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Abstract. To avoid annoying vibration of office and residence floors, codes usually state that the 

first natural frequency of each panel should be at least 6 Hz; this concept has lately become a 

sort of taboo for structural engineers. However, in many cases panels have a natural frequency 

below (even much below) that limit; it is then necessary, in order to comply with the codes, to 

increase the frequency by acting on the mass and/or stiffness, or to add tuned-mass dampers. 

Before resorting to these measures, that may prove difficult and expensive, it is advisable to first 

perform a vibration analysis of the floor and to assess the vertical accelerations induced by 

walking persons; codes provide upper limits for these accelerations. The present paper presents 

a methodology based on the Monte Carlo Method in which the vibration is simulated in a finite-

elements model. A numerical example illustrates the proposed methodology through the analysis 

of a floor with a 2.9 Hz first natural frequency. 

Keywords: random, vibration, walking.  

 

1. INTRODUCTION 

 

 Great attention has been lately given to structural vibrations induced by persons activity. 

Sometimes the activity is rhythmic, as in soccer stadiums and in gymnasia where aerobics or 

other sports are performed; the activity can be: 

- running; 

- jumping; 

- handclapping with body bouncing while standing; 

- handclapping while being seated; 

- lateral body swaying. 

 In these cases it is usually possible to establish an overall forcing function, using 

information provided by literature and codes,. Through a deterministic dynamic analysis  in the 

time domain it is then possible to calculate displacements, velocities and accelerations of the 

structure and to compare the results with maximum code-determined values. 

 In the case of walking persons, however, even if we know the frequency of the activity 

(around 2 Hz), its intensity (vertical forces that during a step fluctuate from ~ 0,5  to ~ 1,5 times 

the weight of one person) and the function that defines such variation in time, each person will 

have its own arbitrary rhythm. We are here in the presence of a random vibration problem
1
. 
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 To avoid excessive vibration, that may cause discomfort, it is usually admitted - and 

codes confirm this fact - that a floor should have a first natural frequency of at least 6 Hz; this 

limit has lately become a sort of taboo. However, in many practical cases the designed floor may 

have a frequency much lower than 6 Hz. The following options are possible: 

- increase the frequency by acting on the stiffness and/or the mass of the floor; 

- introduce tuned-mass dampers. 

 These solutions may prove difficult and expensive. Before resorting to them the designer 

should first perform a random analysis of the floor to assess its response in terms of maximum 

vertical accelerations. Codes provide maximum values. 

 In this paper we will present a methodology for the random dynamic analysis of 

structures (floors, pedestrian bridges) submitted to a number of walking persons, based on the 

Monte Carlo Method
2
. The numerical example of an office floor with a first frequency of 2.9 Hz 

will illustrate the proposed method. 

 

2. RANDOM DYNAMIC PROCESSES  
 

 Let us consider the record of the response of a structure to a certain number of persons 

walking in a determined area. If we repeat the process many times, the results will be different in 

each trial, because we will not have full control of one condition of the experiment: the phase-

angle associated to each person. The process will therefore be random
1
. 

 

3. THE MONTE CARLO METHOD 

 

 Let us assign to each person one particular phase angle, or arrival time. We can analyze 

the structure for this particular situation, provided that we know the frequency of the steps (say   

2 Hz) and the function that defines the vertical force exerted by each person on the structure 

(code-defined); this will lead to a deterministic process. However, of course, a single trial will 

not provide sufficient information. 

 The Monte Carlo Method
2
, also sometimes called the method of statistical trials consists 

in repeating the trial N times. We will then obtain for each trial the values of the relevant 

responses. If the number of trials is sufficiently high a statistical analysis will provide us  

probable maximum responses. This method is particularly efficient when a high degree of 

accuracy is not needed, as is the case we are studying. It will be shown in a numerical example 

that an acceptable precision may be attained using as few as 10 trials (N=10) although in our 

numerical example we pushed the analysis up to N=40. It should be noted that as a rule the error 

of the Monte Carlo Method is proportional to N/D , where D is a constant and N is the 

number of trials. 

 

4. BASIC DATA FOR ANALYSIS 

  

 4.1. The structure 

 

.The structural model of the floor should include the mass of floor finish, ducts and 

furniture, and the mass of the considered persons. In this paper the structure of the numerical 

example was modeled in finite elements using the SAP-2000.V14.1. program. 



 

 

4.2. Damping  
 

CEB Bulletin d'Information n
o 

209
3
, page 15 suggests the following damping ratios ξ, as 

a fraction of critical: 

 - bare floor       ξ = 0.03 

 - finished floor (with ceilings, ducts, flooring, furniture) ξ = 0.06 

 - finished floor with partitions    ξ = 0,12 

 

 4.3. Limits for floor vibration  
 

The mentioned CEB Bulletin
3
, page 3, suggests (Fig.1) the acceptable limits of peak 

acceleration (% g) due to walking in normal office building and residential floors, as a function 

of floor frequency. Two cases are considered: 

-  maximum peak acceleration, transient phase, for a ξ = 3%, 6% and 12%  floor 

damping; in this case a ξ = 6% damping value is recommended by CEB.. 

- average peak acceleration, stationary phase,; in this case a  ξ = 3% damping value 

is recommended, because amplitudes will be lower than those of transient peak phase of 

vibration. 

 

 4.4. Forcing function 

 

The CEB Bulletin
3
, page 199, presents (Fig.2) the forcing function resulting from footfall 

overlap (left foot + right foot) during walking with a pacing rate of 2 Hz as a function of the 

quotient Force/Static weight. A weight of 0.8 kN (80 kgf) per person is recommended for the 

analysis. 

 

 4.5. Number of walking persons 

 

The population of a floor, for the purpose of calculating the traffic of the building (stairs, 

elevators) and for the design of the air conditioning system is usually fixed at one person per 6 

m².  However, to stay on the safe side, we recommend the rate of one person per 3 m², positioned 

as near as possible to the center of the vibrating panel. In the numerical example (Figs.3, 4), the 

critical panels #1 and #2  have an area of 15.00 x 17.60 = 264 m², and the number of person 

considered  is therefore 264/3=88. 

 

5. THE ANALYSIS  
 

The example analyzed consists of the typical floor of a 18 floors building presently under 

construction in Rio de Janeiro (Figs. 3 and 4). The floor structure consists of a waffle slab with 

drop panels having an overall 50 cm height, ribs 12,5 to 25 cm wide @ 80 cm and a top slab      

10 cm thick. For analysis purpose the waffle slab was replaced by a solid plate having an 

equivalent thickness of 28.3 cm (same weight and mass as the real structure). The bending 

equivalent stiffness in both 11 and 22 directions was corrected by  factors k11 = k22 = 1.9, and the 

torsion stiffness by a factor k12 = 0.2. Fig. 5 shows the finite elements model and Fig. 6 the 

concentrated masses of the 88 persons, placed (somewhat improbably) near the center of the 



 

 

critical panel at distances of 80 cm. We imagine all the 88  persons walking in that restricted area 

with 0,5 seconds steps; it seems indeed a severe enough vibration test. Fig. 7 shows the first 

mode of vibration of panel #1 with a frequency of 2.90 Hz, in which the mass of the 88 persons 

was taken into account 

 Fig. 8 shows the forcing function "passadas" (steps), to be applied to each of the 0.8 kN 

loads in positions P1, P2,...,P88. It is formed by a ramp function varying from 0 to 1, plus 15 

steps with a duration of  ∆t = 0,5 s each, defined using the diagram shown in Fig. 2.  

 Fig. 9 represents the entire forcing function for one case; each of the 88 lines (only the 

first 7 lines are visible in the figure) represents one person, whose load (specified at 0.8 kN) is 

affected by the function "passadas" and whose arrival time is k*∆t/10 = k*0.05 s (it coincides 

with one of the 10 points of the diagram. The coefficient k is an integer that varies from 0 to 9, 

and is randomly generated by using the function RAND of a HP-42S Scientific Calculator
4
. 

 Four batches of 10 trials each were generated, corresponding to a total of 40 trials. The 

typical aspect of the resulting vertical acceleration Üz in the time domain for all trials is shown in 

Fig. 10. It can be seen that the response presents four phases: 

- phase 1 is  transient; during this phase persons start walking, each with its own arrival time; 

- phase 2 is  stationary, and it lasts during the time interval in which all persons are walking; 

- phase 3 is  transient, and it starts when persons stop walking, one by one; 

- phase 4 is a free damped oscillation that starts when the last person ceased walking. 

 It should be noticed that, although all the responses have these 4 phases, they differ from 

one case to another  both in aspect and in the ratio between transient and stationary peaks.. For 

instance, in case #30 (Fig. 11) we observe a transient peak of 4.7 cm/s² and a stationary peak of 

3.0 cm/s² (ratio: 4.7/3.0 = 1.57) whereas in case #18 (Figs. 12 and 13) the transient peak is       

5.2 cm/s² and the stationary peak is only 0.77 cm/s² (ratio: 7.2/077 = 9.35). 

 The resulting accelerations (in cm/s²) for the 40 trials are presented in Tables 1 and 2. 

The first two columns show transient (Col.1) and stationary (Col.2) responses for a ξ = 3% 

damping; the third and fourth columns show the respective responses for a ξ = 6% damping. In 

Table 3 each batch of 10 trials is presented separately, showing mean (μ), standard deviation (σ), 

and probable maximum acceleration (Ümax), with a gaussian distribution and a 5% percentile
1
: 

 

                                                            Ümax= µ + 1.65 σ.                                                                                             (1)  

 

 In table 4 the values for the overall batch of 40 trial cases are presented. It can be 

observed that the separate results of the 4 batches (Table 3) are very similar to the overall values 

(Table 4), suggesting that in this example 10 cases might have been sufficient, especially  

considering that a great precision is not required. In general, however, it is advisable to analyze 

at least two batches of 10 cases each. 

 The peak stationary maximum  acceleration  for  a  ξ = 3% damping ratio  is 3.8 cm/s², 

(~0.4% g) which is below the limit of 0,5% g = 4.9 cm/s² of ref (3); see Fig. 1. The peak 

transient maximum for a ξ = 6 % damping ratio was found to be 7.7 cm/s²  (~ 0.8% g), well 

below the limit of 5% g = 49 cm/s²  of ref. (3); see Fig. 1. The structure is considered adequate. 

                                                           
1
 The histograms associated to the 40 trial cases  (Figs. 14 and 15) suggest a Gumbel-type distribution, more 

adequate to a universe of extremes. However, the gaussian hypothesis is sufficiently accurate for the purpose of this 

analysis. See Figs. 14a. and 15a. 



 

 

6. CONCLUSIONS 

 

 Many floor structures present a first natural frequency below (sometimes much below) 

the code recommended 6 Hz limit. Before resorting to expensive and sometimes quite difficult 

solutions such  as modifying the structure or adding tuned-mass dampers, a dynamic analysis is 

recommended. In this paper a methodology was presented, based on the Monte Carlo Method, 

that allows to determine with sufficient precision the response of a floor to an adequate (perhaps 

even excessive) number of walking persons at a density of one person per 3 m² of the total 

vibrating panel, with a spacing in the order of 0,80 m to 1,20 m. It was found in the numerical 

example that the critical response is the peak stationary acceleration, which should be below the 

0,5% g recommended limit; this response was found to be 0.4% g; the peak transient 

acceleration  - 0.8% g -  is much below the 5% g recommended limit. 
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Figure 1. Acceptable transient and continuous vertical accelerations 

 

Figure 2. Digitalized step function (2 Hz) 



 

 

Figure 3. REC SAPUCAÍ. Archs: Oscar Niemeyer, Ruy Rezende 

 

Figure 4. Typical floor. Structure 

                 panel #1                                                                                                      panel #2



 

 

 

Figure 5. Model of floor (SAP-2000. V14.1.) 

 

Figure 6. Masses of 88 persons: 80 kg/person @ 0.80 m 



 

 

 

Figure 7. First mode of vibration (88 persons): f1  = 2.9 Hz 

 

Figure 8. Function “passadas” (15 steps) 



 

 

 

Fig. 9. Forcing function for 88 persons 

 

Figure 10. Vibration phases: Üz 



 

 

Figure 11. Total response Üz (trial #30) 

 

Figure 11
a 
. Total response Üz (trial #28) 

 



 

 

Figure 12. Total response Üz (trial #18) 

Figure 13. Stationary response Üz (trial #18) 

 



 

 

 

Figure 14. Histogram for stationary 3% damping case 

 

Figure 15. Histogram for transient 6% damping case      

  

                                         mean              max.       0.5 % g

        0            1             2              3             4             5 cm/s²

                                             mean                           max.

    3             4            5             6             7             8       cm/s²



 

 

                        

 

Figure 14a. Stationary case. Gauss and Gumbel distributions 

 

                        

 

Fig. 15a. Transient case. Gauss and Gumbel distributions 



 

 

 

Trial 3% Transient 3% Stationary 6% Transient 6% Stationary 

1 6.27 1.60 5.54 1.49 

2 4.10 1.51 3.74 1.38 

3 5.16 1.09 4.86 0.76 

4 5.10 1.82 4.82 1.68 

5 4.60 2.53 4.41 2.48 

6 5.88 1.57 5.22 1.45 

7 4.91 3.14 4.60 2.16 

8 7.91 3.86 7.21 3.56 

9 6.92 1.08 6.07 0.74 

10 8.43 3.32 7.53 2.82 

11 5.31 1.40 4.80 1.16 

12 7.32 1.91 6.32 1.50 

13 5.45 2.27 4.93 2.11 

14 3.95 2.17 3.81 1.93 

15 7.92 3.02 7.04 2.56 

16 7.99 2.89 7.20 2.55 

17 4.52 1.46 4.23 1.19 

18 5.47 0.89 5.17 0.77 

19 7.29 2.73 6.35 2.38 

20 4.14 2.04 3.95 1.75 

 

Table 1. Trials #1 to #20. Üz (cm/s²) 



 

 

 

Trial 3% Transient 3% Stationary 6% Transient 6% Stationary 

21 4.55 3.35 4.34 3.36 

22 4.10 3.01 3.81 2.96 

23 5.84 1.68 5.25 1.41 

24 5.62 1.11 5.24 0.80 

24 2.18 2.14 7.24 1.73 

26 7.89 3.03 6.92 2.61 

27 5.42 1.16 4.81 1.03 

28 5.87 2.19 5.51 2.04 

29 6.93 1.46 6.10 1.28 

30 4.73 2.88 4.10 2.73 

31 5.07 3.41 4.35 3.28 

32 6.69 1.25 5.94 0.94 

33 6.63 1.76 5.75 1.41 

34 5.36 2.26 4.98 2.13 

35 6.03 3.19 5.49 3.02 

36 7.21 2.20 6.47 1.81 

37 7.19 4.41 6.58 4.20 

38 5.31 2.34 4.77 2.21 

39 6.93 2.05 6.49 1.78 

40 9.38  4.58  8.29 4.20 

 

Table 2. Trials #21 to #40. Üz (cm/s²)    



 

 

 

Batch #1 to #10 3% Transient 3% Stationary 6% Transient 6% Stationary 

Mean  µ 5.93 2.15 5.40 1.93 

 Sdev.  σ 1.44 0.98 1.22 0.97 

μ + 1.65 σ 8.31 3.78 7.41 3.53 

Batch #11to #20 3% Transient 3% Stationary 6% Transient 6% Stationary 

Mean  µ 5.94 2.08 5.38 1.78 

Sdev.  σ 1.56 0.69 1.26 0.62 

µ + 1.65 σ 8.51 3.22 7.46 2.80 

Batch #21 to #30 3% Transient 3% Stationary 6% Transient 6% Stationary 

Mean µ 5.91 2.20 5.33 2.00 

Sdev.  σ 1.37 0.83 1.15 0.88 

µ + 1.65 σ 8.18 3.57 7.23 3.45 

Batch #31 to #40 3% Transient 3% Stationary 6% Transient 6% Stationary 

Mean  µ 6.58 2.75 5.91 2.50 

Sdev.  σ 1.27 1.11 1.13 1.13 

µ + 1.65 σ 8.67 4.59 7.78 1.36 

 

Table 3. Statistics for 4 separate batches of 10 trials each. Üz (cm/s²) 

 

 

 

 



 

 

 

Batch #1 to #40 3% Transient 3% Stationary 6% Transient 6% Stationary 

Mean  µ 6.09 2.29 5.35 2.05 

Sdev.  σ 1.39 0.92 1.40 0.92 

μ + 1.65 σ 8.38 3.82 7.66 3.57 

 

Table 4. Statistics for batch #1 to #40. Üz (cm/s²) 

 

 

 

 

 

 

 

 

 

 

 

 


