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Abstract. In this paper a simulation model is presented for the Direct Numerical simulation
(DNS) of multiphase flow. This method combines the Volume of fluid model and Immersed
Boundary method in order to investigate water-oil flow-pattern. The simulations were car-
ried out on structured cartesian adaptive mesh refinement (SAMR), where the the Immersed
Boundary represents the circular tube via Direct Forcing Method (DFM). The Volume of Fluid
based on piecewise linear reconstruction interface, allow to define the fluid-fluid interface us-
ing a three dimensional version of the continuum surface force (CSF) model of Brackbill et
al. (1992). The Navier-Stokes equations are discretized in the entire domain using a finite
difference scheme, where a temporal discretization is based on SBDF scheme, with adaptive
time stepping. The capabilities of the hybrid VOF-IB model are demonstrated with examples
in wich complex topological changes in the interface are encountered. The overall method-
ology has been through a careful, series of verification tests whose results are reported. An
oil-water flow-pattern application is presented.

Keywords: Two-Phase Flow, Structured Adaptive Mesh Refinement, Volume of Fluid, Im-
mersed Boundary method.

1. INTRODUCTION

Multiphase flows are the source of numerous nonlinear processes of both scientific and
technological relevance. These flows are characterized by a complex motion of fluid interfaces
separating masses of fluids with different material properties which can undergo significant
deformations and topological transitions.

Due to the multi-component nature of the flow, fluid interfaces are subjected to sur-
face tension and this interfacial force plays a fundamental role in nearly all multiphase flows
of physical interest. Moreover, multiphase flows are typically multi-scale. The important phe-
nomena of drop coalescence and break-up as well as the generation of short capillary waves
are just a few examples that exhibit the presence of multiple length scales.

Numerical methods for computing multiphase flows can be broadly divided into two
types: capturing and tracking methodologies. In capturing methods, such as the continuum
surface force (CSF) model [6], the level set approach [8], the phase field method [4],and
the volume-of-fluid (VOF) method [15, 14, 19, 18], the fluid interface is implicitly defined

Blucher Mechanical Engineering Proceedings
May 2014, vol. 1 , num. 1
www.proceedings.blucher.com.br/evento/10wccm



through a globally specified scalar function (the mass density, a signed distance function, or a
volume fraction) which acts as a fluid indicator. These methods capture the interface motion
on an Eulerian grid and handle automatically changes in interfacial topology. Front-tracking
methods [7], on the other hand, use a separate grid to explicitly follow the interface motion.

In recent years, much attention has been paid to the development of hybrid approaches [3,
19]. Combined methods also has achieved space in the scientific literature [10]. Following
this philosophy, the method presented here combines the Volume of Fluid (VOF) method, to
represent the fluid-fluid interface, and the Immersed Boundary method (IB), to represent the
solid-fluid interface. In the present work, such combination is employed to perform the com-
putational simulations of flow through a long pipe: the immersed boundary is usedo to model
the pipe while the VOF method defines the gas-fluid interface.

Here, VOF is based on a piecewise linear interface representation (PLIC/VOF). VOF
method was originally proposed by Hirt and Nichols [30] and over time has frequently re-
ceived many improvements [20, 16]. In the present work, the model is based on Young’s
VOF method for which the best performance in standard advection was obtained, similar as
reported by Rudman [23]. The IB method embeds a direct forcing method as proposed by
Uhlmann [29] and Wang [31]. Differently from [10], the collision model, to account for dissi-
pative particle-particle and particle-wall collision, has been not considered yet. Both methods
are implemented in the context structured adaptive mesh refinement in order to allow vari-
able spatial resolution along the interface, which can be a solid-fluid interface or a fluid-fluid
interface. The numerical method also evolves accordingly to a second order, semi-implicit
time discretization (Semi-Backward Difference Formula - SBDF) and a second-order finite
difference scheme for the spatial discretization. A multigrid-multilevel is applied to solve the
pressure Poisson equation.

The main goal is to show the capability of the combined method to simulate an oil-
water flow-pattern on a pipeline system, considering a structured cartesian mesh. With this
goal in mind, the current work presents the governing equations and the numerical method.
Section 3 is devoted to the verification of the method where three dimensional test cases are
examined. In Section 4, an example of oil-water flow-pattern is presented and discussed and,
finally, in Section 5 the conclusions are presented.

2. GOVERNING EQUATIONS AND NUMERICAL SCHEME

The combined model presented here consists of two main parts: one considers the
presence of deformable interfaces (Volume of Fluid model) and the other one considers the
presence of solid interfaces (Immersed Boundary Method). Both of them are embedded on an
incompressible, variable-density flow governed by the Navier-Stokes equations.

2.1. Governing equations

The incompressible, variable-density, Navier-Stokes equations with surface tension
can be written as

ρ[ut + (u · ∇)u] = ∇ · [µ(∇u +∇u†)]−∇p+ ρg + fσ + fs, (1)
∇ · u = 0,

where u = (u, v, w) is the fluid velocity, ρ ≡ ρ(x, t) is the fluid density, and µ ≡ µ(x, t) is the
dynamic viscosity. Here, p, g, and fσ are the pressure, the gravitational acceleration, and the



surface tension force, respectively. The source term fs accounts for the fluid-solid coupling
(physical units N/m3).

For two-phase flows the volume fraction C(x, t) is introduced, and through it is pos-
sible to define the density and viscosity as

ρ(C) = Cρ1 + (1− C)ρ2, (2)
µ(C) = Cµ1 + (1− C)µ2, (3)

with ρ1, ρ2 and µ1, µ2 the density and viscosity of the first and second fluids respectively.
The interface is advected with the local fluid velocity, using the following advection

equation to the volume fraction:

∂tC +∇ · (Cu) = 0. (4)

2.2. Discretization in time

The time discretization scheme presented here is similar to the scheme presented in
[7] with minor modifications, which allow different semi-implicit schemes to be chosen from
accordingly to the necessity. The second-order semi-implicit scheme is given by

ρn+1

∆t
(α2u

n+1 + α1u
n + α0u

n−1) = β1f(un) + β0f(un−1)+ (5)

λ
[
θ2∇2un+1 + θ1∇2un + θ0∇2un−1

]
−∇pn + ρn+1g,

∇ · un+1 = 0, (6)

where λ = |µ|∞ and f(u) the forcing term

f(u) = −λ∇2u +∇ ·
[
µ(∇u +∇uT

]
− u · ∇u + fσ. (7)

The parameters αi, βi, and θi are

α0 =
(2γ − 1)ω2

1 + ω
,

α1 = (1− 2γ)ω − 1,

α2 =
1 + 2γω

1 + ω
,

β1 = −γω,
β0 = 1 + γ,

θ0 =
c

2
,

θ1 = 1− γ−
(

1 +
1

ω

) c
2
,

θ2 = γ +
c

2ω
, (8)

where ω = ∆tn+1/∆tn is the ratio between two consecutive time steps. That family of
numerical schemes involving the two parameters γ and c, as showed in [1], includes

• Cranck-Nicolson Adams-Bashforth (CNAB): (γ, c) = (0.5, 0.0).



• Modified Crank-Nicolson Adams-Bashforth (MCNAB): (γ, c) = (0.5, 0.125).

• Crank-Nicolson Leap Frog (CNLF): (γ, c) = (0.0, 1.0).

• Semi-Backward Difference (SBDF): (γ, c) = (1.0, 0.0).

In the present work, the above SBDF temporal time discretization is chosen in all cases, with
a variable size of time step.

To handle the pressure-velocity coupling, given by (5) and (6), the fractional time-step
method is proposed

ρn+1

∆t
(α2u

∗ + α1u
n + α0u

n−1) = β1f(un) + β0f(un−1)+ (9)

λ
[
θ2∇2u∗ + θ1∇2un + θ0∇2un−1

]
−∇pn + ρn+1g,

un+1 = u∗ − ∆t

α2

∇q
ρn+1

, (10)

∇ · un+1 = 0. (11)

Once the provisional velocity u∗ is computed from (9) imposing u∗
.
= un+1 on the bound-

aries, it is projected onto the space of divergence-free vector fields. This is accomplished by
solving the Poisson equation for q defined by (10) and (11) along with homogeneous Neu-
mann boundary conditions ∂q/∂n = 0, where n is the exterior normal to the domain.

Multilevel-multigrid methods are employed to solve for both the provisional vector
field, u∗ in (9), and the pressure increment q. The last one is obtained from

∇ · [ 1

ρn+1
∇q] =

α2

∆t
∇u∗. (12)

2.3. Discretization in space

Space is discretized using the structured adaptive mesh refinement, which is based
on the hierarchical grid structure proposed by Berger and Colella [5] and on the adaptive IB
method introduced by Roma et al. [22]. In this scheme, regions of the flow bearing special
interest are covered by block-structured grids, defined as a hierarchical sequence of nested,
progressively finer levels (composite grids). Each level is formed by a set of disjoint rectan-
gular grids and the refinement ratio between two successive refinement levels are constant and
equal to two. Ghost cells are employed around each grid, for all the levels, and underneath
fine grid patches to formally prevent the finite difference operators from being redefined at
grid borders and at interior regions which are covered by finer levels. Values defined in these
cells are obtained from interpolation schemes, usually with second or third order accuracy,
and not from solving the equations of the problem. A staggered composite grid is used. The
discretizations of the Laplacian, gradient and divergence differential operators are performed
by standard, cell-centered second order stencils.

2.4. Volume of Fluid Method

To solve the volume fraction advection equation (Eq. 4), a piecewise-linear geomet-
rical Volume of Fluid based on [24] scheme is used. Geometrical VOF schemes classically
proceed in two steps:



1. Interface reconstruction.

2. Geometrical flux computation and interface advection.

Interface reconstruction is preformed using a piecewise-planar interface representation
in each cell defined by the equation

m · x = α. (13)

Given the interface normal m and the volume fraction C in a given cell, α can be
determined uniquely using analytical relations ([15], [16], [25]). The interface normal m can
be approximated by considering the volume fractions in a neighborhood of the cell consid-
ered, where the Mixed-Youngs-Centred (MYC) implementation of [2] is used. Once interface
reconstruction has been performed, direction-split geometrical fluxes can be computed easily
on regular Cartesian grids.

As shown by [15], the resulting advection scheme preserves a sharp interface and has
been shown to be close to second-order accurate for practical applications. While this scheme
is not strictly conservative [20], errors in mass conservation for intricate problems are usually
less than 0.01%.

2.5. Surface tension

The surface tension term (fσ = σκδsn), in the momentum equation (1), is aproximated
based on the original Continuum-Surface-Force (CSF) approach of [6]. To reduce the parasitic
currents which are always present in this approach, the Height-Function technique is used for
an accurate curvature evaluation.

Recently, [19] showed that the combination of a balanced-force surface tension dis-
cretization and a Height-Function curvature estimation is sufficient to solve the problem of
parasitic currents. However, the Heigh-Function technique ([9], [11]) presents inconsistent
approximations when the radius of curvature of interface becomes comparable to mesh size.
In this case, other techniques must be coupled with HF to supply a better approximation. In
the present work, for the inconsistent points Shirani’s discretization is used [26].

2.6. Immersed Boundary Method

The momentum source term fs accounts for the presence of the rigid body. The source
term fs is evaluated by direct forcing methodology, proposed by [29]. The main characteristic
of this method is that it is not necessary to use ad-hoc constants and it allows for the non-slip
condition modeling along the immersed interface.

The source term fs is defined in all domain Ω, but it presents values different from zero
only at the points that coincide with the immersed geometry,

fs(x, t) =

{
Fs(X, t) se x = X,

0 se x 6= X,
(14)

where x is the position of any particle in the fluid and X is the position of any point on the
rigid interface, and the Lagrangian force Fs(X, t) is

Fs(X, t) = ρ(X, t)[Ut + (U · ∇)U]−∇ · [µ(X, t)(∇U +∇U†)]

+∇P − ρ(X, t)g − Fσ, (15)



where U and P belong to the Lagragian domain and can be given by interpolation of velocities
and pressure, respectively, from Eulerian points near the immersed body.

Force (15) may be rewritten as

Fs(X, t) = ρ(X, t)
α2U

n+1 − α2U
∗ + α2U

∗ + α1U
n + α0U

n−1

∆t
+ RHSn,n−1, (16)

where U∗ is a temporary parameter, ∆t is the time step and RHS is the right had side com-
posed by advective term , diffusive term, gradient pressure term, gravitational term, and in-
terfacial term force. Note that (16) is solved by equations (17) and (18) at the same time
step:

ρ(X, t)
α2U

∗ + α1U
n + α0U

n−1

∆t
+ RHSn,n−1 = 0, (17)

Fs(X, t) = ρ(X, t)
α2U

n+1 − α2U
∗

∆t
, (18)

where Un+1 = UFI is the immersed boundary, prescribed velocity.
Equation (17) is solved on the Eulerian domain, i.e. the solution of equation (1) with

fs = 0. The temporary velocity u∗ is interpolated to the Lagrangean domain and becomes U∗

and is used on equation (18). After that, Fs(X, t) is smeared out to the Eulerian mesh using a
distribution function D

fs(x) =
∑

Γ

Dh(x−X)Fs(X)∆V, (19)

Dh(x−X) =
1

h3
Wg

(x−X
h

)
Wg

(y − Y
h

)
Wg

(z − Z
h

)
, (20)

Wg(r) =

{
1− |r| se 0 ≤ |r| ≤ 1,

0 se 1 < |r|. (21)

where r = x−X
h

, h is the Eulerian mesh spacing, and ∆V is the influence range volume (see
[29]).

Finally, the Eulerian velocity is updated by equation (22)

u∗∗ = u∗ +
∆t

ρ(x, t)α2

fs. (22)

Equations (18)-(22) can be iterated few fixed times or until some tolerance error has
been attained. It is important to note that, in a multiphase flow, the density ratio can reach
high values. We have noticed that when running IB Method in the context of multiphase
flows, especially, when the density ratio is higher than 10, the error between ρ(X, t) and
ρ(x, t) can impact the multi-direct force convergence. That is the reason why in those cases,
in equations (18)-(22), the density is neglected. Note that this does not affect the final result
since when substituting (18) into (22) the densities cancel out.

3. VERIFICATION AND VALIDATION

Verification/validation is an important step in the development of any numerical tool.
In the present work, the we use the method of manufactured solutions (MMS) to verify the
convergence rate of the Eulerian set of equations only, while validation tests are applied to the
other numerical techniques as curvature and interfacial force computations, and IB Method
implementation.



3.1. Verification of an incompressible solution

MMS consists in obtaining a priori a known analytical solution for the system of
governing equations. Those manufactured solutions require the addition of a source term to
the original differential equation coming from a set of chosen function which will play the
role of the exact solution. Here, we choose

pe = cos(αsπx+ βsπy + γsπz + δst)
2, (23)

ue = sin(αsπx+ βsπy + γsπz + δst)
2, (24)

ve = − cos(αsπx+ βsπy + γsπz + δst)
2, (25)

we =
αs
γs

cos(αsπx+ βsπy + γsπz + δst)
2 +

βs
γs

cos(αsπx+ βsπy + γsπz + δst)
2, (26)

ρe = 1 + 0.1 sin(αsπx+ βsπy + γsπz + δst)
2, (27)

µe = 1 + 0.2 cos(αsπx+ βsπy + γsπz + δst)
2, (28)

where the subscript e stands for “exact”. Observe that the divergence of (24)-(26) is zero, as
it should. Functions (23)-(24) are written as functions of constant parameters αs, βs, γs, and
δs. Such parameters may be chosen to apply MMS for a wider range of numerical cases. For
example, if δs is set to zero, only the spatial derivatives influence the convergence rate of the
scheme. On the other hand, if αs, βs and γs are set to zero, only temporal scheme is tested.

The computational domain considered is the cube [0, 1] × [0, 1] × [0, 1], aligned with
the coordinate axis. The time step is controlled by CFL condition, with a CFL constant chosen
to be 0.5. The parameters αs, βs, and γs are set to 2, and δs = 1. The domain is discretized
with a fixed composite mesh showed in Figure 1.

Figure 1. Composite mesh used for convergence analysis (the mesh does not change in time).

We employ the L2-norm for the convergenc analysis:

L2 =
1

VΩ

(
∑
|φh(i,j,k) − φe(i,j,k)|2∆x∆y∆z)

1
2 , (29)



where VΩ is the domain volume. The error decay ratio is defined as

re = log
Φ2h

Φh

, (30)

where Φ2h is the global error on a grid with spacing 2h. The convergence rate q is defined as
q ≈ re/log(2).

Table (1) displays the grid refinement 1, the decay of L2 norm and the resulting con-
vergence rate q for Dirichlet condition obtained from the exact solution. It is worth noting that
at least a convergence rate equals to two is obtained for all velocities and at least equal to first
order for the pressure. The values of error and convergence rate are measured at t = 0.1s.

Convergence rate test
[16]3L1 q [32]3L1 q [64]3L1 q [128]3L1

‖u− ue‖2 1.6927e-02 1.97 4.3227e-03 2.00 1.0803e-03 2.01 2.6807e-04
‖v − ve‖2 1.7351e-02 1.98 4.4058e-03 2.00 1.0999e-03 2.00 2.7486e-04
‖w − we‖2 3.1286e-02 1.97 8.0085e-03 2.01 1.9851e-03 2.03 4.8464e-04
‖p− pe‖2 0.6372 1.60 0.2102 1.69 6.5002e-02 1.69 2.0070e-02

Table 1. Obtained convergence rates for Dirichlet boundary conditions on a composite mesh.

3.2. Validation test with a stationary droplet

A common test for the accuracy of the surface tension representation in multiphase
flow methods is a static cylindrical droplet [19, 28]. That is, the exact solution is u = 0,
thus the droplet should not move. However, when the surface tension is sufficiently high and
there is significant, numerically introduced anisotropy in its representation, artificial nonzero
velocities can be generated. These “spurious currents”, while small in magnitude, could af-
fect the accuracy of computations for large tension forces and relatively coarse grids. This
numerical problem has been well documented for both tracking (see for example [28]) and
volume-of-fluid methods [17].

This simple flow is characterized by the Laplace number, La = σρD/µ2, where D
is the diameter of the droplet, and by the ratios ρ1/ρ2, and µ1/µ2. Here, we fix the viscosity
and density ratios to one. A dimensionless measure of the strength of the spurious currents
is the magnitude of the maximum non-dimensional velocity for a given simulation, where
Uσ =

√
σ/ρD and tσ =

√
ρD3/σ are the reference scales.

The computational domain is a cube [0, 2] × [0, 2] × [0, 2]. The droplet is placed at
the center of the cube with D = 0.8. Periodic boundary conditions are adopted. The mesh
size is equal 3.125 · 10−2 and the divergence criterion is set to 10−6. For the time-explicit
discretization of the surface-tension term, numerical stability requires that the timestep be

smaller than the period of the shortest capillary wave, that is, ∆t ≤
√

ρ∆3

πσ
.

Figure 2 illustrates the evolution of L2-norm of velocity field in time for a range of
Laplace numbers (as indicated in the legend). As showed by [18], the L2-norm(u) presents an
exponential decrease in time, at all Laplace numbers.

1We refer to the composite adaptive meshes using the notation m × n × oLp which stands for a mesh with
an m× n× o coarsest (base) level and p levels of refinement (total, from the coarsest to the finest level)



Figure 2. Evolution of spurious currents around a circular droplet.

3.3. Validation test for the IB Method

The Hagen–Poiseuille flow is another CFD problem used in code validation, which
has an analytical solution and ensure no-slip conditions in the pipe wall. The equations gov-
erning the Hagen–Poiseuille flow can be derived directly from the NavierStokes equations in
cylindrical coordinates which presents the following parabolic velocity profile:

ux = − 1

4µ

∂p

∂x
(R2 − r2), (31)

where R is the pipe radius, x and r are the cylindrical coordinates in horizontal and radial
directions, respectively.

In the present work, an unstructured mesh is used to represent the pipe and the IB
Method models the no-slip condition on the pipe wall. The same procedure of MMS is again
applied but the source term is replaced by a constant, which play the role of a pressure differ-
ence (∂p/∂x). The source term is applied only at the cells located inside the pipe (for those,
∂p/∂x = 1). In the complementary domain no pressure gradient is imposed.

The simulation domain is Ω = [0, 1] × [0, 0.5] × [0, 0.5], the pipe length is 1, and
radius R = 0.2. The accuracy analysis is taken at t = 10s, considering both composite and
uniform meshes. The time step is given by a CFL=0.6, for Reynolds Re = 100, with ρ = 0.1
and µ = 0.002. The boundary conditions adopted are periodic in x direction, homogeneous
Neumann in y and z directions. Figure 3 shows our pipe modeled by an unstructured mesh
embeded in a Cartesian mesh with local refinement.

Velocity profiles at x = 0.5, y = 0.25, and t = 10.0s are shown in Figure 4, where the
uniform mesh 64 × 32 × 32, and two others refined mesh 64 × 32 × 32L1, 64 × 32 × 32L2
are used in comparisons with the analytical solution. Erros obtained on the several meshes in
Figure 4, and the relative error for the finest mesh is about 0.1%.



Figure 3. Pipe discretized by an unstructured mesh embeded in a Cartesian mesh with two
levels of refinement.

Figure 4. Velocity profile at x = 0.5, y = 0.25, and t = 10.0s for the horizontal velocity in
several different meshes.

4. RESULTS

As an application of the numerical methodology described before, an oil-water dis-
persion flow is chosen to illustrate the hybrid approach VOF/IB Method. Dispersed flows are



flows in which one phase is either fully or partially dispersed into the other. In other words,
when one of the phases is no longer continuou, but rather exists as droplets flowing immersed
in the continuous phase, the flow is in the dispersed flow category. Depending on flow condi-
tions, several distributions of droplets can appear. At low water cut and intermediate mixture
velocity, for example, a dense layer of water droplets may appear near the pipe wall.

In liquid-liquid flow systems, it is important to understand the nature of the interactions
between the phases and to observe the ways in which the phases are distributed over the cross
section of the pipe. The flow pattern, usually, will not depend only on the flow behavior but
also on the interfacial velocities, and on the distribution of the fraction occupied by each phase
over the cross section of the pipe [27].

To simulate the flow-patterns, a large domain is required and the chosen boundary con-
ditions can also contribute to the domain size. In recent studies, [13] and [12], recommended
a pipe length of 40-80 diameters for a complete developed flow regimes without boundary
influence. For 3D simulations, those kinds of long domains become impractible for our se-
rial codes (a parallel version is underway). For a oil-water flow dispersion simulations the
parameters presented in Table 2, were adopted.

VOF/FI
Parameters Values
computational domain [0; 1.024]m× [0; 0.064]m× [0; 0.064]m
mesh size 0.002m
time step variable
pipe radius 0.054m
oil density 905Kg/m3

oil viscosity 0.601Pa.s
water density 995Kg/m3

viscosity water 0.001Pa.s
surface tension 0.00854N/m

Table 2. Parameter used for water-oil dispersion flow.

The simulations are performed in a adaptive mesh with 2 levels of refinement and
periodic boundary condition in x direction. In y and z directions, homogeneous Neumann
boundary conditions are chosen. Oil and water are initially fully segregated. The volume
fraction distribution of the liquid-liquid phases in the computational domain is initialized with
a volume fraction of 0.5 and a sinusoidal disturbed free surface with a liquid level zi following
the function:

zi = z0 + Ai ∗ sin(2π
x

pi
), (32)

where z0 is the pipe center with z0 = 0.032, Ai = 0.1D, and pi = 0.5L. D and L are the pipe
diameter and length, respectively. The initial interface disturbance is showed on Figure 5,
where the iso-surface correspond to the liquid volume fraction of 0.5. The initial velocities
of liquid-liquid phases are set to uw = uo = 2.0m/s, which correspond to the superficial
velocities Vsw = Vso = 1.0m/s. The driving pressure force in the horizontal direction is a
constant with ∆p = 9150Pa/m.

In the transient simulation (Figure 6), the pre-set sinusoidal free surface configuration
was quickly transformed into a thinner packed layer with water droplets, run up to time 1.5s.
In this case, the interfacial mixing region grows with an increase in velocity and the two types
of dispersions can coexist. Both phases retain their continuity at the top and the bottom of the



Figure 5. Isosurface of initial interface disturbance for the liquid volume fraction of 0.5.

pipe but with each phase dispersed, at various degrees, into the continuum of each other. The
flow regime is defined as dispersion of oil-in-water and water-in-oil flow (o/w & w/o).

The dispersion of the oil-water flow in a horizontal pipe is presented in terms of flow
pattern maps. Figur 7 shows the flow pattern map for a horizontal oil-water flow based on [21].
The superficial velocity, obtained when the regime, is attained corresponds to Vsw = 2.75m/s
and Vso = 1.6m/s, which stands for Do/w &w/o pattern.

5. CONCLUSIONS

A hybrid Volume-of-Fluid/IB Method for the computer simulation of transient incom-
pressible flows given by the Navier-Stokes equations with rigid immersed bodies with pre-
scribed velocities is implemented in an adaptive mesh refinement framework. The overall
methodology is verified and validate carefully through a series of tests (including manufac-
tured solutions and particular flow cases with known solutions). As shown by an application
of the methodology to a oil-water dispersion flow problem, the methodology succeeds in pre-
dicting the main qualitatively important flow features. Future work will be concerned with the
parallelization of the methodology and validating the numerical simulations with experimen-
tal data and statistical parameters such as a complete flow map pattern.
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Figure 6. Density propagation field in pipe with periodic boundary condition. (a) t = 0.02s
,(b) t = 0.3s, (c) t = 1.25s, (d) t = 1.5s



Figure 7. Map of an oil-water flow in a horizontal pipe.
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