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Abstract. Cylindrical shells exhibit a dense frequency spectrum, especially near the lowest 

frequency range. In addition, due to the circumferential symmetry, frequencies occur in pairs. 

So, in the vicinity of the lowest natural frequencies, several equal or nearly equal frequencies 

may occur, leading to a complex dynamic behavior. The aim of this paper is to investigate the 

influence of these internal resonances on the nonlinear dynamics and instabilities of axially 

loaded fluid-filled cylindrical shells. For this, a modal solution that takes into account the 

modal interaction among the relevant modes and satisfies the boundary and continuity condi-

tions of the shell is derived. The shell is modeled using the Donnell nonlinear shallow shell 

theory and the discretized equations of motion are obtained by applying the Galerkin method. 

The shell is assumed to be completely filled with a dense fluid. The fluid is assumed to be in-

compressible and non-viscous and its irrotational motion is described by a velocity potential 

that satisfies the Laplace equation and relevant boundary and continuity conditions. Solving 

numerically the governing equations of motion, a detailed parametric analysis is conducted to 

clarify the influence of the internal resonances on the bifurcations, stability boundaries and 

nonlinear vibration modes. 
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1. INTRODUCTION 

Thin-walled cylindrical shells are one of the most common structural elements with 

applications in nearly all engineering fields. The study of the nonlinear vibrations of cylindri-

cal shells began in the middle of the last century with the works by [1-8], among others. In 

these works either the Ritz or the Galerkin method are used to discretize the shell. In all cases, 

either a simply-supported shell or an infinitely long shell with a periodic displacement field in 

the axial direction is considered. To do this, a modal expansion for the displacement field is 

necessary. The development of consistent modal solutions capable of describing the main 

modal interactions observed in cylindrical shells has received much attention in literature. A 

detailed review of this subject, including more than 350 papers, was published in 2003 by [9]. 
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Chu [1] and Nowinski [2] observed that the natural frequency increases with the vibra-

tion amplitude with behavior observed previously in thin plates and beams. This hardening 

behavior was questioned by [3], who showed that the analyses of [1] and [2] were not accu-

rate, due to the fact that the modal solution did not satisfy the shell boundary conditions. The 

work of [3] was confirmed by [5] who, contrary to the known literature results, obtained ex-

perimentally a frequency-amplitude relation different from that observed by [1, 2]. Olson [5] 

showed that cylindrical shells exhibit a softening behavior, that is, the nonlinear frequency 

decreases with increasing vibration amplitude. Evensen [4] observed, through an experimental 

analysis, the same behavior as that observed by [5], and obtained a good correlation between 

theoretical and experimental results. This was possible due to the correct consideration of the 

nonlinear modal coupling between the basic linear vibration mode and a circumferentially 

axi-symmetric mode. The axi-symmetric mode in the modal expansion was chosen in such a 

way that the transverse displacement becomes null at the boundaries. Knowing the im-

portance of axi-symmetric modes, [6, 7], both using different modal expansions, but contain-

ing axi-symmetric modes, obtained a frequency-amplitude relation with hardening behavior. 

The error was due to the incorrect representation of axi-symmetric modes on the modal ex-

pansion, as showed by [10]. 

The consideration of axi-symmetric modes is necessary to describe the inherent in-out 

asymmetry observed in the nonlinear vibration of the shell at large amplitudes. The sym-

metry-breaking effect of the axi-symmetric component was also observed in the nonlinear 

post-buckling analysis of cylindrical shells under lateral pressure and axial compression [11]. 

This leads to strong quadratic nonlinearities in the equations of motion, showing the im-

portance of this modal coupling on the shell nonlinear behavior. 

The phenomenon of modal coupling is an important topic of study in the theory of 

structural stability. Although there are many papers on modal coupling in the presence of stat-

ic loads, its influence on the dynamic behavior has been the subject of few studies. In the 

study of static and dynamic instability of structural systems has always been an emphasis on 

finding low-dimensional models capable of representing at least qualitatively the behavior of 

the system. This search is particularly important in the analysis of nonlinear dynamic systems. 

In the analysis of cylindrical shells this search led to the creation of several approximate mod-

els, which in turn, generated a series of qualitatively and quantitatively different responses, 

which has caused much debate on how to model the problem. 

Unlike beams and plates that have well-spaced natural frequencies, cylindrical shells 

may have different modes of vibration with equal or nearly equal natural frequencies. This 

closeness is even greater when one considers a static compressive loading. This means there 

is even at a low level of dynamic loading, a superposition of the regions of parametric insta-

bility. When considering the effect of nonlinearity, then there is the possibility of interaction 

between the different non-linear modes, which can cause significant changes in the bounda-

ries of instability and bifurcation diagrams [12, 13]. 

In this work, we have aimed to deduce a modal solution for the transverse displace-

ments of the cylindrical shell using the perturbation techniques for problems where two 

modes exhibits equal or nearly equal natural frequencies [14-16]. The modal solution consid-

ers the modal coupling between the modes two modes and the influence of their companion 



 

 

modes (modes with rotational symmetry). This leads to a 1:1:1:1 internal resonance, a prob-

lem not treated in the technical literature. 

2. PROBLEM FORMULATION 

2.1. Shell equations 

Consider a perfect thin-walled circular cylindrical shell of radius R, length L, and 

thickness h. The shell is assumed to be made of an elastic, homogeneous, and isotropic mate-

rial with Young’s modulus E, Poisson ratio ν and density ρ. The axial, circumferential and 

radial co-ordinates are denoted by, respectively, x, θ and z, and the corresponding displace-

ments on the shell surface are in turn denoted by u, v, and w, as shown in Figure 1. 

 
Figure 1. Shell geometry and coordinate system. 

 

The nonlinear equations of motion based on the Von Karmán-Donnell shallow shell 

theory, in terms of a stress function f and the transversal displacement w are given by: 
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where β1 and β2 are, respectively, the linear viscous damping and the viscoelastic material 

damping coefficients, D = E h
3
/12(1 – ν2

) is the flexural stiffness of the shell, pH is the hydro-

dynamic pressure of internal fluid, ω0 is the lowest vibration frequency and ∇4
 is the bi-

harmonic operator defined as: 
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The shell is subjected to a harmonic axial load, uniformly applied at the edges, of the 



 

 

form: 

 )(cos10 tPPP ω+= , (4) 

where P0 is the axial static pre-load, P1 is the amplitude of the harmonic load, ω is the excita-

tion frequency and t is time. 

For a simply-supported shell, the following boundary conditions must be satisfied: 

 ( ) ( ) 0,,0 == θθ Lww  (5) 

 ( ) ( ) 0,,0 == θθ LMM xx . (6) 

In the foregoing, the following non-dimensional parameters have been introduced: 
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Here PCR =E h
2
/ [ R(3 - 3ν2

)
1/2

] is the classical axial buckling load of the shell. 

2.2. Fluid equations 

The fluid is assumed to be incompressible and non-viscous and the flow to be isen-

tropic and irotational. From the linearized Bernoulli equation, the hydrodynamic pressure is 

given by: 
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where ρF is the density of the internal fluid and φ is the velocity potential of the fluid that it 

should satisfy the following Laplace equation: 
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and the boundary conditions in the fluid and structure interface. 

Considering null fluid potential at the both ends of the shell and that the transversal 

velocity of the fluid should be equal to the shell velocity at the shell-fluid interface, the fluid 

potential should satisfy the following boundary conditions: 
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Considering the driven and companion modes the following potential velocity is ob-

tained: 
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where m is the number of axial half-wave, n is circumferential wave number, Iixn is the modi-

fied Bessel function of first class and order i x n. It was used by [17, 18], among others; it 

satisfies the boundary conditions at x=0,L, eq. (10), and the Laplace equation, eq. (9). 

The amplitude of each mode ( )τmiA and ( )τmiB are determined by applying the im-

penetrability condition, second condition in eq. (10), by using the standard Galerkin method 

and assuming as weight function the trigonometric term of eq. (11). The modal amplitudes 

can be written as functions of the lateral displacements of the shell as: 
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Finally, the hydrodynamic pressure is given by: 
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2.3. General solution of the shell displacement field by a perturbation technique 

The numerical model is developed by expanding the transversal displacement compo-

nent w in series in the circumferential and axial variables. From previous investigations on 

modal solutions for the nonlinear analysis of cylindrical shells under axial loads [11, 14-16, 

19] it is observed that, in order to obtain a consistent modeling with a limited number of 

modes, the sum of shape functions for the displacements must express the nonlinear coupling 

between the modes and describe consistently the unstable post-buckling response of the shell 

as well as the correct frequency-amplitude relation. 

Gonçalves et al. [15] and Silva et al. [16] trough perturbation techniques and satisfying 

the boundary conditions, deduced a consistent modal solution for the transversal displace-

ments of a simply supported cylindrical. Using these works as basis, it was deduced a new 

modal solution including the modal interaction. This is necessary because, in the linear analy-

sis of a perfect shell, there are two different modes with the same natural frequency. 

Consider a simply supported cylindrical shell with radius R = 2 m, length L = 4 m and 

thickness h = 0.012525m. The shell material is homogeneous and isotropic with Young’s 



 

 

modulus E = 210 GPa, Poisson's ratio ν = 0.3, density ρ = 7850 kg/m³ fluid-filled with a fluid 

with density ρF = 1000 kg/m³. For this geometry and for a longitudinal half-waves, m, equal 

to 1 and different values of circumferential wavenumber, n, the values of the lowest natural 

frequencies of the cylindrical shell were obtained and are shown in Table 1.  

 

Table 1. Natural frequencies for different values of n (m = 1). 

n ω0 (rad/s) 

4 148.48 

5 121.26 

6 121.26 

7 143.45 

8 181.64 

 

It is observed that for certain values of n the cylindrical shell may have two distinct 

modes of vibration with the same natural frequency, these modes have the same longitudinal 

half-wave number but different circumferential wavenumbers. This phenomena characterizes 

a typical modal interaction. 

So, for the application of perturbation techniques, the analysis must begin by consider-

ing these interacting modes as well as their respective companion modes as the initial modal 

solution (seed modes), i.e. [13]: 
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where m is the number of longitudinal half-waves, n and N are the circumferential wave-

numbers participating in the modal interaction, A111(τ) and A211(τ) are the modal amplitudes 

of the directly forced modes and B111(τ) and B211(τ) are the modal amplitudes of the compan-

ion modes. The explanation of the importance of these modes in forced vibration studies can 

be found in several works by Amabili and co-workers and compiled recently in his book [20]. 

By applying the perturbation procedures described in [13-16], and by considering the 

boundary conditions for a simply supported cylindrical shell, eq. (5-6), the following modal 

solution that accounts for the modal interaction is obtained: 
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3. NUMERICAL RESULTS 

The results presented here are referred to a cylindrical shell made of homogeneous and 

isotropic material with E = 210 GPa, ν = 0.3 and ρ = 7850 kg/m³, fluid-filled with a fluid 

ρF = 1000 kg/m³. Its dimensions are R = 2 m, L = 4 m and h = 0.012525 m. It is known from 

section 2.3 that, for this geometry, the cylindrical shell may display a modal interaction be-

tween modes (m, n) = (1, 5) and (m, N) = (1, 6) and that the lowest natural frequency occurs 

for these combination of waves. 

The natural frequencies displayed in Table 1 for an unloaded cylindrical shell 

(Γ0 = 0.0), the increment of the axial pre-loading level reduces the value of the natural fre-

quencies of then shell as shown in Fig. 2. In this figure is also possible to observe that for 

axial pre-loading, Γ0 = 0.0, the ratio of natural frequencies between modes (m, n) = (1, 5) and 

(m, n) = (1, 6) is ω0-15/ω0-16 = 1. When the axial pre-loading is increased to Γ0 = 0.50 the ratio 

between modes goes to ω0-15/ω0-16 = 1.07 and, if the axial pre-loading is increased to Γ0 = 0.80 

the ratio rises to ω0-15/ω0-16 = 1.22. This means that, even for axially pre-loaded cylindrical 

shells, the natural frequencies of two the modes are very close between each other. 

For a dynamic case, adding the periodic axial load Γ1, longitudinal vibrations on the 

shell will appear with uniform transversal displacements due to Poisson coefficient. This vi-

bration mode is called breathing mode and, for certain values of axial parameters (Γ0, Γ1, ωF) 



 

 

this mode becomes instable and the shell displays flexural transversal vibrations. These criti-

cal parameters for the axial load were obtained from the, linear and non-linear, discrete differ-

ential equation of the shell. These equations with periodic coefficients lead to a Mathieu-Hill 

equation which is solved using the Bolotin method [21]. 

 

 
Figure 2. Influence of static pre-loading on natural frequencies for different values of n 

(m = 1). 

 

The solution of the Mathieu-Hill equation gives the boundaries of the parametric in-

stability region and is associated to the periodic solution. The principal region of parametric 

instability is related to a periodic solution with period 2T, where T = 2π/ω and is more im-

portant than other instability regions, such as solutions with period T (secondary region of 

parametric instability) [12]. 

Figure 3 displays the parametric instability regions of the cylindrical shell, obtained 

from the Mathieu-Hill equation, subjected to axial time depending load and plotted for differ-

ent values of the circumferential wavenumber, n. In these figures, hatched areas represent the 

parametric instability region associated to the values of n and µ = {Γ1 / [ 2(ΓCR-Γ0) ]} as a 

function of the frequency parameter ω/ω0. In Fig. 3a, for a shell without static pre-loading 

(Γ0=0.0), it is possible to observe the superposition of the principal regions of parametric in-

stability of modes (1, 5) and (1, 6). In Figs. 3b-c, as the load parameter Γ0 is increased, it is 

possible to observe that the principal regions of instability displace to the left creating new 

areas by the superposition with other modes. When Γ0 is increased, the parametric instability 

region of modes (1, 5) and (1, 6) are displaced to the left meanwhile the instability regions of 

modes (1, 4) and (1, 8) are closer between each other. As will see, the modal interaction is due 

to the superposition of the principal regions of instability which is very important on the non-

linear response of the shell. 

Figure 4 shows the parametric instability and escape boundaries in the (Ω, Γ1) space 

considering Γ0 = 0.50. In this figure red color represents the (1, 5) mode, blue color represents 

the (1, 6) mode and black color represents the modal interaction (1, 5) + (1, 6). All boundaries 

were obtained numerically by using the Runge-Kutta method, incrementing slowly the ampli-

tude of the harmonic excitation, Γ1, and keeping constant the frequency of excitation, Ω.  

 



 

 

  
(a) Γ0 = 0.00 (b) Γ0 = 0.50 

 
(c) Γ0 = 0.80 

Figure 3. Parametric instability regions of the cylindrical shell considering the un-

damped linearized system (m = 1). 

 

In analysis the following degrees of freedom (D.O.F.) were used in eq. (15): 

• (m, n) = (1, 5) 

9 D.O.F. – A111(τ) + B111(τ) + A502(τ) + A522(τ) + B522(τ) + A113(τ)+ B113(τ) + 

A131(τ) + B131(τ). 

• (m, N) = (1, 6) 

9 D.O.F. – A211(τ) + B211(τ) + A602(τ) + A622(τ) + B622(τ) + A213(τ)+ B213(τ) + 

A231(τ) + B231(τ). 

• (m, n) + (m, N) = (1, 5) + (1, 6) 

29 D.O.F. – A111(τ) + B111(τ) + A211(τ) + B211(τ) + A502(τ) + A522(τ) + B522(τ) + 

A622(τ) + B622(τ) + A712(ττττ) + B712(ττττ) + A812(ττττ) + B812(ττττ) + A113(τ) + B113(τ) + 

A213(τ) + B213(τ) + A131(τ) + B131(τ) + A231(τ) + B231(τ) + A311(ττττ) + B311(ττττ) + 

A411(ττττ) + B411(ττττ) + A321(ττττ) + B321(ττττ) + A421(ττττ) + B421(ττττ). 

 

The (1,5) + (1,6) model with in 29 D.O.F is composed by the addition of models (1,5) 

and (1,6) and by the consideration of the new modes due to the modal interaction (bold types). 

 



 

 

 
Figure 4. Parametric instability boundaries in control space for the non-linear damped 

system. (β1 = 0.03, β2 = 0.001, Γ0 = 0.50). 

 

  
(a) Ω = 1.30 (b) Ω = 1.45 

  
(c) Ω = 1.60 (d) Ω = 1.75 

Figure 5. Bifurcations diagrams for the non-linear damped system. 

(β1 = 0.03, β2 = 0.001, Γ0 = 0.50). 

 



 

 

In Fig. 4 the parametric instability boundary represents the values of Γ1 and Ω where 

small perturbations on the trivial solution result in a permanent response with amplitude vi-

brations different than the fundamental solution. Escape boundaries represent the values of Γ1 

and Ω where small perturbations generate amplitude vibrations larger than the pre-buckling 

well. The horizontal dotted line represents the axial critical load parameter ΓCR = Γ0 + Γ1. The 

two vertical dotted lines are associated with the principal (2 ωP) and secondary (ωP) regions of 

instability of the shell. Here ωP is defined by ratio between natural frequency of shell loaded 

with Γ0 = 0.50 and the natural frequency for unloaded shell. 

The bifurcation mechanisms in the principal and secondary regions of parametric in-

stability for the uncoupled models (1,5) and (1,6) are characterized by sub-critical bifurcations 

(descending path) and super-critical bifurcations (ascending path). Figure 5 displays the bifur-

cations diagrams of the principal region of instability for different values of Ω and consider-

ing the three modal expansions used in this work. It is possible to observe that when interac-

tion modal model (1,5) + (1,6) is considered, the bifurcation mechanism can be completely 

different if uncoupled models (1,5) and (1,6) are considered. 

In Figs. 5a-b the uncoupled models display sub-critical bifurcations but, when modal 

interaction is considered, the shell displays completely different non-linear behavior showing 

that the 29 D.O.F. model develops complex interaction between modes. The inclusion of 

modes A712(τ), B712(τ), A812(τ), B812(τ), A311(τ), B311(τ), A411(τ), B411(τ), A321(τ), B321(τ), 

A421(τ) e B421(τ), in the interaction model (1,5) + (1,6), is the origin of changes on the bifur-

cation diagrams and on the complex non-linear behavior of the shell. 

In Figs. 5c-d the bifurcation diagrams for the uncoupled models display typical super-

critical bifurcations in the ascending path. In Fig. 5c the modal interaction has the same bifur-

cation point that model the uncoupled model (1,5) showing that non-linearity is governed by 

this model. In Fig. 5d, the bifurcation mechanism is completely changed when the interaction 

model is considered. As can be observed, the bifurcation point is highly reduced and, after the 

critical point, there are not stable solutions and the shell becomes unstable.  

Figure 6 displays the phase planes for different values of Γ1 and Ω. Figure 6a shows 

the non-linear behavior of the shell related to the bifurcation diagram of Fig. 5c with Ω = 1.60 

and Γ1 = 0.40 where uncoupled solutions of model (1,5) are coincident with solutions of the 

coupled (1,5)+(1,6) model. Figure 6b displays the phase plane of Ω = 1.60 and Γ1 = 0.50, in 

this case the uncoupled models show stable 2T solutions but the coupled model behaves 

completely different showing quase-periodic solutions. Figures 6c-d display the phase planes 

related to bifurcation diagrams of Figs. 5a-b. It is possible to observe the co-existence of sta-

ble 2T orbits for each uncoupled model that will be investigation in future works. 

 



 

 

  
(a) Ω = 1.60, Γ1 = 0.40 (b) Ω = 1.60, Γ1 = 0.50 

  
(c) Ω = 1.30, Γ1 = 0.30 (d) Ω = 1.45, Γ1 = 0.40 

Figure 6. Phase plane and Poincare sections for the cylindrical shell. 

(β1 = 0.03, β2 = 0.001, Γ0 = 0.50). 

 

In Figs. 7-8 the bifurcation diagrams of driven and companion modes for the coupled 

model considering Γ0 = 0.50 e Ω = 1.60 are displayed. It is possible to observe that from 

Γ1 = 0.45 the modes begin to participate on the response of the shell and this can be the main 

reason of the changes in the bifurcation diagram of Fig. 5c and phase planes of Figs. 6a-b. 

Figure 9 displays the bifurcation diagrams of the shell considering as control parame-

ter the frequency of the harmonic excitation. In this figure the uncoupled and coupled models 

are compared. In Fig. 9a it is possible to observe that, for Γ1 = 0.20, the bifurcation mecha-

nisms are very similar, but the point of bifurcation is different for three models. If Γ1 is in-

creased to 0.50, Fig. 9b, the amplitudes of vibrations are different been higher for the coupled 

model. In Fig. 9b, a very complex non-linear behavior is observed and after a certain value of 

Ω the shell displays stable, quase-periodic and chaotic solutions.  

 

 

 



 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Bifurcation diagrams of driven modes in the modal interaction (1,5) + (1,6) 

model. (β1 = 0.03, β2 = 0.001, Γ0 = 0.50, Ω = 1.60). 

 



 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8. Bifurcation diagrams of companion modes in the modal interaction (1,5) + 

(1,6) model. (β1 = 0.03, β2 = 0.001, Γ0 = 0.50, Ω = 1.60). 

 

 

 



 

 

  
(a) Γ1 = 0.20 (b) Γ1 = 0.50 

Figure 9. Bifurcations diagrams with control parameter Ω.  

(β1 = 0.03, β2 = 0.001, Γ0 = 0.50). 

4. CONCLUSIONS 

In the present paper, the Donnell shallow shell theory has been applied to model the 

non-linear dynamics of a thin-walled fluid-filled circular cylindrical shell. The fluid was as-

sumed to be incompressible and non-viscous and its irrotational motion was described by a 

velocity potential that satisfies the Laplace equation and relevant boundary and continuity 

conditions. Based on perturbation techniques, a general solution for the displacement field 

considering the modal coupling and modal interaction was obtained satisfying the boundary 

conditions of a simply-supported shell. Low dimensional models considering or not the modal 

interaction are derived and results are compared. Results show that modal interaction modi-

fies substantially the parametric instabilities and permanent escape boundaries and bifurca-

tions diagrams of the cylindrical shell under harmonic axial loading. Also, the obtained results 

corroborate the coupling and interaction between asymmetric and symmetric modes and show 

that this technique can be used to derive consistent low-dimensional models for the non-linear 

dynamic analysis of cylindrical shells. 
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