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Abstract. In this paper, a force-based curved beam element is presented for geometrically 
nonlinear quasi-static analysis. The development is based on the Reissner’s exact stress resul-
tant theory and its finite strain field for shear deformable curved beams and arches. The pre-
sented technique is found by the flexibility based method in which force interpolation func-
tions are used. The state space approach, where a differential-algebraic equation system is 
solved simultaneously, is utilized as the system solution procedure. In order to improve the 
element accuracy, a higher order displacement field approximation is utilized based on La-
grange polynomials to evaluate the element flexibility matrix. Finally, the proposed method is 
validated by nonlinear examples which include some high nonlinear responses as snap backs 
and steep downward slopes as well as curvilinear beams and shear deformations effects. The 
comparison of this mixed technique with general displacement-based finite element approach 
demonstrates some improvement in the accuracy and reliability of the presented formulation 
with less discritizations. Besides, the shear/membrane locking is alleviated by the element 
because of using a mixed technique. 

Keywords: State space approach, Force-based method, Planar curved. 

1. INTRODUCTION 

Generally, exact and efficient analysis of frame structures, using robust numerical me-
thods should be based on proper nonlinear beam theories such as Reissner’s finite strain field 
[1, 2] which itself is based on Timoshenko’s plane cross section assumption. Since the consti-
tutive relations are written for stress and strain resultants instead of stress and strains, the 
Reissner’s beam theory reserves the computational efficiency in comparison with Timoshenko 
element model.  
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Many researchers have used this strain field or developed it for nonlinear analyses. 
Simo [3], Simo and Vu-Quoc [4] formulated and implemented an exact theory for three di-
mensional shear deformable beam element which reduces to Reissner’s in planar case. Saje 
[5] used the Reissner’s kinematic relations to present a finite element formulation for the fi-
nite deformation of arbitrary curved extensible shear deformable beam. Pajunen [6] per-
formed large deflection elasto-plastic analyses implementing Reissner’s kinematically exact 
beam theory. Jayachanrdan and White [7] implemented these strain displacement relation-
ships for planar beam using a variable order secant matrix. 

As another essential aspect of the modeling, two main points of view through the 
curved beam simulation have been regarded by researchers. First is using straight beam ele-
ments based on straight beam theories which generally require more elements to obtain satis-
factory results. (Simo and Vu-Quoc [4], Ibrahimbegovic et al. [8]). Second is the assumption 
of curvilinear reference line for the curved beam based on slender beam theories to get more 
accurate results with lower number of elements. (Saje [5], Simo el al. [9] and Ibrahimbegovic 
[10]). However, the applications of these methods result in some troubles for example in long 
term dynamic problems including thick or moderately thick beam elements. 

For the sake of completeness, it’s noted that the early attempts to develop shear de-
formable curved finite elements were not very successful and the resulted elements might ex-
hibit an excessive bending stiffness under inextensible deformation state and excessive shear 
stiffness particularly in very thin beam cases. To develop a new shear deformable curved 
element, it’s vital to properly conquer the locking problem for both moderately thick and very 
thin problems. There are generally four ways to overcome this trouble [11]: (i) The assumed 
strain technique [12], (ii) The reduced integration scheme [13, 14], (iii) The special hybr-
id/mixed elements [15], (iv) Appropriate Kirchoff/Mindlin representation with higher order 
coupled displacement rotation field [16].  

Up to now, traditional computer structural analyses have generally implemented stiff-
ness based elements that have some drawbacks associated with displacement field interpola-
tions. This particularly happens in highly nonlinearities and for non-prismatic beams [17]. 
Due to the time consuming solution processes in displacement based approaches, the equili-
brium-based elements have been employed to enhance the procedures by strict equilibrium 
satisfaction along them. For comparable accuracy in global and local responses, researchers 
have shown the robustness of these methods even in states of the softening and using lower 
number of degrees of freedom. The main advantage of the flexibility methods is the low inde-
pendency of the model discretization to errors in comparison with usual displacement based 
techniques; hence a fast convergence rate is achievable. Additionally, spread plasticity can be 
included in this formulation inherently. 

Generally, two main aspects of element state determinations have been implemented in 
force based applications. In the first method which was employed primarily by Spacone et al. 
[18, 19] and Taucer et al. [20], the residual displacement field is found in an iterative proce-
dure on the basis of updating forces and stiffness matrices. However, in the second scheme 
which was initially applied by Simeonov et al. [21] and Sivaselvan and Reinhorn [22, 23], the 
state space approach is utilized. Here, a set of Differential Algebraic Equations (DAEs) are 
developed consisting of rate form nonlinear material constitutive models (in the form of first 



 
 

order differential equations) and equilibrium equations of motion. The solution technique of 
the DAEs system was developed firstly by Brenan et al. [24]. This technique improves itera-
tive procedures by means of a single characteristic equation in all stages of cyclic nonlineari-
ties. Besides, for elasto-plastic analyses a smoother transition can be obtained between all 
parts of nonlinear branches. 

In this study the dynamical state space approach is applied to a force based shear de-
formable thin curved beam element as a solution procedure. The formulation is founded on 
the flexibility based method in which force interpolation functions and principle of virtual 
forces are used. In order to obtain the element flexibility matrix, the strong form equilibrium 
and weak form compatibility equations of the system are employed based on the Reissner’s 
strain field. It’s obvious that the equilibrium equation can be found simply for a geometrically 
nonlinear beam element as described by Reissner [2]. However, the compatibility equations 
of the system in State Space approach are written in rate form. 

Although the presented element has two nodes, its reference line is not straight. This is 
because of the existence of initial conditions at internal integration points. The results of 
some geometrically nonlinear bench marks demonstrate the accuracy and reliability of the 
element with lower discritizations. Besides, the use of the mixed techniques removes shear 
and membrane locking in the element. Additionally, the application of the continuous form of 
Arc Length constraint equation to the dynamical system leads to robust responses in high 
nonlinear phenomena including sharp downward slopes, snap through and snap back. 

2. ADOPTED COORDINATE SYSTEM 
 

Generally, a planar two node finite element curved beam has six degrees of freedom in 
undeformed state as shown in Fig. 1a. The element stiffness matrix is singular in this system 
due to presence of rigid body modes; consequently a new coordinate system is adopted so as 
to exclude these singularities. Fig. 1b presents this coordinate system and its degrees of free-
dom. This presentation has been used by Carol and Murcia [25], and Neuenhofer and Filip-
pou [26] for straight beams. The three local degrees of freedom are 

 



 
 

 
Figure.1. Global and Local coordinate systems, (a) Global coordinate system and degrees of 
freedom for a planar undeformed curved beam element.  (b) Local adopted coordinate system 
without rigid body modes in element deformed state 
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 Where vector components are shown in Fig. 1. Since the structure undergoes large de-
formations with small strains, the choice of reference configuration is important for establish-
ing the governing equations. To handle arbitrarily large rotations during the analysis, the co-
rotational transformation method is used between two coordinate systems in this work. For 
more details see, e.g. [27, 28]. 
 
3. KINEMATIC HYPOTHESIS 

The implemented formulation is based on the Timoshenko beam theory assuming that 
plane cross sections remain plane, but not necessarily normal to the deformed longitudinal 
axis. Besides, changes in cross section geometry are neglected. In this regard Reissner has 
developed a kinematically exact stress resultant theory for curved beams and arches. The 
finite strains in this formulation can be specialized as  

        ,0 0 0 0 0 0s z s z s s                                        (3) 

               cos sin 10 0 0 0 0 0 0 0s x s u s s y s v s s                    (4) 

               sin cos0 0 0 0 0 0 0s x s u s s y s v s s                        (5) 

     0 0 0 0s s s                                       (6) 

In which   / 0d ds   denotes the differentiation with respect to element unde-

formed axial coordinates, u  and v  are the displacements of the x   and y   local direc-



 
 

tions, respectively and   measures the angle between beam cross section and the y   axis. 

For simplicity the parameters are written in simplified form, for instance  0s  . Eqs. (3) 

and (5) can be rewritten as 

     ,0 0s z z s ε Ψ d                                                 (7) 

Where: 

  1 0
0 0 1

z
z

 
  
 

Ψ                     (8) 

 0 0
T

s      d                                                 (9)  

 
4. EQUILIBRIUM AND COMPATIBILITY EQUATIONS 
 
The strain-displacement relationship leads to the following helpful relations: 
 

  22 1s                                                      (10)  

 1 cos sin0
0

d
ds


                                           (11) 

 1 sin cos0
0

d
ds


                                   (12) 

Where  ,   is the coordinate of a point which was  ,x y  on the initial configura-
tion before deformation. Also / 0s ds ds   is the differentiation of current configuration with 
respect to the initial state. As it’ll be seen next in this article, Eqs. (11) and (12) will be em-
ployed for the alternative displacement interpolation technique, on the way to improve the 
accuracy of the responses. 

 If the shear and curvilinear effects are neglected, the abovementioned equations can 
be simplified to those of Huddleston [29], as used by Sivaselvan and Reinhorn [22, 23] for the 
straight Euler-Bernoulli beam in the state space approach. 

The geometrically nonlinear equilibrium equations for the planar shear deformable 
beam-column element (Fig. 1b) has been derived by Reissner [1] as: 
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s Γ p        (13) 

In which 1l L D  . As it’s seen the relation between section force components and 
element end forces is shown in Eq. (13).  



 
 

For compatibility equations, it’s noted that a rate form is considered in this technique, 
which makes it different to the previous matrix-based methods by Spacone et al. [18, 19]. The 
weak form compatibility equations for Timoshenko frame can be derived using the completely 
analogous procedure (but with shear effects) to that of Sivaselvan and Reinhorn [22] for Eu-
ler-Bernoulli beams. From Eqs. (11) and (12) we have: 

0
0 0
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After some simplifications using integration by parts, a similar result is achieved. For 
briefness the detailed procedure is not mentioned here, but can be traced similar to Euler-
Bernoulli beam element in [23]. The compatibility equation is finally derived as 

 0 0
0

s ds
s

  Tδ Γ d                                                  (17) 

5. SECTION CONSTITUTIVE RELATION 
 

The section in this work is assumed to be elastic and symmetric, therefore its constitu-
tive relation for a geometrically nonlinear element is determined by 
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Where ET  and GT  are the axial and shear material tangent modulus. Also A , I  

and As  are section area, inertia and shear area, respectively. Eq. (18) has been written 

based on: 

     0 0 ,Ts z s z dA
A

     
s Ψ σ                                             (19) 

In which      0 0 0, , ,s z s z s z σ  where  0 ,s z  and  0 ,s z  are the axial 
and shear stresses over the section, respectively. The symmetric section flexibility matrix is 
then computed as the inverse of section stiffness matrix as follows: 



 
 

   0 0
1s ss

Φ Κ                                                      (20) 

6. FLEXIBILITY-BASED PLANAR CURVED BEAM ELEMENT FORMULATION 
 

The flexibility matrix for a geometrically nonlinear is obtained using the rate form 
compatibility equation. In this regard Eq. (17) can be rewritten as 
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Therefore the element flexibility matrix is 

0
0

T ds
s

     
F Γ ΦΓ                                                 (22) 

 It’s noted that the first term (at the second side) in Eq. (21) indicates the initial stress 
term. Both Gauss and Gauss-Lobatto rules are valid for the flexibility matrix evaluation, but 
as a more applicable method for general structural analysis, the Gauss-Lobatto rule is uti-
lized to evaluate the flexibility matrix in the abovementioned equations. 
 
7. APPROXIMATION OF THE ELEMENT DISPLACEMENT FIELD 

While the element flexibility matrix is evaluated at Gauss points inside the element, the 
element displacement fields including  ,   and   need to be evaluated at these points. Addi-
tionally, the element accuracy in high nonlinearities can be directly affected by the approxi-
mation procedure. That’s why a higher order displacement approximation method (in com-
parison with that of Sivaselvan and Reinhorn [22]) is adjusted in this work. To this end a po-
lynomial based approximation field is developed for the beam element as described hereafter. 

The proposed technique is basically a combination of linear approximation field [23] 
and curvature based displacement interpolation (CBDI) technique [26]. In the present formu-
lation, the deformations are monitored at NG  integration points in terms of NG  parameters 

as  sj j   θ ,  γ sj j γ  and  sj j  ε , where js  are the local Gauss points coordi-

nates on the initial curved beam configuration. According to this: 
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s l s γj jj
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Where ( )l sj  are the Lagrange Polynomials which are obtained from the following formula 

 
 

 
01,

0 01,

NG
s s ii i jl sj NG
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
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
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                  (26) 

Thus 

 l sj i ij                      (27) 

While there is a need to integrate over functions, the more applicable form of the po-
lynomials for closed form integration is used as 

      1 1[ ... [ 1 ... ]1 2
nl s l s l s s sn
  G                  (28)  

Where G  is the so called Vandermode matrix described by 
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    



        (29) 

As the number of integration points doesn't change during the analysis, this matrix is 
determined only once. Starting from one end of the element, the incremental form for the in-
ternal displacement field can be stated as 

1 , 1i i i i                                                        (30) 

1 , 1i i i i                                                        (31) 

1 , 1i i i i                                                        (32) 

To use a higher order and more accurate integration, the incremental values are 
found as 
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                            (35) 

Where 0S  indicates the undeformed length. Once, the displacement field is obtained 
from one element end, the procedure is repeated from the other end and the same operations 
as Eqs. (30) through (35) are performed. Finally a weighted average of two resulted fields is 
taken and three required parameters are obtained. In this work, the weights have been consi-
dered equal for every internal node. Besides, the local boundary conditions are enforced to 
end nodes. 

The integrations in Eqs. (34) and (35) are achieved based on a local Gauss or Gauss-
Lobatto procedure which is performed between  s si  and s s j .  

  
8. SUMMARY OF STATE EQUATIONS USING CONTINUOUS SPHERICAL ARC 
LENGTH TECHNIQUE 
 

For the sake of completeness, it’s noted that a general form which has been proposed 
before [22], is taken into account for the global and local state equation sets. However, in 
order to capture the snap back or steep negative slopes in responses during a quasi-static 
analysis, a spherical Arc Length technique is used in this study to develop the continuous con-
straint equation. In this state, the constraint equation is established through the controlling 
response arc length rather than single characteristic displacement controlling methods or 
load incremental controlling procedures. For more details see e.g. [30, 31]. The simple form 
for the additional constraint equation is  

   2T Ts Sign f t  u u P P                                           (36) 

where s  is the incremental arc length. Also  f t  is a function which demonstrates 
the direction of moving in the quasi static analysis. u  and P  are the derivation of displace-
ment and applied force with respect to t , respectively. Besides,   is a scaling parameter for 
loading terms. Consequently, the whole form of the DAEs set is described as follows: 

- Nodal equilibrium equations (Three equations at each node for a two-dimensional 
problem) 

-  Boundary conditions (specified displacement components at some boundary nodes) 
- Section constitutive relations (Including three sets of differential equations for axial 

strain, curvature and shear strain in every element) 



 
 

- Element state equations ( six equations exhibiting the relationship between end forces 
and end displacement components for each element) 

 
9. NUMERICAL EXAMPLES 

9.1.  Unrolling And Re-Rolling of A Semi Arch Beam With Moment At The Tip 
 

The first example represents the geometrically nonlinear analysis of a semi circular 
cantilever beam with a bending moment applied at the free end. This demonstrates not only 
the ability of the co-rotational formulation to solve finite strain problems (with a suitable me-
dia discritizations) but also the efficiency of the method to handle large initial curvatures in 
the beam. This problem which its configuration and properties are shown on Fig. 2, has been 
solved previously by Jayachandran and White [7]. The beam has a rectangular cross section 
of B H . The quasi-static analysis is performed using five elements and five internal Lobat-
to points. As shown in Fig.2 the beam deforms form the initial semi arch state to direct, semi-
circular arch and then a full circle in the reverse situation. Table I shows the results of the 
analysis for vertical and horizontal displacements of the tip using the proposed element for 
different moment values. It’s observed that using five elements in this problem results in ap-
proximately 1.65%  relative error in end rotations. 
 

 

Figure.2 Large deflections of a flexible bar subjected to end moment 
 

 It’s noted that the use of Lobatto points instead of Gauss points is because of the more 
applicability of these type in the elasto-plastic structural analyses i.e. existence of two end 
nodes in Lobatto scheme. 

Also, the values of shear forces and shear deformations in this problem are found al-
most exactly as zero. It’s seen that while these values are independent from the height of the 
beam element, no shear/membrane locking has been occurred during large deformations. 
This is because of the utilization of a force based method, which itself is a particular state of 
mixed techniques. The next example provides more detailed information on the removing 
shear/membrane locking effect.  

 



 
 

Table I. Horizontal and Vertical displacements of the tip of semi circular cantilever beam 
subjected to end moment compared with analytical solution which is found regarding, 

/M EI   

Moment Vertical 
Displacement 

Horizontal 
Displacement 

End  
Rotation 

00 M  0.0000 0.0000 0.0000 
10 M , Present 226.0575 138.1864 3.0902 
10 M ,Exact 226.1947 144.0000 3.1416 
20 M , Present 7.6432 292.5035 6.1803 
20 M , Exact 0.0000 288.0000 6.2832 
30 M , Present -5.68776 144.4395 9.2705 
30 M , Exact 0.0000 144.0000 9.4248 

 
9.2. A Tip-Loaded Cantiliver Ciecular Arch 

 
This example reveals that the shear/membrane locking phenomena is alleviated in the 

present formulation. A quarter ring subjected to radial point load P  at its free end is shown 
in Fig. 3. The exact solutions for three displacement vector components at the tip are men-
tioned using the Castigliano’s energy theorem in [11]. To study the shear and membrane 
locking effect in the presented formulation, a range of  /R h  ratios between 50  and 1000  
are utilized and the results are mentioned in table II. It’s seen that both shear locking and 
membrane locking are removed for different values of /R h  ratios for very slender states and 
the results are almost independent from the /R h  ratios. Consequently, the formulation is 
reliable to be applied to very thin beams without any problem. 
 

 
 

Figure.3 A quarter circular cantilever ring 
 
Table II. Displacement components of the tip of quarter cantilever beam subjected to end load 
normalized to exact solutions [11].  u : horizontal displacement, v : vertical displacement and 

 : end rotation. 
1000/ hR  500/ hR  100/ hR  50/ hR  Normalized 

Component 10elN  5elN  10elN  5elN  10elN  5elN  10elN  5elN  
9988.0  9956.0  9989.0  9958.0  9989.0  9958.0  9988.0  9957.0  exactuu /  



 
 

9997.0  9967.0  9991.0  9960.0  9990.0  9959.0  9990.0  9959.0  exactvv /  

9994.0  9964.0  9990.0  9960.0  9990.0  9959.0  9990.0  9959.0  exact /  

 
 

9.3. Post-Buckling Analysis of A Clamped-Hinged Circular Arch 
 

This well-known example presents the geometric nonlinear analysis of the pre- and 
post-buckling deformation of a circular arch, hinged at one end and clamped at the other end, 
under a vertical force applied at the apex. This problem was suggested by Da Deppo and 
Schmidt [32] and has been analyzed by many researchers. (Simo and Vu-Quoc [4], 
Jayachandran and White [7] and Wood and Zienkiewicz [33] , Ibrahimbegovic [34]).  

Material and geometric data for the arch are shown in Fig. 4. As responses show, the 
problem includes a sharp negative slope after the first buckling load is reached. The use of 
continuous form of constraint equation results in robust responses as are demonstrated in 
Fig.5 for eight elements and five Lobatto points. Also, table III compares the results of the 
proposed technique (using eight and ten elements, both with five internal Lobatto points) with 
previous researches. 
 

 
Figure.4. Circular arc geometry and deformed shape in some different load levels 

 
The use of Arc Length solution technique assists to trace the complete equilibrium 

path which includes a steep downward slope. A form of    2 2 2s Sign v v P      is 
utilized as a constraint equation in this system. For this problem, ten elements with five 
internal Lobatto points result in accurate responses. 
 

 
Table III. Comparison of the critical load for circular arc 

 
Model Num. of 

 Elems. 
Limit Buckling 
 Load 

Da Deppo and Schmidt [32] 200 (FD points) 897.00 
Wood and Zienkiewicz [33] 16 924.00 
Ibrahimbegovi´c and Frey [34] 
(3-noded, curved) 20 897.50 



 
 

Simo and Vu-Quoc [4] 
(2-noded, straight) 40 905.28 

Jayachandran & White [7] 
(Curved with 1 internal node) 

10 906.26 

Proposed Formul. 
(Curved with 5 Lobatto points) 8 899.10 

Proposed Formul. 
(Curved with 5 Lobatto points) 10 897.25 

Reference solution - 897.23 
 
 

 
Figure.5. Post-Buckling behavior of the circular arc, SSA: State Space Approach 

9.4.  Post-Buckling Analysis of A Shallow Circular Arch 
 

A shallow circular arch which is pinned at its two ends and is subjected to a 
concentrated load at the point close to its peak is shown in Fig. 6. The properties of the 
problem have been illustrated on the figure. This bench mark problem has been analyzed by 
some researchers such as Li [35] and Clarke and Hancock [36]. For this problem two 
elements with five Lobatto points inside each element are considered. The load deflection 
response curve of this shallow arch is depicted in Fig. 7, where multiple load critical points 
and also displacement limit points exist at the buckling and post buckling stages. The fitness 
of the present study with the results in several critical points obtained by Clarke and Hancock 
[36] and Li [35] has been demonstrated in Fig. 7. 

 
Figure.6.  shallow circular arch subject to an offset concentrated load 

 



 
 

 
Figure.7. Response of a shallow circular arch subject to an offset concentrated load, SSA: 

State Space Approach 
 

It’s seen that since the exact equilibrium is satisfied along the curved elements, 
accurate and reliable results have been found with the present flexibility based technique 
using less discritizations. The results of the present method are comparable with those of Li 
[35], with 11 elements. Some deformed states of the arch are shown in Fig. 8.  

 

 
Fig.8 the deformed shapes of shallow circular arch under different load levels 

 
Additionally, the application of continuous arc length constraint equation in the 

problem leads to robust responses where large displacements and rotations are experienced. 
 
CONCLUSIONS 
 

A formulation is presented for a geometrically nonlinear force-based shear 
deformable curved beam element. The curved inherent of the presented two node element is 
hidden in its integration points. In this approach the elements geometrically nonlinear 
behavior is formulated by differential equations involving a set of variables that describe the 
state of each element and solve them simultaneously with the global equations of motion. 
While the presented formulation is based on the mixed approach, it removes shear/membrane 
locking inherently. Additionally, the application of the new displacement approximation filed 
with the force based technique in which equilibrium equations are satisfied exactly along the 
element, leads the analysis to more accurate and reliable results with less discritizations. 
Besides, the use of this presentation in conjunction with the continuous form of the Arc Length 
additional constraint equation makes it possible to trace the complete equilibrium path which 



 
 

may include sharp downward slopes or snap backs, very stably. The presented technique is 
very straight forward to be applied to elasto-plastic analyses, because a single characteristic 
equation in all stages of cyclic nonlinearities is used. Moreover, the effects of interaction can 
be incorporated in the analyses, using the same procedure described by Sivaselvan and 
Reinhorn [22]. 
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