contrast with current
methodologies of topological structural optimization with local stress constraints. Numerical
examples have demonstrated the effectiveness and efficiency of the algorithm in the solution
of topology optimization problems under the considered class of constraints. The algorithm
was shown, for instance, to efficiently handle topology optimization with materials displaying
strong asymmetry in their tensile and compressive uniaxial yield strengths. From a practical
standpoint, we believe this fact to be particularly relevant in that it opens the possibility for the
efficient automatic design/optimization of structures made of a much wider range of materials
than that for which stress-constrained topology optimization has been mainly used so far.
Extensions of the present approach to the three-dimensional elasticity system is currently
under investigation.
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