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Abstract. This paper deals with finite element vibration analysis of buildings. Each component of 
building is discretized by its appropriated finite element, that is, bar and beam element for the frame 
sub-structure, plate finite element for the slabs. By applying compatibility and equilibrium conditions, 
all sub-structural interactions are incorporated into the system in order to produce a more refined 
structural analysis of buildings. Other issues for building vibration such as shear deformation, rotatory 
inertia, and plate-beam eccentricity are investigated as well. Numerical examples are presented and 
compared with results from commercial numerical packages widespread. 
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1. INTRODUCTION 

The Finite Element Method (FEM) is a numerical technique based on continuum discretization so 
that the body is divided into finite number of small parts named elements and by expressing the 
unknown variable fields in terms of assumed approximating functions within each element. These 
functions are expressed in terms of discrete points named nodes. Clough & Wilson [1] give interesting 
historical details about first steps to establish of FEM solutions. For example, in 1960 the designation 
of finite element method was coined by Ray Willian Clough when a static analysis of stress plane 
problem [2] was modeled using that new born technique. Since then FEM solutions have been 
received many other contribution and applied to a variety engineering problems. This is the case for 
vibration analysis of frame and plate [3]-[6]. Additional details on vibration FEM solutions including 
more complex structures such as shells can be found elsewhere, for example [3]-[9].  

A specific topic in building structural analysis has been studied by many researchers is associated 
with eccentric relative position beam-plate at each floor.  One of many strategies has established to 
deal with eccentricity problem is the rigid offset approach. Harik et al. [14] presented an analytical 
solution,  Mukhopadhya [15] proposed a finite difference solution, Harik et al. [14], Araújo [16], 
Sapountzakis et al. [17], Deb et al. [18]-[19], gave finite element solutions, Tanaka et al. built 
boundary element solutions. 

In this paper the influence of effects such as shear deformation, rotatory inertia, and plate-
beam eccentricity into building vibration responses are analyzed by house-made program called EDF 
and commercial packaged Ansys. 
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2. ASSEMBLY OF MASS AND STIFFNESS MATRICES 

In this section the strategy of assembling of each elemental mass and stiffness matrices into global 
matrices of the building is briefly discussed. The building analysis can be split into major problems, 
namely space frame and plates (in bending and/or in tension), and their interaction effects, see Figure 
1. 

 

Figure 1. Building structural components. 

In a space frame problem, the efforts in each member can be simultaneously mobilized due to axial, 
bending, and torsional actions. Both mass and stiffness matrices of a 3D frame member are well-
known and they can be found in many works, such as Queiroz [9] and Lucena [10]. If only an isolated 
space frame is considered, the assembly of the global matrices can be done as shown in appendix - 
Figure 14(a). In this paper for the stretching and bending plate vibration problems were implemented 
respectively two elements namely CST (Constant Stress Triangle) and DST (Discrete Shear Triangle).  
Mathematical details for both elements can be found elsewhere, for example Petyt [12], Batoz and 
Lardeur [13], Lucena [10]. A relevant topic is the study of influence of beam-plate eccentricity of each 
floor to the global response of the building, see Figure 2.  

 

Figure 2. (a) Beam-plate configuration: (a) non-eccentric case; (b) eccentric case. 

Plates Frame Space Building



When a beam and a plate have no eccentricity implies nodal points of beam element coincide with 
some nodes of plate element, see Figure 2(a). In this case, no additional step is required and both beam 
and plate elemental contributions can be directly and independently assembled in global matrices of 
the structure. On other hand when beam-plate eccentricity exists (very usual situation in buildings, see 
Figure 2(b) it is necessary to reposition the degrees of freedom of the beam (usually located on its 
centroidal axis) onto a plane of the plate (usually median plane, see Figure 3) or vice-versa. Due to 
change of nodal location of beam, the energy conservation of system requires mass and stiffness 
matrices of the beam are transformed too. 

 

Figure 3. Local displacement vectors of the beam and their eccentricity. 

Let there be {u} and {U} the global displacement vectors at beam centroidal axe and at plate 
median plane, respectively, and a relation can be written as follows. 
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The final transformed matrices of the beam with respect to plate median plane system are: 

[ ] [ ] [ ][ ]ψψ KK TP =  (2) 

[ ] [ ] [ ][ ]ψψ MM TP =  (3) 

In addition, the assembly of the transformed matrices given in Eq(2) and Eq(3) can be done as 
shown in appendix - Figure 14(b). For the building problem, an assembling strategy is to create three 
subsets of typical nodes. The first is associated with (stretching/bending) plate nodes that do not 
receive any contribution from space frame nodes, called “Plate nodes”. The second subset is called 
“Mixed nodes” and it receives both plate and space frame contributions”. The third subset called 
“Frame nodes” is formed by off-plate nodes. The subset dimensions are respectively given by 

,5 LN ML 6  and FL 6 . Let there be a plate element with node orientation (i, j, k) and interacting with 



two (i,j) and (j,l) oriented frame elements, see Figure 4. Then, the assembly of building matrices from 
all elemental contribution can be done as shown in appendix - Figure 14(c). 

 

Figure 4. (a) Real structure; b) Discretized structure; c) Beam-Plate elements interacting at node j. 

3. NUMERICAL RESULTS 

All mathematical details of the finite element solution described in this paper were encoded in the 
program called EDF.FOR, see Lucena [11]. In order to check  EDF.FOR  performance,  vibration 
analysis of two structures (space frame and four-storey building) is presented. The results of this 
house-made program are compared to commercial package ANSYS outputs.  

3.1 Space Frame 

This example was originally proposed by Petyt [12], see Figura 5.  The mechanical and dimensions 
of the members are: Young modulus, 29 /109,219 mNxE = ; density, 3/7900 mkg=ρ and length, 

mL 1= . Both Euler-Bernoulli and Timoshenko models are taken into account and the results from 
both programs are shown in Table 1. 

 

Figura 5. Space frame and its discretization. 

Detail A 

Section AA 

Section BB 



Table 1. Frequency results (Hz) 

Mode 
Number  

EDF Ansys EDF Ansys 
Model 
Euler1  

Model Euler2  Model Euler  
Model 

Timoshenko 1  
Model 

Timoshenko 2 
Model 

Timoshenko  
1 11.808796 11.808643 11.808 11.76402563 11.76387476 11.774 
2 11.808796 11.808643 11.808 11.76402563 11.76387476 11.808 
3 15.4457303 15.411955 15.412 15.3966169 15.36295663 15.391 
4 34.1154902 34.112377 34.111 33.98476808 33.98170942 33.992 
5 34.1154902 34.112377 34.111 33.98476808 33.98170942 34.108 
6 43.433024 43.330254 43.329 43.29169296 43.18938625 43.263 
7 123.299665 123.18396 122.05 122.9237718 122.8097391 121.99 
8 125.736015 125.6063 124.36 125.3376278 25.20986295 124.3 
9 145.00127 144.88404 143.99 144.3209478 144.2060394 143.88 
10 154.139833 153.98871 153.63 153.4583667 153.3105848 153.45 
11 154.139833 153.98871 153.63 153.4583667 153.3105848 153.63 
12 157.719628 157.54384 156.15 156.8369922 156.6655141 156.02 
13 169.296732 169.14853 168.87 164.9313557 164.6636774 164.81 
14 169.296732 69.148533 168.87 168.3485203 168.2042581 168.69 
15 169.626978 169.32003 169.31 168.3485203 168.2042581 168.87 
16 190.617268 190.16343 190.15 185.4286436 185.0307075 185.12 
17 225.625976 225.32584 223.8 223.4873333 223.2009211 221.94 
18 225.625976 225.32584 223.8 223.4873333 223.2009211 223.76 
19 239.219681 238.87411 238.54 236.8261719 236.4969022 237.25 
20 246.457127 246.0154 245.72 243.4084611 243.0062042 244.01 

For sake of a better visualization, the results of Table 1 are plotted, see Figure 6. 

 

Figure 6. Space frame results. 
                                                           
1
 No rotatory inertia 

2
 Rotatory inertia 



3.2 Four-storey building 

In this example vibration analysis for variety slender ratios of structural components of a four-
storey building is done, see Figure 7. In addition the influence of plate-beam eccentricity, shear 
deformation and rotatory inertia effects in building vibration behavior is also considered. For all 
components, the following values for mechanical properties are set: Young modulus, 

29 /1021 mNxE = ; density, 3/2500 mkg=ρ . For plate elements, Poisson´s ratio is 30,0=υ and 
all results are done using DKT element for bending plate contributions into the problem, except when 
is explicitly warned.  

 

Figure 7. Four-storey building: (a) geometry, (b) discretization 

The study was divided into three parts: firstly beam slender ratio influence in building vibration is 
analyzed under following assumptions. All plates have 10cm constant thickness and all columns have 
a typical cmx )2020(  square cross-section. A cmxh)20( cross-section is set for all beams and two 
values are assumed for h.  

Table 2 – Frequencies (Hz) for non-eccentric case:  (plate h=0.10m) – (beam h=0.50m) 

Mode 
Number 

Euler-Bernoulli’s beam Timoshenko’s beam 

EDF ANSYS EDF ANSYS 

1 1.033634243568042 1.0335 1.026163178509705 1.0261 
2 1.051321466365204 1.0512 1.042713789161397 1.0426 

5 3.083254020001557 3.0829 3.059042393325857 3.0586 
10 6.133236349035065 6.1322 6.090743238372382 6.0897 
15 10.699237061042660 10.651 10.629603122588180 10.582 
20 17.936212724087930 17.847 17.743458077855130 17.655 
25 24.823920795071000 24.497 24.609889249841980 24.338 
30 30.606705038030040 30.556 30.441299394962270 30.389 
35 40.816869158106850 40.234 40.348166803980430 39.775 

40 47.758536892544060 46.995 46.961864549614620 46.235 
45 51.998620754883710 50.961 51.399784463171740 50.532 



Table 3 –Frequencies (Hz) for eccentric case: (plate h=0.10m) – (beams h=0.50m) 

Mode Nº 
Euler-Bernoulli’s beam Timoshenko’s beam 

EDF ANSYS EDF ANSYS 

1 1.061105210654078 1.0600 1.052878883863958 1.0518 
2 1.069293282336665 1.0684 1.060060841738016 1.0593 
5 3.124465230676489 3.1205 3.098809652840658 3.0951 
10 6.143373253738758 6.1371 6.100320485187121 6.0943 
15 12.818649259830260 12.742 12.705003588424920 12.630 
20 20.492074748603760 20.333 20.289840881110260 20.189 
25 27.490250113643460 27.043 27.221579028101290 26.782 
30 31.587787232354530 31.561 31.405497422876140 31.376 
35 43.533910399307850 42.826 43.291480405625190 42.625 
40 50.194220128101630 48.459 50.045250822373090 48.315 
45 53.158655994945020 51.930 52.177054714839100 51.022 

Table 4 - Non-eccentric case: (plate h=0.10m) – (beam h=0.80m) 

Mode Nº 
Euler-Bernoulli’s beam Timoshenko’s beam 

EDF ANSYS EDF ANSYS 

1 0.9777737465142289 0.97767 0.9698353132263625 0.96973 
2 0.9796925061525277 0.97959 0.9722366292403232 0.97213 
5 2.845731851293956 2.8454 2.824630045531332 2.8243 
10 5.497798210133395 5.4970 5.459845809899770 5.4591 
15 14.831850434225120 14.708 14.716596862275180 14.596 
20 24.099711540057980 23.971 23.685053731839450 23.524 
25 30.405686660826370 29.792 30.182141949107190 29.584 
30 35.744411088574980 34.730 35.716495690795860 34.703 
35 45.569945054429910 44.477 44.918095831465320 43.615 
40 53.179774314214070 52.360 52.789080492217070 51.107 
45 59.693230687868560 58.063 58.688231895087200 58.148 

Table 5 - Frequencies (Hz) for eccentric case: (plate h=0.10m) – (beam h=0.80m) 

Mode Nº  
Euler-Bernoulli’s beam Timoshenko’s beam 

EDF ANSYS EDF ANSYS 

1 0.9813890571155897 0.98293 0.9732779425289443 0.98125 
2 0.9863427704428834 0.98709 0.9786756420889796 0.98592 
5 2.861052757951518 2.8606 2.839452174069153 2.8580 
10 5.500626179040095 5.4950 5.462595784379647 5.4940 
15 16.706018819362260 16.555 16.558035888165120 16.411 
20 28.044182252379500 27.728 27.343770282073450 27.046 
25 31.864847655130900 31.222 31.620607422652910 30.992 
30 36.210165576136050 35.291 35.955307263621120 34.968 
35 47.867119090662290 44.218 47.636652351543720 44.003 
40 55.012062684831130 52.910 54.902568106283380 51.712 
45 58.919546022347830 55.373 58.042801175215840 54.735 

 

 



 

  

Mode 
Variation 

(%) 
 
 

1 -5.4  
2 -6.8  
5 -7.7  
10 -10.4  
15 38.6  
20 34.4  
25 22.5  
30 16.8  
35 11.6  
40 11.4  
45 14.8  

  
Figure 8.  Beam ridigity influence on non-eccentric case 

For sake a better visualization, the results of non-eccentric plate-beam case shown in Table 2 and 
Table 4 are plotted together in Figure 8. The eccentric plate-beam results in Table 3 and Table 5  are 
plotted in Figure 9. 

 

  

Mode 
Variation 

(%) 
 
 

1 -7.5  
2 -7.8  
5 -8.4  
10 -10.5  
15 30.3  
20 36.9  
25 15.9  
30 14.6  
35 10.0  
40 9.6  
45 10.8  

  
Figure 9. Beam ridigity influence on eccentric case 

If the results of the thinner beams (h=50) in Figure 8 and in Figure 9 are taken as reference values, 
the first ten natural frequencies for thicker beams (h=80) decreased respectively between 5.4%and 
10.4% for non-eccentric problem and 7.5% and 10.5% for eccentric case. On the other hand when 
range between 15th and 45th modes is checked, it can be seen that natural frequencies of the thicker 
beam problem are increased between 11.4% and 34.4% for the non-eccentric case and 9.6% to 36,9%  
for the eccentric  problem.  These major discrepancies are certainly due to more severe bending mode 
activation for thicker beams. A typical case is observed about 20th mode where mode configurations 
for both cases (h=50 and h=80) are shown in Figure 10. 



 

Figure 10. Settings of the 20th mode (a) h=80; (b) h=50 

The second part of the building vibration analysis is concerned on plate slender ratio influence in 
building responses. Hence some assumption is done: beam-plate problem is always eccentric, all 
beams have the same cross-section cmx )8020( , and all columns cross-section is square with dimension 
20cm. 

The influence of plate thickness variation in the building vibration behavior is initially done and 
shear deformation effects are not included (classical plate model). Analyses for three thicknesses of 
the plate 10, 20 and 30 cm are independently done.  By selecting DKT element, EDF and Ansys 
results are shown in Table 5, Table 6 and Table 7. For sake a better visualization the outputs are 
plotted together in Figure 11. 

Table 6. Frequencies (Hz) eccentric case: (plate h=0.20m) – (beam h=0.80m) - column (0.20x0.20)m 

Mode Nº  Euler-Bernoulli Timoshenko 
EDF ANSYS EDF ANSYS 

1 0.8293750409755191 0.83044 0.8227936436689241 0.82388 
2 0.8340287604609957 0.83445 0.8276543806135503 0.82810 
5 2.417162832657765 2.4167 2.399140468688497 2.3988 
10 4.634355366607846 4.6318 4.602253750231750 4.5998 
15 18.129607984803820 18.046 17.833315482366810 17.714 
20 28.109150010122560 28.145 27.991753951863470 28.027 
25 42.387049407920120 41.670 41.322183753097150 36.889 
30 45.099012533007870 44.012 43.801345471503300 42.697 
35 58.162430748004090 57.335 57.756874147415520 55.909 
40 64.49996888117163 64.405 63.066791827934590 62.789 
45 65.345883383739720 65.287 63.707594933563410 63.631 

Table 7. Frequencies (Hz) eccentric case: (plate h=0.30m) – (beam h=0.80m) - column (0.20x0.20)m 

Mode Nº  Euler-Bernoulli Timoshenko 
EDF ANSYS EDF ANSYS 

1 0.7314230031823287 0.73224 0.7259813796638660 0.72678 
2 0.7357778526412748 0.73612 0.7303252140427594 0.73065 
5 2.131274143423030 2.1311 2.115764573823893 2.1156 
10 4.079733654343166 4.0784 4.051566408859258 4.0503 



15 16.630121151899140 16.612 16.579815076595760 16.562 
20 29.002845646654430 29.057 28.904550876622010 28.960 
25 44.219052338206040 43.821 43.227278646436850 42.832 
30 55.184507852580140 54.130 54.682751123006350 53.618 
35 63.994146800298080 63.636 62.540515496259820 62.281 
40 65.285823976308460 65.233 63.617427580988740 63.571 
45 65.604209407136820 65.584 63.909799670753620 63.882 

 

 

  

Mode 
Variation (%)  

HL=20 HL=30  
1 -15.5 -25.5  
2 -15.4 -25.4  
5 -15.5 -25.5  
10 -15.7 -25.8  
15 8.5 -0.5  
20 0.2 3.4  
25 33.0 38.8  
30 24.5 52.4  
35 21.5 33.7  
40 17.2 18.7  
45 10.9 11.3  

  

Figure 11. Plate ridigity influence for eccentric case. 

By assuming thinner plate results as reference values, it can be seen there is a decreasing of natural 
frequencies until 10th mode (15.7% for h=20 and 25.8% h= 30 cm). For higher modes (until 40th) the 
thicker plates increase natural frequencies. A complementary study of the earlier problem in order to 
check shear deformation effect in all building components is done as well. The vibration analysis is 
modeled by EDF (using both DST plate and Timoshenko beam elements) only and the results are 
shown in Table 8 and Figure 12. 

Table 8. Frequencies (Hz) incorporating shear deformation effects for plate and beam 

Mode 
Number 

DST elements for plate and  Timoshenko’s beam 
(beam h=0.80m),   column (0.20x0.20)m 

plate (h=10 cm) 
e=35cm 

Plate (h=20 cm) 
e=30cm 

Plate(h=30 cm) 
e=25cm 

1 0.9732744677093985 0.8227266718092883 0.7257943847425563 
2 0.9786749015925560 0.8276392615450652 0.7302702382631422 
5 2.839449996129212 2.399105589554805 2.115640255869238 
10 5.462592105083606 4.602237793494199 4.051521762546975 
15 16.526669415551750 17.803260799809390 16.557976877659960 
20 27.326817262917330 27.979698423999490 28.856040883028330 
25 31.503036906434580 41.135618019665660 42.754293742999600 
30 35.822998742607440 43.680109794382580 54.197368729408740 
35 47.543719135812010 57.320421256622860 62.500908874808780 
40 54.688519389612870 62.974795699346510 63.596349288916920 
45 57.948194188817130 63.703264647440940 63.906124089558420 



 

 

  

Mode 
Variation (%)  

HL=20 HL=30  
1 -15.5 -25.4  
2 -15.4 -25.4  
5 -15.5 -25.5  
10 -15.7 -25.8  
15 7.7 -0.2  
20 2.4 5.6  
25 30.6 35.7  
30 21.9 51.3  
35 20.6 31.5  
40 15.2 16.3  
45 9.9 13.2  

  

Figure 12. Plate rigidity influence and shear deformation effects on eccentric case 

The results show there are no significative changes until 45th mode vibration responses when shear 
deformation was taken into account. 

At last third part of the building vibration analysis in this paper is concerned about influence of 
variation of column cross-section dimensions. The assumptions for this analysis are: all plates has 
thickness 10cm and a cross-section cmx )8020( is set for all beams. Two cross-section dimensions are 
set to the all columns, cmx )2020(  and cmx )4040( .. The EDF and Ansys results for cmx )4040(  cross-
section columns in Table 9 are shown only. In Figure 13 both column cross-sections analyses are 
plotted. 

Tabela 9. Frequencies (Hz) eccentric case: (plate h=0.10m) – (beam h=0.80m) - column (0.40x0.40)m 

Mode 
Number 

Euler-Bernoulli’s beam Timoshenko’s beam 

EDF ANSYS EDF ANSYS 
1 2.984353648437686 2.9881 2.897020117432950 2.9021 
2 3.054102673539377 3.0591 2.942812889441475 2.9500 
5 9.212390099187937 9.2083 8.899009872081662 8.9050 
10 17.312097285493380 17.097 17.159695509391720 16.950 
15 20.308793665539740 20.198 19.716451606859310 19.628 
20 32.328691239677820 31.618 31.930651694976390 31.330 
25 35.467487874409320 34.664 34.106090408379160 33.445 
30 45.352876833737640 43.417 44.819779928222640 42.518 
35 50.625448328801750 48.568 49.406304454311320 47.507 
40 59.774830750619830 53.851 59.611505646993460 53.757 
45 62.338234193366160 60.002 61.645643383805460 59.406 

 

 

 

 



 

 

  

Mode 
Variation 

(%) 
 
 

1 204.1  
2 209.6  
5 222.0  
10 214.7  
15 21.6  
20 15.3  
25 11.3  
30 25.2  
35 5.8  
40 8.7  
45 5.8  

  
Figure 13. Column rigidity influence on eccentric case 

The results show lower modes are strongly affected when the column cross-section dimensions are 
changed. 

4. CONCLUSIONS 

The numerical results in the paper suggest results from EDF house-made program are in a good 
accordance with those run with commercial package Ansys. The changes in four-storey building 
vibration responses are analyzed, when slender ratios of each group of structural components are 
independently changed. The most severe changes for lower natural frequencies of the building is due 
to column cross-section variation. Shear deformation effects produce slight changes to lower natural 
frequencies of the building when compared to classical models. 
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APPENDIX 



 

 

 

 

 

  

Figure 14. Formation of the matrices of the structure: (a)stiffness 
matrix of ith member in the global matrix framed structure, 

(b)condensed form of the plate structure matrices, (c)expression for 
assembly of stiffened plate structure. 



The sub matrices in Figure 14, are given by: 
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