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Abstract. This work presents a topology optimization for frequency responses in multiphysics
problems involving fluid-structure interaction. A mixed formulation (u/p) is used, in which the
pressure and displacement are governed by Helmholtz equation and the elasticity equation,
respectively. The optimization method used in this work is the Bi-directional Evolutionary
Structural Optimization (BESO), which consists in a successive elimination and replace-
ment of elements in the design domain. The feasible space of solution is defined initially
and through a sensitivity analysis of the frequency response functions the evolutionary algo-
rithm remove or add solid elements. The sensitivity analysis is described for the dynamic
problems and the sensitivity numbers are evaluated for several conditions. The formulation
implemented in FORTRAN aims to determine the optimum topology in order to minimize the
displacement and/or pressure in specific parts of the system for a certain range of frequency
excitation. A number of final topologies for vibroacoustic problems are shown, as well as their
intermediary topologies and evolutionary history. The results show that this methodology can
be applied to this type of problem with good efficiency.
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1. INTRODUCTION

In order to improve the vibration or pressure characteristics of a system, topology
optimization might be applied [1]. The basic idea is to find an optimal distribution of material
in a structural design domain, considering an objective function. In this work, we investigated
how the vibration or pressure characteristics of given examples can be improved on the basis
of the structural frequency response function (FRF) with topology optimization.

Between researches considering dynamic responses, we can cite the work of Diaz and
Kikuchi [2], where they applied topology optimization by considering the eigenvalues of a
structure for optimal plate reinforcement using the homogenization method. Ma et al. [3]
extended the same method to problems of vibrating structures. The topology optimization
considering dynamic responses was also investigated with the classical material interpolation
method ’SIMP’ (Solid Isotropic Material with Penalization) [1]. Many efforts have been made
to develop and optimize dynamic systems. Frequency optimization is of great importance in
many engineering fields and dynamic responses must be took in account in a wide range
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of problems. One of these problems is the class of multiphysics systems. The applications
of topology optimization methods have also been extended to multiphysics problems [4-6].
Although these procedures have reached a satisfactory level of maturity, there are still many
topology optimization features open to research or less-than-satisfactorily resolved issues [6].
Commercial FEM packages often contain solvers for multiphysics problems, however they do
not enable optimization. A particular class of multiphysics problems involves fluid-structure
interaction (FSI), which is the main topic of this work.

Among the current optimization methods, the Bi-directional Evolutionary Structural
Optimization (BESO) was chosen in this work for FSI problems analysis, since the method is
almost not explored in this area. The technique so called Evolutionary Structural Optimization
(ESO) was first introduced in the 90’s with Xie and Steven [7]. With the finite element anal-
ysis, the ESO method was initially proposed as a gradual removal of inefficient material from
the design domain until the remaining structure converges to the optimum topology. Material
elimination is done after a sensitivity analysis. However, it is questionable that eliminated
elements can never return to the design domain, since the sensitivity analysis is carried out
only for the solid elements in the structure. Thus, a later development of this method was
called Bi-directional ESO (BESO), in which elements are also added in void positions near
to the elements with the highest sensitivity numbers [8]. In this case, the sensitivity number
is a local index and represent the sensitivity of each element with respect to the objective
function. Studies with the BESO method have recently been published presenting convergent
and mesh independent solutions for stiffness maximization [9], for natural frequency maxi-
mization [10] and others. Critical analysis of ESO-based methods are found in [11], while a
later review about the ESO/BESO methods is found in [12] and a book is also available [13].
In multiphysics problems, the ESO/BESO methods lack of methodologies and publications,
especially in fluid-structure coupled systems.

Herewith it is proposed to combine the evolutionary topology optimization techniques
with multiphysics problems involving fluid-structure interaction. This work focuses on the
mean pressure minimization in coupled systems. Frequency response optimization is of great
importance in many engineering fields like acoustics systems and fluid dynamics. The pos-
sibility of removing and adding material systematically with the evolutionary method might
be a helpful procedure to explicitly define the fluid-structure interfaces. However, only cases
with immovable interfaces will be considered in this paper. The paper is organized as follows:
Section 2 presents the governing equations and the finite element model for the fluid-structure
interaction coupled system. In Section 3, the topology optimization problem for pressure
minimization is formulated and the sensitivity number is presented. Section 4 shows two
examples of the optimization methodology, BESO.

2. FLUID-STRUCTURE INTERACTION: GOVERNING EQUATIONS AND FINITE
ELEMENT MODEL

Herein, the analyzed systems are limited to a flexible structure in contact with an
enclosed acoustic fluid, where the responses of the structure are significantly affected by the
fluid. For this fluid-structure system, the structure can be described by the differential equation
of motion for a continuum body assuming small deformations and the fluid by the acoustic



wave equation. For the standard approach, the governing equations for the fluid and structural
domains as well as the coupling boundary conditions are defined as follows.

2.1. Helmholtz equation

In this paper, the fluid is considered inviscid, irrotational and only under small trans-
lations conditions. The governing equation for the pressure in a nonhomogeneous acoustic
medium is described by the Helmholtz equation

∇2pf +
ω2

c2
f

∂2pf
∂t2

= 0

(
k =

ω

cf

)
Ωf (1)

where pf is the pressure in the analysis domain Ωf , cf is the local speed of sound, ω is the
angular frequency and k the wave number. The pressure field is obtained by solving the
Helmholtz equation imposing proper boundary conditions. In this paper, it is considered the
following boundary conditions:

pf = p0 (2)

n∇pf = 0 (3)

representing the pressure boundary condition (Eq. 2) and the hard wall condition (Eq. 3),
where p0 is the pressure input and n is the outward unit normal to the fluid.

2.2. Linear elasticity

The linear structural analysis can be described by the elasticity equation

∇̃Tσs + bs = ρs
∂2us

∂t2
Ωs (4)

where σs is the stress tensor, bs are the body forces and us is the displacements field. Bound-
ary conditions are applied as follows:

nsσ = fSb Sb (5)

us = uSu
s Su (6)

representing the Neumann (Eq. 5) and Dirichlet (Eq. 6) boundary conditions, where fSb is the
surface traction on Sb, uSu

s is the prescribed displacements on Su and ns is the outward unit
normal to the solid medium.

2.3. The coupled fluid-structure system

At the interface ∂Ωsf between the structural and fluid domains, the fluid and the struc-
ture move together in the normal direction of the boundary. The normal vector n = nf = −ns

can be used in order to obtain the displacement boundary condition



usn|∂Ωsf
= ufn|∂Ωsf

(7)

and the continuity in pressure

σs|n = −p (8)

With relations derived from the governing equations and the previous coupling condi-
tions, the interface forces may be obtained. The force acting on the structure provided by the
fluid pressure is

ff =

∫
Ωsf

NT
s nNfdspf (9)

and the force acting on the fluid domain can be expressed in structural acceleration

fs = −ρf
∫

Ωsf

NT
f nNsdsüs (10)

where ρf is the static density of the fluid and N contains the finite element shape functions
for the interface.

The introduction of a spatial coupling matrix

Lsf =

∫
Ωsf

NT
s nNfds (11)

allows the coupling force to be written as

ff = Lsfpf (12)

and

fs = −ρfLT
sf üs (13)

Thus, the fluid-structure problem can then be described by an unsymmetrical system
of equations [

Ms 0
ρfL

T
sf Mf

] [
üs

p̈f

]
+

[
Ks −Lsf

0 Kf

] [
us

pf

]
=

[
fs
ff

]
[Mfs] [üfs] + [Kfs] [ufs] = [ffs]

(14)

where fs and ff are the load vectors for both domains.
In the multiphysics coupling analysis, the fluid analysis provides pressure loads to

the structural analysis, and the structural analysis provides accelerations to the fluid analysis.
These finite element model has been used to calculate responses of acoustic-structure interac-
tion problems. For details and derivations of the coupling integrals as well as the governing
equations, see [14-15].



3. BI-DIRECTIONAL EVOLUTIONARY STRUCTURAL OPTIMIZATION

3.1. Problem Statement

Considering volume constraint, the optimization problem of frequency response min-
imization can be stated as:

Minimize |ufs|

Subject to: Vf −
∑n

i=1 Vixi = 0

xi = xmin or 1

(15)

where ufs is the frequency response, Vi is the volume of an individual element, Vf the pre-
scribed final structural volume and n is the total number of elements in the system. The binary
design variable xi declares the presence of a completely solid element (1) or the density of a
void element with a small value of xmin (e.g. 10−4).

3.2. Vibroacoustic sensitivity

The vibroacoustic sensitivity analysis involves the evaluation of the fluid-structure
coupled system response under a structural change. The objective here is to evaluate the
sensitivity of the vibroacoustic response |ufs| with respect to the variables xi.

The residual Rfs of the governing equation of the coupled dynamic problem is given
by:

Rfs = (Kfs − ω2Mfs)|ufs| − |ffs|
Rfs = Z|ufs| − |ffs|

(16)

With the analytical derivatives of equation 16 and analyzing the partial derivatives of
Rfs with respect to |ufs| and xi, the sensitivity of the coupled system response |ufs| is:

d|ufs|
dxi

= −Z−1 ∂Z

∂xi
|ufs| (17)

It was observed that the sensitivity from Equation 17 is equivalent to the following
expression:

d|ufs|
dxi

= uijZui = αij (18)

where uij is the solution of the dynamic equilibrium equation Zuj = Fj with an unit load
vector Fj at the j-th objective node. ui is the displacement vector containing the entries of
ufs, which is related to the i-th element. This sensitivity number αij is equivalent to that
proposed by [16] for stiffness maximization with displacement constraints. It indicates the
change of the specified displacement or pressure component uj due to the removal of the i-
th element. This number was initially proposed for static cases. Here, we combine it with
the interpolation scheme proposed by [10] for the BESO method. In the proposed scheme,
material is interpolated and not removed completely from the domain. It implies that the
interpolation depends on xmin and an exponent penalty factor p , which indicate how soft is



the void-condition elements. Thus, the sensitivity numbers proposed for frequency response
minimization are the following:
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= 1
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or when xmin tends to 0
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3.3. Evolutionary Procedures for pressure minimization

The BESO method allows material to be removed and added trough the initial domain
covered by a fine finite element mesh until an optimum solution is found. A sensitivity anal-
ysis of the problem is needed for the adopted criterion. For dynamic problems, considering
displacement and/or pressure minimization in cases of fluid-structure interaction, when a solid
element is removed from the structure, the change on the frequency response is evaluated by
the dynamic compliance. This change is defined as the elemental sensitivity number from
Equation (20). In the BESO process, the elements are organized according to their values of
the sensitivity number, from the highest to the lowest. For pressure minimization is reasonable
to remove elements with the lowest α.

A filter scheme is applied over the mesh in order to smooth the sensitivity numbers
distribution. This filter scheme is similar to the mesh-independency filter used in ([17]. This
procedure consists, first of all, in averaging the elemental sensitivity number to the mesh
nodes, according to the nodal connectivity, as follows:

αn
j =

∑M
i=1 Viαi∑M
i=1 Vi

(21)

where M is the total number of elements connected to the node j.
The above nodal sensitivity numbers will then be converted into smoothed elemental

sensitivity numbers by projecting a sub-domain Ω with length scale rmin and center in the ith
element. All the nodes inside Ω will have their nodal sensitivity numbers averaged back to the
elemental level, now as a smoothed projection. Thus, the sensitivity numbers of void elements
are automatically obtained.

To stabilize the evolutionary process, an average of the sensitivity number with its
historical information is carried out as:

αi =
αk
i + αk−1

i

2
(22)

where k is the current iteration number. Thus, the updated sensitivity number includes
the whole history of the sensitivity information in the previous iterations.

The removal/addition of elements is carried out by the target volume of the next itera-
tion (Vk+1), defined as:



Vk+1 = Vk(1± ER) (23)

whereER is the evolutionary ratio. Once the volume constraint is satisfied, the volume
of the structure will be kept constant for the remaining iterations as:

Vk+1 = Vf (24)

With the target volume evaluated, the threshold sensitivity numbers (αath
del and αath

add)
are determined. For solid element (1), it will be removed (switched to 0) if:

αi ≤ αath
del (25)

For void elements (0), it will be added (switched to 0) if:

αi ≤ αath
add (26)

An admission volume ratio (AR) is introduced to ensure that not too many elements
are added in a single iteration. AR is defined as the number of added elements divided by
the total number of elements in the design domain. If AR is bigger than a prescribed value
ARmax, then αath

del and αath
add need to be recalculated. More details are found in [9].

Besides the volume constraint, a convergence criterion is introduced to stop the algo-
rithm. The cycle of finite element analysis and element removal and addition continues until
the objective volume (Vf ) is reached and the following convergence criterion defined in the
variation of the objective function is satisfied:

error =
|
∑N

i=1 uk−i+1 −
∑N

i=1 uk−N−i+1|∑N
i=1 uk−i+1

≤ τ (27)

where k is the current iteration number, τ is an allowable convergence error and N is
integral number, herewith selected as 5, which means a stable compliance at least in successive
2 ∗N iterations, i.e., 10 iterations in this case.

In short, the evolutionary iteration procedure of the present BESO method is given as
follow:

1. Discretize the design domain using a fine finite element mesh and declare the initial
values of the properties (0 or 1) of the elements to construct an initial design.

2. Carry out the finite element analysis and calculate the elemental sensitivity numbers,
according to Equation (20). Keep the sensitivity number for the next iteration.

3. Determine the target volume of the next iteration, according to Equation (23).

4. Add and remove elements according to the procedure described previously.

5. Repeat steps 2 to 5 until the volume constraint (Vf ) is reached and the convergence
criterion (27) is satisfied.



As a consequence of the removing material the natural frequencies of the system are
changed. The natural frequencies closer to the excitation frequency point in the FRF curve can
increase or decrease depending on which side they are relatively to the excitation frequency
point. This occurs as a consequence of the minimization process which tends to make the
point of optimization to go down in the FRF curve.

4. NUMERICAL RESULTS

In this section, two examples considering FSI are solved using the BESO method. The
meshes were generated in ANSYS, the optimizer code was implemented in FORTRAN and
the topologies were plotted in MATLAB. All the steps were automatically aggregated. In the
first example, the intermediary topologies are presented to show the objective function and
pressure distribution in several steps of the optimization. The second example presents the
optimization process for six different excitation frequencies.

4.1. Example 1

This first example shows the FSI problem, where two fluid cavities are separated by a
structure partition, Fig. ??. The objective is to minimize the mean pressure in the two output
points for a specific excitation frequency. Hard-wall condition and a prescribed pressure were
imposed to the fluid domain and the structure domain has clamped ends. The incoming wave
amplitude of the excitation is pin = 1 Pa, in the left fluid domain. The excitation frequency for
optimization is 5 Hz. The structure domain has length of 1 mm, height 10 mm and represents
the design domain. For the optimization procedure the design domain is divided using a
regular mesh of 64× 320 four-node quadrilateral elements, totaling 20480 elements.
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Figure 1. Model considered for optimization.

The parameters for the mesh in the finite elements analysis and the materials properties
for fluid and structure domain are presented in Tab. 1. All constants related to the optimization
process (BESO) are also listed in Tab. 1.

Figure 2 shows the FRF for the initial full design domain and the FRF after the opti-
mization procedure for the mean pressure in the output point in second fluid domain.



Table 1. Parameters considered for the numerical modelling.

Variable Description Value
Mesh

nnos Number of nodes 60465
nele Number of elements 60160

Structure
E Young’s Modulus 100 GPa
ν Poisson coefficient 0, 3
ρs Density 100 kg/m3

Fluid
ρf Density 1.2 kg/m3

c Sound velocity 343 m/s

BESO
Vi Initial volume fraction 1, 0
Vf Final volume fraction 0, 9
ER Evolutionary ratio 0, 02

ARmax Maximum admission ratio 0, 02
rmin Filter radius 0, 02 mm
τ Convergence tolerance 0, 001
N Integral number 5
p Penalty number 1.5

Excitation frequency

Figure 2. Frequency response for example 1.

The history of the mean pressure in the output points are shown in Fig. 3. This figure
shows that the optimization process starts from a full design domain (Structural Domain)
and regularly removes material in a rate of 0.2% until it reaches the final volume. After
50 iterations the final volume is reached and the process is finalized when the convergence
criterion is obtained, in this case in the 58th iteration. The total pressure reduction after the
optimization process can be found in Tab. 2.

The intermediaries and final topologies are showed in Fig. 4. The pressure distribution
in both cavities and the shape of vibration of the structure domain can also be seen in Fig. 4.
The displacement of the structure is plotted 100× bigger for a better visualization of the shape
of vibration for this excitation frequency.



Figure 3. Mean pressure history for example 1.

Table 2. Mean pressure reduction at output points.

Excitation Frequencies (Hz) 5.0
Initial pressure (Pa) 2.237E-01
Final pressure (Pa) 0.278E-01

Reduction 87.58%

a) b)

c) d)

e) f)

g)

Figure 4. Evolutionary topologies for Example 1 with material volume of: a) 100% - Design
Domain; b) 98% ; c) 96% ; d) 94% ; e) 92% ; f) 90% ; g) 90% after the convergence criteria -
Final Topology.

The Fig. 5 shows the sensitivity numbers distribution in the design domain during
the removing materials process. The sensitivity numbers is calculated taking account the two
output points, located in the right fluid domain, and indicates the area where material should
be removed for the frequency response minimization.

It must be pointed out that there are no similar examples made for FSI problems with
BESO method and the obtained result shows that this methodology can be effectively applied
to this kind of problems, once the pattern topology found is very similar to that presented by



a) b)

c) d)

e) f)

g)

Figure 5. Objective Function for Example 1 with material volume of: a) 100% - Design
Domain; b) 98% ; c) 96% ; d) 94% ; e) 92% ; f) 90% ; g) 90% after the convergence criteria -
Final Topology.

Xie and Steven [18] for a cantilever beam, in which the boundary conditions are similar to
this case, which confirms the physical meaning of the obtained topology.

4.2. Example 2

The system of the second example is shown in Fig. 6. The materials properties are the
same used in the first example. All the parameters for the BESO method is the same for the
first example except the final volume which is different for each frequency of excitation. The
mesh in the design domain is divided in 32×320 four-node quadrilateral elements.

This example seeks to minimize the pressure in one output point located in the right
fluid domain for six excitation frequencies in the left fluid domain. The incoming wave am-
plitude of the excitation on the input point is 1 Pa.
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Figure 6. Model considered for optimization.



Based on the frequency response for this system six excitation frequencies was chosen.
The first three frequencies are close of the first three natural frequencies of the system, in the
left side of the natural frequencies in the FRF curves, Fig. 7. The second group of excitation
frequencies is chosen to be in the right side of the natural frequencies, Fig. 8. This division
was done based on the different consequences of the optimization process for the FRF curves
of each group, as explained in Section 3. In the first group the excitation frequencies are on
the left side of the natural frequencies and in the second group they are on the right side of the
natural frequencies.

Excitation frequency for optimization

a)

Excitation frequency for optimization

b)

Excitation frequency for optimization

c)

Figure 7. FRF for first group of excitation frequencies.

Initial and final frequency responses for pressure in the six cases are shown in Figs.



Excitation frequency for optimization

a)

Excitation frequency for optimization

b)

Excitation frequency for optimization

c)

Figure 8. FRF for second group of excitation frequencies.

7 and 8. It can be observed in Fig. 7 that in order to promote the minimization of the pres-
sure the optimization process results in an increase of the natural frequencies closer of the
excitation frequencies, for this first group. However, Fig. 8 shows the decrease of the natural
frequencies near of the excitation frequencies, for these specific cases. It can be concluded
that the optimization process can increase or decrease the natural frequencies of the system for
the mean pressure minimization. It will depend of the relative position between the excitation
frequency and natural frequencies in the FRF curve. The optimization process will always try
to make the response to go down in the FRF curve.

Figures 9 a) c) e) presents the pressure distribution for the initial conditions and the



shape of vibration for the three different frequencies and figures 9 b) d) f) present the final
topology obtained for each case and the final pressure distribution after the optimization pro-
cess for the first group of frequencies.

a) b)

c) d)

e) f)

Figure 9. First set of topologies for different excitation frequencies: a) 2.6 Hz - 100%; b) 2.6
Hz - 90%; c) 13.8 Hz - 100%; d) 13.8 Hz - 96%; e) 29.3 Hz - 100%; f) 29.3 Hz - 98%;

For the second group of frequencies the figures 10 a) c) e) show the pressure distribu-
tion in the initial conditions for the three different frequencies and figures 10 b) d) e) show the
final topology obtained for each case and the final pressure distribution after the optimization
process.

In each group of frequencies it can be noted that for lower frequencies, it is necessary
to remove a greater volume of material than for higher frequencies in order to obtain the same
reduction of the pressure in the output point. The total reductions of the mean pressure in the
output point for these six cases are shown in Tab. 3.

Table 3. Pressure reduction for different frequencies.

1st case 2nd case
Excitation

2,6 13,8 29,3 2,9 14 29,6
Frequencies (Hz)

Initial pressure (Pa) 5,49E-02 1,64E-01 1,70E-01 2,19E-01 1,08E-01 7,15E-02
Final pressure (Pa) 2,89E-02 3,18E-03 5,49E-03 4,86E-02 2,92E-02 8,57E-03

Reduction 47,34% 98,06% 96,76% 77,79% 72,91% 88,01%



a) b)

c) d)

e) f)

Figure 10. Second set of topologies for different excitation frequencies: a) 2.9 Hz - 100%; b)
2.9 Hz - 96%; c) 14.0 Hz - 100%; d) 14.0 Hz - 98%; e) 29.6 Hz - 100%; f) 29.6 Hz - 99%;

5. Conclusions

In this paper we have extended the use of the BESO method to a class of fluid-structure
systems under imposed pressure excitation. For this kind of problem, the sensitivity numbers
were presented. The objective function was the minimization of pressure in certain points of
the fluid domain. For a number of excitation frequencies the methodology presented here was
capable to minimize the pressure and converge to optimized topologies. The efficiency of the
method is demonstrated for a good range of frequencies. In particular for higher frequencies
a great minimization of the pressure is achieved with just a small percentage of material
removed. For future works, movable interfaces between the fluid and structure domain will
be considered as well the extensions to three dimensions models.
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