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Abstract. This paper proposes a new frequency method applied to calculate cable 
force for cables with the intermediate multi-support from measured natural 
frequencies. The proposed method has established new relationship between cable 
frequency and tension force, taking cable force, the intermediate multi-support, 
flexural rigidity, boundary conditions of two ends into account. Following the 
classical guidelines of cable dynamics, and by making some simplifications, frequency 
equation has been obtained in non-dimensional form. When natural frequencies have 
measured, cable force can be calculated by solving frequency equation. Comparison 
with Matharmethod and the proposed method in the field test, the difference of cable 
force result between two methods is just only 1%, so the proposed method has been 
made to validate. 
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1. INTRODUCTION

Frequency method is the way to calculate the cable force by measured natural 
frequencies of cables. In recent years, Frequency method has received increasing 
attention because of its simplicity and speediness. In practice, frequency method is 
widely used for cables with boundary conditions of constraints on both ends, and 
rarely used for cables with boundary conditions of constraints on both ends and the 
intermediate. As cables are applied more and more widely, the boundary condition of 
cables is more and more complex, such as the damper at suspenders in the suspension 
bridge and intermediate support at the tie bar in the arch bridge. So a new frequency 
method is useful for application to calculate the tension force of cables with the 
intermediate multi-support. 

Nowadays, there are a lot of researches on the vibration of cables. Irvine H M [1] 
has proposed an analytical solution for the frequency equation for sagged cable 
without bending stiffness. For such long cables, with such large diameters, flexural 
stiffness cannot be neglected in determining dynamical properties of cables. So Zui H 
[2] ,Geier Rand Kim B H [3-4] has proposed methods which allow us to obtain cable 
force in a simple manner, which are based on the identification of modal properties of 
cables. Flamand O and Matsumoto M [5-6] have observed the influence of rain–wind 
action to cables. These studies are mostly for cables with the boundary condition of 
constraints on both ends, and there are rare for cables with the boundary condition of 
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constraints on both ends and the intermediate. R H wang[7] has put forward to a finite 
element solution for tension force of cables with elastic multi-support, which has been 
experimentally verified. However, there is not an analytic method for tension force of 
cables with elastic multi-support. 

This paper proposes a new frequency method for application to calculate the 
tension force of cables with the intermediate multi-support from measured natural 
frequencies. The proposed method has established new relationship between cable 
frequency and tension force, taking cable force, the intermediate multi-support, 
flexural rigidity, boundary conditions of two ends into account. Following the 
classical guidelines of cable dynamics, and by making some simplifications, 
frequency equation has been obtained in non-dimensional form. When natural 
frequencies have measured, cable force can be calculated by solving frequency 
equation.  

2.DYNAMIC MODEL OF CABLES  

2.1Vibration model for cables 

The cable with the boundary condition of restraints on both ends and the 
intermediate is equivalent for the multi-span beam with axial force, when flexural 
stiffness of cables has not been neglected., the calculated parameters can be described 
as show in figure 1: L is the undeformed cable length; H is the horizontal component 
of initial cable tension; n is the number of constraints on the intermediat of cables; 
Ki(i=1,2,....,n) is stiffness of constraints; Xi(i=1,2,....,n) is the distance between the 
adjacent constraints. The boundary condition of constraints on both ends is consider 
as clamped. 

 
Figure 1. the cable with the intermediate multi-support 

In accordance with [1], the linearized equations of motion are: 
2 2 4

2 2 4
( ) ( , )y y

v d y v
H h t EI v f x t mv

x dx x
 

    
 

 
                          

(1)
 

v is the transverse vibration displacement of cables changing over time , ( )h t  is 

the additional horizontal component of tension changing over time, ( , )y x t is the 

transverse coordinate of cables, x is the coordinate along the axis of beam, t is 
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vibration time, E is the Young modulus; I is the inertia moment; y is viscous damping 

coefficients per unitary cable length, v  is first time derivative of the vibration 
displacement, v  is second time derivative of the vibration displacement, m is the 

cable mass per unitary length,
 

( , )yf x t  is impressed force changing over time. 

The vibration model of the cable has considered elastic support only, but hasn’t 

considered the effect of damping, so 0yv  .according to Irvine H M [1], It can be 

negligible to the additional horizontal component of tension [1], so ( )h t =0. 

Assuming    v x,  t   x ( )q t ， ( , )= ( ) ( )y yf x t f x q t ，the partial differential equation 

(1) is transformed into two ordinary differential equations, one governing the time 
evolution and one governing the spatial distribution of the motion: 

2( ) ( ) 0q t q t                                               (2a) 

2 1
( ) ( ) ( ) ( )IV

y

H m
x x x f x

EI EI EI

    
                             

(2b) 

Expression (2b) is the fourth order nonhomogeneous linear differential equation, 
which can be solved as: 

1 2 3 4 2

1
( ) cos( ) sin( ) cosh( ) sinh( ) ( )yx A x A x A x A x f x

m
    


    

        
(3) 

In which Aj ( j = 1, . . . , 4) are constants and the following quantities have been 
introduced： 

2 2( ) ( )
2 2

H m H

EI EI EI
    

                                  
(4a) 

2 2( ) ( )
2 2

H m H

EI EI EI
    

                                  
(4b) 

2.2The cable frequency equation  

Boundary conditions for clamped restraint at cable anchorages are: 

( / 2, ) 0v L t                                                (5a) 

( / 2, ) 0v L t                                                 (5b) 

( / 2, ) 0
v

L t
x


 

                                              (5c) 

( / 2, ) 0
v

L t
x




                                              (5d) 

The boundary conditions of cables with clamped ends, given by Eqs. (5a)- (5d), 



4 
 

substitute into Eq (3); And then, an algebraic set of four equations, with the unknown 
quantities Bj ( j = 1, . . . , 4), can be solved; And Bj ( j = 1, . . . , 4) can be substituted 
into Eq. (3) and the final expression of the modal shapes is obtained following: 

2

ˆ ˆ ˆ ˆ( ) ˆ ˆ ˆˆ ˆcosh( )sin( / 2) cos( )sinh( / 2)
ˆ ˆ( ) 1

ˆ ˆ ˆˆ ˆ ˆ ˆcosh( / 2)sin( / 2) cos( / 2)sinh( / 2)

yf x x x
x

     
      

    
             

(6) 

The parameters of expression (6) can be obtained by Eqs. (7a)- (7f). ( )ix x  is 

the Dirac delta function. 

ˆ
x

x
L


            

                                         (7a) 

2

ˆ
/

L

EI m
 

               
                                (7b) 

/L H EI                                                  (7c) 

2 2
2 2ˆ ˆ ˆ( ) ( )

2 2

     
  

                                     (7d) 

2 2
2 2ˆ ˆ ˆ( ) ( )

2 2

     
       

                                (7e) 

4

1

ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( 1,2,...., )
n

i
y i i

i

K L
f x x x x i n

EI
 



                            (7f) 

 So frequency equation of cables can be gotten by Eq (6) and Eq (7f), the 
simplified expressions is written as： 

0C I                                                     (8) 

The parameters of expression (8) can be gotten by Eqs. (9a)- (9b) 

2

4

ˆ
i

i

EI

K L

   ( 1,2,...., )i n                                          (9a) 

ˆ ˆ ˆˆ ˆ ˆˆ ˆcosh( )sin( / 2) cos( )sinh( / 2)
1 ( 1,2,...., 1,2,...., )

ˆ ˆ ˆˆ ˆ ˆcosh( / 2)sin( / 2) cos( / 2)sinh( / 2)
i i

ji

x x
C j n i n

     
     


   


 

(9b) 

3 CABLE FORCE CALCULATION 

3.1 Cable force equation  

Cable frequency equation (8) contains two non-dimensional parameters, one is 
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the non-dimensional frequency ̂ , and the other is the non-dimensional cable force . 

So cable force equation can be obtained by eqs (8), (7d), (7e): 

ˆ( , ) 0f                                                 (10) 

As cable frequency is tested out, the non-dimensional frequency ̂ can be gotten. 
So expression (10) is a single parameter equation as show in expression (11). 

( ) 0f                                                (11) 

3.2 Iterative algorithm for the cable force equation 

As we known, the Eq(11) is a transcendental equation. It can’t be solve directly. 
So it must adopt numerical methods, like Nowton-Raphson, for the purpose of 
obtaining the roots of Eq. (11).It is convenient to manipulate this expression to 
eliminate some differences, which, when they are made between close approximate 
numbers, can lead to round off errors as show in figure 2. 

1H

4,suppose error as 10nif f f     =

Hx

0nf f  0nf f 

1Hn nH H    1Hn nH H   

, , , , im L E I K

nf

f

ˆˆˆ ˆ ˆ ˆˆ ˆ, , ( ), ( ), ( ), ,y i jix f x C     



ˆ
n

 
Figure 2. flowsheet for cable force calculation 

4 APPLICATION EXAMPLE 

4.1 background 
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Sanshanxi Bridge is concrete filled steel tubular tied arch bridge. Tie bar, 
consisting of hundreds of steel strands, is located on the both end of bridge under the 
bridge deck with the length of 260m,which is used for resisting horizontal thrust of 
main arch. A bunch of tie includes 10 to 12 steel strands, and these steel strands are 
contact each other. There are 50 bunches of tie separated. Steel strands have been 
separated to three parts by points silk plate. The length of parts of steel strands is 
49.7m, 160.6m, 49.7m respectively. Points silk plate is welding inside steel box, 
which is using for protecting the tie bar from corrosion. Steel strand and points silk 
plate contact tightly, so each bunch of tie bar can be considered to be anchored at the 
place of points silk plate. It can’t be completed to determine the axial force of tie bar 
by applying frequency method directly if we have not solved the following two 
problems. One is how to test frequency of tie bar. Steel strands are contact each other, 
so we can apply some filling blocks to separate the steel strand, what’s important is 
determine the compression stiffness of filling blocks. The other is how to calculate the 
axial force of tie bar by measured frequency. There is changed boundary condition of 
steel strand by increased filling blocks. So it’s essential to deduce a new equation of 
cable force and frequency for cables with the intermediate multi-support. 

4.2 Test parameter 

Tie bar and steel strand both can be consider to be the cable, but it just can be test 
one steel strand frequency, so the cable is stand for steel strand in the following. The 
cable parameter is describing at table 1, E is the modulus of elasticity, I is the inertia 

moment,  is the mass density, A is area, d is diameter of section, L is the length of 

cables. 
Table 1. test parameter 

E(pa) I(m4)  (kg/m3) 
A(m2) d(mm) L（m）

1.95E+11 9.69E-10 7.85E+3 0.000137 15.2 49.7 
The filling block has three layers. There is steel plate at the top and bottom layer 

with the thickness of 5mm and block rubber at the middle layer with the thickness of 
40mm. The size of filling blocks is 5cm×5cm.The compression stiffness of filling 
blocks is determined by triaxial compression test. Two filling blocks have been made 

and the compression stiffness of them are respectly ： 6
1K 1.0464 10  N/m、

6
2K 1.0104 10  N/m. 

4.3 Cable frequency and cable force  

Cable frequency cannot be tested directly because of the contact between cables, 
so filling blocks are used for isolating cables as show in figure 3. And cable frequency 
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can be tested by dynamic testing instrument when optimum vibration system set at the 
middle of two filling blocks as show in figure 4, which are installed under the cable as 
show in figure 5. 

 

Figure 3. The model for testing cable frequency 

  

Figure 4. The installing place of optimum 
vibration system 

Figure 5. The installing place of the filling 
block  

It’s find that the 4th order frequency of cables can be easy tested as show in table 
2. 

 
Table 2. Tested cable frequency 

number 1 2 3 4 5 
The 4th order cable frequency（Hz） 16.2109 17.041 16.3086 16.2598 16.3574
  

By flowsheet for cable force calculation (fig.2), cable force has calculated as 
show in table 3. The average cable force is 97.4kN, which can evaluate the whole 
level of tie bar force. Using non-destructive testing (NDT) methods of Matharmethod 
[8], tie bar force can be tested to be 98.3kN. So the difference of tie bar force tested by 
two methods is small, just with the error of 1%. 

 
Table 3. Calculated cable force 

number 1 2 3 4 5 average
cable force（kN） 94.55 105.01 95.75 95.15 96.36 97.4 
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5 CONCLUSION 

The computational formula of frequency method cannot calculate cable force for 
cables with boundary conditions of constraints on the intermediate. so a new 
computational formula of frequency method is established for cables with the 
intermediate multi-support. Some conclusions are made as following: 

1）The proposal computational formula can be useful for application to calculate 
the tension force of cables with the intermediate multi-support, such as the damper at 
suspenders in the suspension bridge and intermediate support beam at the tie bar in 
the arch bridge. 

2）The proposal computational formula is a transcendental equation, so numerical 
method should be adopted, but it’s easy to make a programme, following fig 2 ,to 
calculating cable force. 

3）The field test shows that the difference of cable force, testing by the proposal 
method and the matharmethod ,is small, so the proposal method is reliable. 
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